RISK-BASED CORRECTIVE ACTION REPORT

Boeing Tract 1, St. Louis, Missouri

September 2004

Volume 1

Prepared for:
The Boeing Company
St. Louis, Missouri

Prepared by:

Risk Assessment & Management Group, Inc.

7457 Harwin Dr., Suite 238

Houston, TX 77036

Tel: (713) 784-5151

Fax: (713) 784-6105

E-mail: asalhotra@ramgp.com

TABLE OF CONTENTS

			•.	Page
		ONTENTS		i
LIST O				ix
LIST O				xix
		ACHMENTS		XX
		ENDICES		XX
ABBRI	EVIATI	ONS		xxii
EXEC	UTIVE	SUMMARY		ES-1
1.0	OVER	VIEW		1-1
	1.1	INTRODUCTION		1-1
	1.2	ORGANIZATION OF REPORT		1-1
	1.3	SITE DESCRIPTION		1-1
	1.4	INVESTIGATION HISTORY		1-2
	1.5	SITE GEOLOGY		1-3
	1.6	HYDROGEOLOGY		1-4
	1.7	TOPOGRAPHY		1-4
	1.8	RELEVANT CLIMATE CONDITIONS		1-4
	1.9	EXPOSURE ASSESSMENT		1-5
		1.9.1 Discretization of Site		1-5
		1.9.2 Screening to Identify Constituents of Concern		1-6
		1.9.2.1 Groundwater		1-6
		1.9.2.2 Soil		1-7
		1.9.2.3 Laboratory Qualifiers		1-7
		1.9.3 Representative Concentration Methodology 1.9.4 Physical and Chemical Properties of COCs		1-8
	•.	1.9.5 Toxicological Properties of COCs		1-9
		1.9.6 Exposure Factors		1-9
		1.9.7 Fate and Transport Models		1-10
		1.9.8 Fate and Transport Parameters		1-10 1-10
		1.9.9 Acceptable Risk Level		1-10
		1.9.10 Consideration of TPH in the Risk Assessment		1-12
		1.9.11 Consideration of Lead		1-13
		1.9.12 Consideration of 1,2-Dichloroethene		1-14
	1.10	WATER USE		1-14
	1.11	SURFACE WATER BODIES		1-15
2.0	AREA	1: RUNWAY PROTECTION ZONE		2-1
	2.1	INTRODUCTION		
	2.2	DESCRIPTION OF AREA	ě	2-1
κ.		2.2.1 Potential Sources within Area	الإرمانتكتامها	2-1
		2.2.2 Soil Stratigraphy within Area RECEIVED	Š	2-1
		2.2.3 Hydrogeology within Area		2-2
	2.3	LAND USE NOV 2 9 2004		2-2 2-2
		2.3.1 Current Land Use		2-2
		ARTD/RCAP		2-2

		2.3.2 Future Land Use	2-2
	2.4	AVAILABLE DATA	2-2
	2.5	CONSTITUENTS IDENTIFIED WITHIN AREA	2-3
		2.5.1 Soil	2-3
		2.5.2 Groundwater	2-4
	2.6	FREE PRODUCT	2-6
	2.7	EXPOSURE MODEL	2-6 2-6
	2.,	2.7.1 Current Conditions	2-6 2-6
		2.7.2 Future Conditions	2-0 2-7
	2.8	REPRESENTATIVE CONCENTRATION FOR CONSTRUCTION	2-1
	2.0	WORKER	2-8
	2.9	CALCULATION OF RISK	2-8 2-8
	2.10		2-8 2-8
	2.11		2-8 2-11
	2.12	CONCLUSIONS	2-11 2-12
	2.12	CONCEDENTIA	2-12
3.0	AREA	A 2: DEMOLISHED AREA	3-1
	3.1	INTRODUCTION	3-1
	3.2	DESCRIPTION OF AREA	3-1
		3.2.1 - Potential Sources within Area	3-1
		3.2.2 Soil Stratigraphy within Area	3-2
		3.2.3 Hydrogeology within Area	3-3
	3.3	LAND USE	3-3
		3.3.1 Current Land Use	3-3
		3.3.2 Future Land Use	3-3
	3.4	AVAILABLE DATA	3-3
•	3.5	CONSTITUENTS IDENTIFIED WITHIN AREA	3-4
		3.5.1 Soil	3-4
		3.5.1.1 Sub-area 2A	3 - 5
		3.5.1.2 Sub-area 2B	3-6
		3.5.1.3 Sub-area 2C	3-0 3 - 7
		3.5.2 Groundwater	3-7
		3.5.2.1 Sub-area 2A	3 - 9
		3.5.2.2 Sub-area 2B	3-9
		3.5.2.3 Sub-area 2C	3-10
	3.6	FREE PRODUCT	3-10
	3.7	EXPOSURE MODEL	3-10
		3.7.1 Current Conditions for Sub-areas 2A, 2B, and 2C	3-12
		3.7.2 Future Conditions for Sub-areas 2A, 2B, and 2C	3-12
	3.8	REPRESENTATIVE CONCENTRATIONS	3-12
		3.8.1 Sub-area 2A	3-13
		3.8.2 Sub-area 2B	3-13
		3.8.3 Sub-area 3C	
	3.9	CALCULATION OF RISK	3-14 3-15
		3.9.1 Sub-area 2A	3-15
		3.9.1.1 Non-residential Worker	3-15
		3.9.1.2 Construction Worker	3-15
		3.9.2 Sub-area 2B	3-13
		3.9.2.1 Non-residential Worker	3-16
		3.9.2.2 Construction Worker	3-16
		· · · · · · · · · · · · · · · · · · ·	2-10

		3.9.3 Sub-area 2C 3.9.3.1 Non-residential Worker	3-16 3-16
		3.9.3.2 Construction Worker	3-17
	3.10	· · · · · · · · · · · · · · · · · · ·	3-17
	3.11	CONCLUSIONS	3-17
4.0	ARE	A 3: RETAINED AREA	4-1
	4.1	INTRODUCTION	4-1
	4.2	DESCRIPTION OF AREA	4-1
		4.2.1 Potential Sources within Area	4-2
		4.2.2 Soil Stratigraphy within Area	4-3
	4.3	4.2.3 Hydrogeology within Area	4-3
	4.5	LAND USE	4-4
		4.3.1 Current Land Use 4.3.2 Future Land Use	4-4
	4.4	AVAILABLE DATA	4-4
	4.4	CONSTITUENTS IDENTIFIED WITHIN AREA	. 4-4
	4.5	4.5.1 Soil	4-5
		4.5.1.1 Sub-area 3A	4-5 4-6
		4.5.1.2 Sub-area 3B	4-0 4-7
		4.5.1.3 Sub-area 3C	4-8
		4.5.1.4 Sub-area 3D	4-8
		4.5.1.5 Sub-area 3E	4-10
		4.5.1.6 Sub-area 3F	4-11
		4.5.1.7 Sub-area 3G	4-11
		4.5.1.8 Sub-area 3H	4-12
		4.5.2 Groundwater	4-13
		4.5.2.1 Sub-area 3A	4-13
		4.5.2.2 Sub-area 3B	4-14
		4.5.2.3 Sub-area 3C	4-14
		4.5.2.4 Sub-area 3D	4-15
		4.5.2.5 Sub-area 3E	4-15
		4.5.2.6 Sub-area 3F	4-15
	•	4.5.2.7 Sub-area 3G	4-16
		4.5.2.8 Sub-area 3H	4-16
	4.6	FREE PRODUCT	4-17
	4.7	EXPOSURE MODEL	4-17
		4.7.1 Current Conditions for Sub-areas 3A – 3H	4-17
		4.7.2 Future Conditions for Sub-areas 3A – 3H	4-17
	4.8	REPRESENTATIVE CONCENTRATIONS	4-18
		4.8.1 Sub-area 3A	4-18
		4.8.2 Sub-area 3B	4-19
		4.8.3 Sub-area 3C	4-19
		4.8.4 Sub-area 3D	4-19
		4.8.5 Sub-area 3E	4-19
		4.8.6 Sub-area 3F	4-19
		4.8.7 Sub-area 3G	4-20
	4.0	4.8.8 Sub-area 3H	4-20
	4.9	CALCULATION OF RISK	4-20
		4.9.1 Sub-area 3A	4-20

		4.9.1.1 Non-residential Worker		4-21
		4.9.1.2 Construction Worker		4-21
		4.9.2 Sub-area 3B	٠,	4-21
		4.9.2.1 Non-residential Worker		4-21
		4.9.2.2 Construction Worker		4-21
		4.9.3 Sub-area 3C		4-22
		4.9.3.1 Non-residential Worker		4-22
		4.9.3.2 Construction Worker		4-22
		4.9.4 Sub-area 3D		4-22
		4.9.4.1 Non-residential Worker		4-22
		4.9.4.2 Construction Worker		4-23
		4.9.5 Sub-area 3E		4-23
		4.9.5.1 Non-residential Worker		4-23
		4.9.5.2 Construction Worker		4-23
		4.9.6 Sub-area 3F		4-24
		4.9.6.1 Non-residential Worker		4-24
		4.9.6.2 Construction Worker		4-24
		4.9.7 Sub-area 3G		4-24
		4.9.7.1 Non-residential Worker		4-24
		4.9.7.2 Construction Worker		4-25
		4.9.8 Sub-area 3H		4-25
		4.9.8.1 Non-residential Worker		4-25
		4.9.8.2 Construction Worker		4-25
		ECOLOGICAL RISK		4-25
	4.11	CONCLUSIONS		4-26
5.0	AREA	A 4: POWER PLANT		5-1
	5.1	INTRODUCTION		5-1
	5.2	DESCRIPTION OF AREA		5-1
		5.2.1 Potential Sources within Area		5-1
		5.2.2 Soil Stratigraphy within Area		5-1
		5.2.3 Hydrogeology within Area		5-1
	5.3	LAND USE		5-2
		5.3.1 Current Land Use		5-2
		5.3.2 Future Land Use		5-2
	5.4	AVAILABLE DATA		5-2
	5.5	CONSTITUENTS IDENTIFIED WITHIN AREA		5-2
		5.5.1 Soil		5-2
		5.5.2 Groundwater		5-4
	5.6	FREE PRODUCT		5-5
	5.7	EXPOSURE MODEL		5 - 5
	•	5.7.1 Current Conditions		5-5
	<i>5</i> 0	5.7.2 Future Conditions		5-6
	5.8	REPRESENTATIVE CONCENTRATIONS		5-6
	5.9	CALCULATION OF RISK		5-7
		5.9.1 Non-residential Worker		5-7
	5.10	5.9.2 Construction Worker ECOLOGICAL RISK		5-7
	5.10			5-8 5-8
	J. 1 1			5Q

6.0	ARE	A 5: INDRUSTRIAL WATER TREATMENT PLANT	6-1
	6.1	INTRODUCTION	6-1
	6.2	DESCRIPTION OF AREA	6-1
		6.2.1 Potential Sources within Area	6-1
		6.2.2 Soil Stratigraphy within Area	6-1
		6.2.3 Hydrogeology within Area	6-1
	6.3	LAND USE	6-2
	:	6.3.1 Current Land Use	6-2
		6.3.2 Future Land Use	6-2
	6.4	AVAILABLE DATA	. 6-2
	6.5	CONSTITUENTS IDENTIFIED WITHIN AREA	6-2
		6.5.1 Soil	6-2
		6.5.2 Groundwater	6-3
	6.6	FREE PRODUCT	6-4
	6.7	EXPOSURE MODEL	6-5
		6.7.1 Current Conditions	6-4
		6.7.2 Future Conditions	6-5
	6.8		. 6-6
	6.9	CALCULATION OF RISK	6-6
		6.9.1 Non-residential Worker	6-7
		6.9.2 Construction Worker	6-7
	6.10		6-7
	6.11		6-7
7.0	ARE	A 6: GKN FACILITY	7-1
	7 1	NITRODUCTION	
	7.1	INTRODUCTION	7-1
	7.2	DESCRIPTION OF AREA	7-1
		7.2.1 Potential Sources within Area	7-1
		7.2.2 Soil Stratigraphy within Area	7-3
	7.2	7.2.3 Hydrogeology within Area	7-3
	7.3	LAND USE	7-3
		7.3.1 Current Land Use	7 - 3
	7.4	7.3.2 Future Land Use	7 - 3
	7.4	AVAILABLE DATA	7- 3
	7.5	CONSTITUENTS IDENTIFIED WITHIN AREA	7-4
		7.5.1 Soil	7-4
		7.5.1.1 Sub-area 6A	7-4
		7.5.1.2 Sub-area 6B	7-5
		7.5.1.3 Sub-area 6C	7-7
		7.5.1.4 Sub-area 6D	7-8
		7.5.2 Groundwater	7-10
		7.5.2.1 Sub-area 6A	7-10
		7.5.2.2 Sub-area 6B	7-11
		7.5.2.3 Sub-area 6C	7-12
	7.	7.5.2.4 Sub-area 6D	7-13
	7.6	FREE PRODUCT	7-13
	7.7	CURRENT REMEDIATION ACTIVITIES	7-13
	7.8	EXPOSURE MODEL	7-14
		7.8.1 Current Conditions for Sub-areas 6A 6B 6C and 6D	7 14

		7.8.2 Future Conditions for Sub-areas 6A, 6B, 6C, and 6D	7-14
	7.9	REPRESENTATIVE CONCENTRATIONS	7-15
		7.9.1 Sub-area 6A	7-15
		7.9.2 Sub-area 6B	7-16
		7.9.3 Sub-area 6C	7-16
		7.9.4 Sub-area 6D	7-17
	7.10	CALCULATION OF RISK	7-17
		7.10.1 Sub-area 6A	7-18
		7.10.1.1Non-residential Worker	7-18
		7.10.1.2Construction Worker	7-18
		7.10.2 Sub-area 6B	7-18
		7.10.2.1Non-residential Worker	7-18
		7.10.2.2Construction Worker	7-19
		7.10.3 Sub-area 6C	7-19
F		7.10.3.1Non-residential Worker	7-19
		7.10.3.2Construction Worker	7-19
		7.10.4 Sub-area 6D	7-20
		7.10.4.1Non-residential Worker	7-20
		7.10.4.2 Construction Worker	7-20
	7.11	· · · · · · · · · · · · · · · · · · ·	7-20
	7.12	CONCLUSIONS	7-20
8.0	ARE	A 7: ENGINEERING CAMPUS	8-1
	8.1	INTRODUCTION	8-1
	8.2	DESCRIPTION OF AREA	8-1
		8.2.1 Potential Sources within Area	8-1
		8.2.2 Soil Stratigraphy within Area	8-2
		8.2.3 Hydrogeology within Area	8-2
	8.3	LAND USE	8-2
		8.3.1 Current Land Use	8-2
		8.3.2 Future Land Use	8-2
	8.4	AVAILABLE DATA	8-3
	8.5	CONSTITUENTS IDENTIFIED WITHIN AREA	8-3
		8.5.1 Soil	8-3
		8.5.2 Groundwater	8-3
	8.6	EXPOSURE MODEL	8-5
		8.6.1 Current Conditions	8-5
	0.7	8.6.2 Future Conditions	8-6
	8.7	CALCULATION OF RISK	8-6
	8.8	ECOLOGICAL RISK	8-6
	8.9	CONCLUSIONS	8-7
9.0	ARE	A 8: OFFICE COMPLEX NORTH	9-1
	9.1	INTRODUCTION	9-1
	9.2	DESCRIPTION OF AREA	9-1
		9.2.1 Potential Sources within Area	9-1
		9.2.2 Soil Stratigraphy within Area	9-2
		9.2.3 Hydrogeology within Area	9-2
	9.3	LAND USE	9-3

	9.3	LAND USE	9-3
		9.3.1 Current Land Use	9-3
		9.3.2 Future Land Use	· 9 - 3
	9.4	AVAILABLE DATA	9-3
	9.5	CONSTITUENTS IDENTIFIED WITHIN AREA	9-3
		9.5.1 Soil	9-3
		9.5.1.1 Sub-area 8A	9-4
		9.5.1.2 Sub-area 8B	9-5
		9.5.1.3 Sub-area 8C	9-5
		9.5.2 Groundwater	9-6
		9.5.2.1 Sub-area 8A	9-6
		9.5.2.2 Sub-area 8B	9-7
		9.5.2.3 Sub-area 8C	9-8
	9.6	FREE PRODUCT	9-8
	9.7	EXPOSURE MODEL	9-8
		9.7.1 Current Conditions for Sub-areas 8A, 8B, and 8C	9-8
		9.7.2 Future Conditions for Sub-areas 8A, 8B, and 8C	9-9
	9.8	REPRESENTATIVE CONCENTRATIONS	9-9
	9.9	CALCULATION OF RISK	9-10
		9.9.1 *Sub-area 8A	9-10
		9.9.1.1 Non-residential Worker	9-10
		9.9.1.2 Construction Worker	· 9 - 10
		9.9.2 Sub-area 8B	9-11
		9.9.2.1 Non-residential Worker	9-11
		9.9.2.2 Construction Worker	9-11
		9.9.3 Sub-area 8C	9-11
		9.9.3.1 Non-residential Worker	9-11
		9.9.3.2 Construction Worker	9-12
	9.10	ECOLOGICAL RISK	9-12
	9.11	CONCLUSIONS	9-12
10.0	AREA	A 9: GUN RANGE	10-1
	10.1	INTRODUCTION	10-1
	10.2	DESCRIPTION OF AREA	10-1
		10.2.1 Potential Sources within Area	10-1
		10.2.2 Soil Stratigraphy within Area	10-1
		10.2.3 Hydrogeology within Area	10-1
	10.3	LAND USE	10-2
		10.3.1 Current Land Use	10-2
		10.3.2 Future Land Use	10-2
	10.4	AVAILABLE DATA	10-2
	10.5	CONSTITUENTS IDENTIFIED WITHIN AREA	10-2
		10.5.1 Soil	10-2
		10.5.2 Groundwater	10-3
	10.6	FREE PRODUCT	10-3
	10.7	EXPOSURE MODEL	10-4
		10.7.1 Current Conditions	10-4
		10.7.2 Future Conditions	10-5
	10.8	REPRESENTATIVE CONCENTRATIONS	10-6
	10.9	CALCULATION OF RISK	10-6
			0

	10.9.1 Non-residential Worker		10-7
	10.9.2 Construction Worker		10-7
	10.10 ECOLOGICAL RISK	`	10-7
	10.11 CONCLUSIONS		10-8
11.0	CONCLUSIONS AND RECOMMENDATIONS		11-1
12.0	REFERENCES		12-1

Table 1-1	Summary of Underground Storage Tanks at Boeing Tract 1, Hazelwood, Missouri
Table 1-2	Solid Waste Management Units (SWMU) at Boeing Tract 1, Hazelwood, Missouri
Table 1-3	Groundwater Screening Criteria
Table 1-4	Representative Background Concentrations for Metals in Soils
Table 1-5	Physical/Chemical Properties for Potential Constituents of Concern
Table 1-6	Toxicological Properties for Potential Constituents of Concern
Table 1-7	Exposure Factors Used to Estimate Risk
Table 1-7	Fate and Transport Parameters Used To Estimate Risk
Table 1-9	Soil Source Dimension Parallel to Wind Direction and Depth to Subsurface
Table 1-9	Soil
Table 1-10	Fractional Organic Carbon
Table 1-11	Moisture Content
Table 1-12	Dry Bulk Density
Table 1-13	Depth to Groundwater
Table 1-14	Classification of TPH
Table 1-15	Groundwater TPH Ratios
Table 2-1	Summary of Underground Storage Tanks (USTs) Historically Present within Area 1: Runway Protection Zone
Table 2-2	Soil Boring Information for Area 1: Runway Protection Zone
Table 2-3(R)	Monitoring Well Information for Area 1: Runway Protection Zone
Table 2-3(a)	Historic Free Product Thicknesses for Area 1: Runway Protection Zone
Table 2-4(R)	Soil Data for Area 1: Runway Protection Zone
Table 2-5(a)	Comparison of Average and Maximum Soil Concentrations in Area 1: Runway Protection Zone to Background Levels
Table 2-5(b)	Summary Information for Constituents of Concern (COCs) in Soils for Area
14010 2 5(0)	1: Runway Protection Zone
Table 2-6	Groundwater Data for Area 1: Runway Protection Zone
Table 2-7(a)	Comparison of Average and Maximum Groundwater Concentrations in Area
14070 2 7 (4)	1: Runway Protection Zone to Maximum Contaminant Level (MCL) or Equivalent
Table 2-7(b)	Summary Information for COCs in Groundwater for Area 1: Runway
14010 12 . (0)	Protection Zone
Table 2-8(R)	Historical Groundwater Data, Area 1: Runway Protection Zone
Table 2-9(R)	Calculations of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard
	Quotient (HQ) for a Future Construction Worker, Area 1: Runway Protection Zone
Table 2-10(R)	Comparison of Risk Using Max Detected Concentration vs. Average
20010 2 21(23)	Concentration for Area 1: Runway Protection Zone
Table 3-1	Summary of UST's Present Historically within Area 2: Demolished Area
Table 3-2	Soil Boring Information for Area 2: Demolished Area
Table 3-3	Monitoring Well Information within Area 2: Demolished Area
Table 3-4	Soil Samples Used in Average Concentration Calculations in Area 2:
	Demolished Area
Table 3A-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 2A: Demolished Area
Table 3A-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 2A:
	Demolished Area

Table 3A-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 2A: Demolished Area
Table 3B-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 2B: Demolished Area
Table 3B-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 2B: Demolished Area
Table 3B-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 2B: Demolished Area
Table 3C-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 2C: Demolished Area
Table 3C-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 2C: Demolished Area
Table 3C-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 2C: Demolished Area
Table 3-6	Groundwater Samples Used in Average Concentration Calculations in Area 2: Demolished Area
Table 3A-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 2A: Demolished Area
Table 3A-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 2A: Demolished Area
Table 3A-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 2A: Demolished Area
Table 3B-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 2B: Demolished Area
Table 3B-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 2B: Demolished Area
Table 3B-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 2B: Demolished Area
Table 3C-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 2C: Demolished Area
Table 3C-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 2C: Demolished Area
Table 3C-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 2C: Demolished Area
Table 3-8	Historical Groundwater Data for Area 2: Demolished Area
Table 3-9	Historic Free Product Thicknesses for Area 2: Demolished Area
Table 3A-10(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 2A: Demolished Area
Table 3A-10(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 2A: Demolished Area
Table 3B-10(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 2B: Demolished Area
Table 3B-10(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 2B: Demolished Area
Table 3C-10(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 2C: Demolished Area
Table 3C-10(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 2C: Demolished Area
Table 3A-11	Groundwater Constituents of Concern Summary for Sub-area 2A: Demolished Area
Table 3B-11	Groundwater Constituents of Concern Summary for Sub-area 2B:

	Demolished Area
Table 3C-11	Groundwater Constituents of Concern Summary for Sub-area 2C:
	Demolished Area
Table 3A-12(a)	Calculations of IELCR and HQ for a Current On-Site Non-Residential
	Worker, Sub-area 2A: Demolished Area
Table 3A-12(b)	Calculations of IELCR and HQ for a Future Construction Worker, Sub-area
	2A: Demolished Area
Table 3B-12(a)	Calculations of IELCR and HQ for a Current On-Site Non-Residential
	Worker, Sub-area 2B: Demolished Area
Table 3B-12(b)	Calculations of IELCR and HQ for a Future Construction Worker, Sub-area
• • • • • • • • • • • • • • • • • • • •	2B: Demolished Area
Table 3C-12(a)	Calculations of IELCR and HQ for a Current On-Site Non-Residential
. ,	Worker, Sub-area 2C: Demolished Area
Table 3C-12(b)	Calculations of IELCR and HQ for a Future Construction Worker, Sub-area
• • •	2C: Demolished Area
Table 4-1	Summary of UST's Present Historically within Area 3: Retained Area
Table 4-2	Soil Boring Information for Area 3: Retained Area
Table 4-3	Monitoring Well Information within Area 3: Retained Area
Table 4-4	Soil Samples Used in Average Concentration Calculations in Area 3:
	Retained Area
Table 4A-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3A:
	Retained Area
Table 4A-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3A:
	Retained Area
Table 4A-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3A:
	Retained Area
Table 4B-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3B:
	Retained Area
Table 4B-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3B: Retained
	Area
Table 4B-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3B:
	Retained Area
Table 4C-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3C:
	Retained Area
Table 4C-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3C: Retained
	Area
Table 4C-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3C:
m 11 (m m/)	Retained Area
Table 4D-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3D:
m 11 4D 541)	Retained Area
Table 4D-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3D:
m-1-1- (D. 5(-)	Retained Area
Table 4D-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3D:
T-11- (T) 5(4)	Retained Area
Table 4D-5(d)	Soil Constituents Average Concentrations for PAHs in Sub-area 3D: Retained Area
Table AP 5(a)	
Table 4E-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3E: Retained Area
Table 4E-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3E: Retained
1 0010 415-3(0)	Area
Table 4E-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3E:

	Retained Area
Table 4F-5(a)	Soil Constituents Average Concentrations for Metals in Sub-area 3F:
	Retained Area
Table 4G-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3G:
	Retained Area
Table 4G-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3G:
	Retained Area
Table 4G-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3G:
	Retained Area
Table 4H-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 3H:
Trable ATT ECLY	Retained Area
Table 4H-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 3H: Retained Area
Table AU 5(a)	
Table 4H-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 3H: Retained Area
Table 4-6	Groundwater Samples Used in Average Concentration Calculations in Area
1 4016 4-0	3: Retained Area
Table 4A-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
14010 471-7(4)	3A: Retained Area
Table 4A-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3A:
14010 111 / (0)	Retained Area
Table 4A-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area
` '	3A: Retained Area
Table 4B-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
	3B: Retained Area
Table 4B-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3B:
	Retained Area
Table 4B-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area
<u> </u>	3B: Retained Area
Table 4C-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
m 11 40 543	3C: Retained Area
Table 4C-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3C:
Table (D. 7(a)	Retained Area
Table 4D-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
Table 4D-7(b)	3D: Retained Area Groundwater Constituents Average Concentrations for TPHs in Sub-area 3D:
1 auto 410-7(0)	Retained Area
Table 4D-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area
14010 45 7(0)	3D: Retained Area
Table 4E-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
	3E: Retained Area
Table 4E-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3E:
	Retained Area
Table 4E-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area
	3E: Retained Area
Table 4F-7(a)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3F:
	Retained Area
Table 4G-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
m 11 40 50 \	3G: Retained Area
Table 4G-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3G
	Retained Area

Table 4H-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 3H: Retained Area
Table 4H-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 3H: Retained Area
Table 4H-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 3H: Retained Area
Table 4H-7(d)	Groundwater Constituents Average Concentrations for PAHs in Sub-area 3H: Retained Area
Table 4A-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3A: Retained Area
Table 4A-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3A: Retained Area
Table 4B-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3B: Retained Area
Table 4B-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3B: Retained Area
Table 4C-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3C: Retained Area
Table 4C-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3C: Retained Area
Table 4D-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3D: Retained Area
Table 4D-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3D: Retained Area
Table 4E-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3E: Retained Area
Table 4E-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3E: Retained Area
Table 4F-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3F: Retained Area
Table 4F-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3F: Retained Area
Table 4G-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3G: Retained Area
Table 4G-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3G: Retained Area
Table 4H-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 3H: Retained Area
Table 4H-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area 3H: Retained Area
Table 4A-9	Groundwater Constituents of Concern Summary for Sub-area 3A: Retained Area
Table 4B-9	Groundwater Constituents of Concern Summary for Sub-area 3B: Retained Area
Table 4C-9	Groundwater Constituents of Concern Summary for Sub-area 3C: Retained Area
Table 4D-9	Groundwater Constituents of Concern Summary for Sub-area 3D: Retained Area
Table 4E-9	Groundwater Constituents of Concern Summary for Sub-area 3E: Retained Area
Table 4F-9	Groundwater Constituents of Concern Summary for Sub-area 3F: Retained

	Area
Table 4G-9	Groundwater Constituents of Concern Summary for Sub-area 3G: Retained
	Area
Table 4H-9	Groundwater Constituents of Concern Summary for Sub-area 3H: Retained
	Area
Table 4A-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
	Sub-area 3A: Retained Area
Table 4A-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
	3A: Retained Area
Table 4B-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
	Sub-area 3B: Retained Area
Table 4B-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
	3B: Retained Area
Table 4C-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
	Sub-area 3C: Retained Area
Table 4C-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
	3C: Retained Area
Table 4D-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
	Sub-area 3D: Retained Area
Table 4D-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
	3D: Retained Area
Table 4E-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
	Sub-area 3E: Retained Area
Table 4E-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
	3E: Retained Area
Table 4F-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker,
m 11 /m 10/1\	Sub-area 3F: Retained Area
Table 4F-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
m 11 40 10(-)	3F: Retained Area
Table 4G-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker
TO 11 - 40 10(h)	Sub-area 3G: Retained Area
Table 4G-10(b)	Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
m-k1- ATT 10/-)	3G: Retained Area
Table 4H-10(a)	Calculation of IELCR and HQ for a Current On-site Non-residential Worker
Table 4H-10(b)	Sub-area 3H: Retained Area Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
1 able 411-10(0)	3H: Retained Area
Table 5-1	Summary of UST's Present Historically within Area 4: Power Plant
Table 5-1	Soil Boring Information for Area 4: Power Plant
Table 5-2	Soil Samples Used in Average Concentration Calculations in Area 4: Power
1 auto 5-5	Plant
Table 5-4(a)	Soil Constituents Average Concentrations VOCs in Area 4: Power Plant
Table 5-4(b)	Soil Constituents Average Concentrations TPHs in Area 4: Power Plant
Table 5-4(c)	Soil Constituents Average Concentrations Metals in Area 4: Power Plant
Table 5-4(d)	Soil Constituents Average Concentrations PAHs in Area 4: Power Plant
Table 5-5	Groundwater Samples Used in Average Concentration Calculations in Area
	4: Power Plant
Table 5-6(a)	Groundwater Constituents Average Concentrations VOCs in Area 4: Power
- (-)	Plant
Table 5-6(b)	Groundwater Constituents Average Concentrations TPHs in Area 4: Power
, ,	Plant

Table 5-6(c)	Groundwater Constituents Average Concentrations Metals in Area 4: Power Plant
Table 5-6(d)	Groundwater Constituents Average Concentrations PAHs in Area 4: Power Plant
Table 5-7(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Area 4: Power Plant
Table 5-7(b)	Soil Constituents of Concern Summary for Construction Worker for Area 4: Power Plant
Table 5-8	Groundwater Constituents of Concern Summary for Area 4: Power Plant
Table 5-9(a)	Calculations of IELCR and HQ for a Current On-site Non-residential Worker, Area 4: Power Plant
Table 5-9(b)	Calculations of IELCR and HQ for a Future Construction Worker, Area 4: Power Plant
Table 6-1	Soil Boring Information for Area 5: IWTP
Table 6-2	Soil Samples Used in Average Concentration Calculations in Area 5: Industrial Water Treatment Plant
Table 6-3(a)	Soil Constituents Average Concentrations VOCs in Area 5: Industrial Water Treatment Plant
Table 6-3(b)	Soil Constituents Average Concentrations TPHs in Area 5: Industrial Water Treatment Plant
Table 6-3(c)	Soil Constituents Average Concentrations Metals in Area 5: Industrial Water Treatment Plant
Table 6-4	Groundwater Samples Used in Average Concentration Calculations in Area 5: Industrial Water Treatment Plant
Table 6-5(a)	Groundwater Constituents Average Concentrations Metals in Area 5: Industrial Water Treatment Plant
Table 6-6(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Area 5: Industrial Water Treatment Plant
Table 6-6(b)	Soil Constituents of Concern Summary for Construction Worker for Area 5: Industrial Water Treatment Plant
Table 6-7	Groundwater Constituents of Concern Summary for Area 5: Industrial Water Treatment Plant
Table 6-8(a)	Calculations of IELCR and HQ for a Current On-Site Non-Residential Worker, Area 5: IWTP
Table 6-8(b)	Calculations of IELCR and HQ for a Future Construction Worker, Area 5: IWTP
Table 7-1	Summary of UST's Present Historically within Area 6: GKN Facility
Table 7-2	Soil Boring Information for Area 6: GKN Facility
Table 7-3	Monitoring Well Information within Area 6: GKN Facility
Table 7-4	Soil Samples Used in Average Concentration Calculations in Area 6: GKN Facility
Table 7A-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 6A: GKN Facility
Table 7A-5(b)	Soil Constituents Average Concentrations for Metals in Sub-area 6A: GKN Facility
Table 7A-5(c)	Soil Constituents Average Concentrations for PAHs in Sub-area 6A: GKN Facility
Table 7B-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 6B: GKN Facility
Table 7B-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 6B: GKN Facility

Table 7B-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 6B: GKN Facility
Table 7B-5(d)	Soil Constituents Average Concentrations for PAHs in Sub-area 6B: GKN Facility
Table 7B-5(e)	Soil Constituents Average Concentrations for PCBs in Sub-area 6B: GKN Facility
Table 7C-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 6C: GKN Facility
Table 7C-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 6C: GKN Facility
Table 7C-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 6C: GKN Facility
Table 7C-5(d)	Soil Constituents Average Concentrations for PAHs in Sub-area 6C: GKN Facility
Table 7D-5(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 6D: GKN Facility
Table 7D-5(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 6D: GKN Facility
Table 7D-5(c)	Soil Constituents Average Concentrations for Metals in Sub-area 6D: GKN Facility
Table 7-6	Groundwater Samples Used in Average Concentration Calculations in Area 2: GKN Facility
Table 7A-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 6A: GKN Facility
Table 7A-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 6A: GKN Facility
Table 7A-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 6A: GKN Facility
Table 7B-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 6B: GKN Facility
Table 7B-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 6B: GKN Facility
Table 7B-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 6B: GKN Facility
Table 7B-7(d)	Groundwater Constituents Average Concentrations for PAHs in Sub-area 6B: GKN Facility
Table 7B-7(e)	Groundwater Constituents Average Concentrations for PCBs in Sub-area 6B: GKN Facility
Table 7C-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 6C: GKN Facility
Table 7C-7(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 6C: GKN Facility
Table 7C-7(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area 6C: GKN Facility
Table 7D-7(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area 6D: GKN Facility
Table 7D-7(b)	Groundwater Constituents Average Concentrations for Metals in Sub-area 6D: GKN Facility
Table 7A-8(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Subarea 6A: GKN Facility
Table 7A-8(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area

6A: GKN Facility
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-
area 6B: GKN Facility
Soil Constituents of Concern Summary for Construction Worker for Sub-area
6B: GKN Facility
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-
area 6C: GKN Facility
Soil Constituents of Concern Summary for Construction Worker for Sub-area
6C: GKN Facility
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-
area 6D: GKN Facility
Soil Constituents of Concern Summary for Construction Worker for Sub-area
6D: GKN Facility
Groundwater Constituents of Concern Summary for Sub-area 6A: GKN
Facility
Groundwater Constituents of Concern Summary for Sub-area 6B: GKN
Facility 6.6 G G G G G G G G G G G G G G G G G G
Groundwater Constituents of Concern Summary for Sub-area 6C: GKN
Facility Constituting of Constituting for Subsequent Constitution of Constituting for Subsequent Constitution of Constitution
Groundwater Constituents of Concern Summary for Sub-area 6D: GKN
Facility Calculation of IELCR and HQ for a Current On-Site Non-Residential
Worker, Sub-area 6A: GKN Facility
Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
6A: GKN Facility
Calculation of IELCR and HQ for a Current On-Site Non-Residential
Worker, Sub-area 6B: GKN Facility
Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
6B: GKN Facility
Calculation of IELCR and HQ for a Current On-Site Non-Residential
Worker, Sub-area 6C: GKN Facility
Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
6C: GKN Facility
Calculation of IELCR and HQ for a Current On-Site Non-Residential
Worker, Sub-area 6D: GKN Facility
Calculation of IELCR and HQ for a Future Construction Worker, Sub-area
6D: GKN Facility
Summary of UST's Present within Area 7: Engineering Campus
Monitoring Well Information for Area 7: Engineering Campus
Soil Data for Area 7: Engineering Campus
Comparison of Average and Maximum Soil Concentrations in Area 7:
Engineering Campus to Background Levels
Historical Groundwater Analytical Data for Area 7: Engineering Campus
Comparison of Average and Maximum Groundwater Concentrations in Area 7: Engineering Campus to MCL or Equivalent
Summary of USTs Present within Area 8: Office Complex North
Soil Data Collected during UST Removal Activities, Area 8: Office Complex
North
Monitoring Well Information for Area 8: Office Complex North
Soil Boring Information for Area 8: Office Complex North

	•
Table 9-5	Soil Samples Used in Area 8: Office Complex North
Table 9A-6(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 8A: Office
	Complex North
Table 9A-6(b)	Soil Constituents Average Concentrations for Metals in Sub-area 8A: Office
	Complex North
Table 9B-6(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 8B: Office
	Complex North
Table 9B-6(b)	Soil Constituents Average Concentrations for Metals in Sub-area 8B: Office
	Complex North
Table 9B-6(c)	Soil Constituents Average Concentrations for PAHs in Sub-area 8B: Office
	Complex North
Table 9C-6(a)	Soil Constituents Average Concentrations for VOCs in Sub-area 8B: Office
	Complex North
Table 9C-6(b)	Soil Constituents Average Concentrations for TPHs in Sub-area 8B: Office
	Complex North
Table 9-7	Groundwater Samples Used in Area 8: Office Complex North
Table 9A-8(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
	8A: Office Complex North
Table 9A-8(b)	Groundwater Constituents Average Concentrations for Metals in Sub-area
	8A: Office Complex North
Table 9B-8(a)	Groundwater Constituents Average Concentrations for VOCs in Sub-area
	8B: Office Complex North
Table 9B-8(b)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 8B:
	Office Complex North
Table 9B-8(c)	Groundwater Constituents Average Concentrations for Metals in Sub-area
m 11 00 0/)	8B: Office Complex North
Table 9C-8(a)	Groundwater Constituents Average Concentrations for TPHs in Sub-area 8C:
m 11 04 0/ \	Office Complex North
Table 9A-9(a)	Soil Constituents of Concern Summary for Non-residential Worker for Sub-
m-1.1- 0 A O/L)	area 8A: Office Complex North
Table 9A-9(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area
T-L1- OD O(-)	8A: Office Complex North Soil Constituents of Concern Summary for Non-residential Worker for Sub-
Table 9B-9(a)	· · · · · · · · · · · · · · · · · · ·
Table OD O/b)	area 8B: Office Complex North
Table 9B-9(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area
Table 0C 0(a)	8B: Office Complex North Soil Constituents of Concern Summary for Non-residential Worker for Sub-
Table 9C-9(a)	area 8C: Office Complex North
Table 9C-9(b)	Soil Constituents of Concern Summary for Construction Worker for Sub-area
1 aute 3C-3(0)	8C: Office Complex North
Table 9A-10	Groundwater Constituents of Concern Summary for Sub-area 8A: Office
1 abic 711-10	Complex North
Table 9B-10	Groundwater Constituents of Concern Summary for Sub-area 8B: Office
14010 715 10	Complex North
Table 9C-10	Groundwater Constituents of Concern Summary for Sub-area 8C: Office
14010 70 10	Complex North
Table 9A-11(a)	Calculations of IELCR and HQ for a Current On-site Non-residential
_ = = = = = = = = = = = = = = = = = = =	Worker, Sub-area 8A: Office Complex North
Table 9A-11(b)	Calculations of IELCR and HQ for a Future On-site Construction Worker,
	Sub-area 8A: Office Complex North
Table 9B-11(a)	Calculations of IELCR and HO for a Current On-site Non-residential

	Worker, Sub-area 8B: Office Complex North
Table 9B-11(b)	Calculations of IELCR and HQ for a Future On-site Construction Worker,
	Sub-area 8B: Office Complex North
Table 9C-11(a)	Calculations of IELCR and HQ for a Current On-site Non-residential
.,	Worker, Sub-area 8C: Office Complex North
Table 9C-11(b)	Calculations of IELCR and HQ for a Future On-site Construction Worker,
	Sub-area 8C: Office Complex North
Table 10-1	Soil Boring Information for within Area 9: Gun Range
Table 10-2	Soil Samples Used in Average Concentration Calculations in Area 9: Gun
	Range
Table 10-3(a)	Soil Constituents Average Concentrations for VOCs in Area 9: Gun Range
Table 10-3(b)	Soil Constituents Average Concentrations for TPHs in Area 9: Gun Range
Table 10-3(c)	Soil Constituents Average Concentrations for Metals in Area 9: Gun Range
Table 10-4	Groundwater Samples Used in Average Concentration Calculations in Area
	9: Gun Range
Table 10-5(a)	Groundwater Constituents Average Concentrations for TPHs in Area 9: Gun
	Range
Table 10-5(b)	Groundwater Constituents Average Concentrations for Metals in Area 9: Gun
	Range
Table 10-6(a)	Soil Constituents of Concern Summary for Non-Residential Worker for Area
	9: Gun Range
Table 10-6(b)	Soil Constituents of Concern Summary for Construction Worker for Area 9:
=	Gun Range
Table 10-7	Groundwater Constituents of Concern Summary for Area 9: Gun Range
Table 10-8(a)	Calculations of IELCR and HQ for a Current On-site Non-residential
m 11 40 00\	Worker, Area 9: Gun Range
Table 10-8(b)	Calculations of IELCR and HQ for a Future Construction Worker, Area 9:
	Gun Range

LIST OF FIGURES

Figure 1-1	Risk Assessment Exposure Area Map, Boeing Tract 1 (North and South)
Figure 2-1	Exposure Area 1: Runway Protection Zone, Boeing Tract 1 South
Figure 2-2	Shallow Groundwater Isopleth Map for Area 1: Runway Protection Zone,
· ·	Boeing Tract 1 South
Figures 2-3(a)-(f)(I	R)Concentration vs Time Plots for a Variety of Monitoring Wells Located within Area 1: Runway Protection Zone
Figure 3-1	Exposure Area 2: Sub-areas 2A, 2B, & 2C, Demolished Area, Boeing Tract 1 South
Figure 3-2	Shallow Groundwater Isopleth Map for Area 2: Demolished Area, Boeing
	Tract 1 South
Figure 3-3	Groundwater Data Collected at MW-A13, Area 2: Demolished Area, Boeing Tract 1 South
Figure 4-1	Exposure Area 3: Sub-areas 3A, 3B, 3C, 3D, 3E, 3F, 3G, & 3H, Retained Area, Boeing Tract 1 South
Figure 4-2	Shallow Groundwater Isopleth Map for Area 3: Retained Area, Boeing Tract 1 South
Figure 5-1	Exposure Area 4: Power Plant, Boeing Tract 1 South
Figure 5-2	Shallow Groundwater Isopleth Map for Area 4: Power Plant, Boeing Tract 1

	South
Figure 6-1	Exposure Area 5: IWTP, Boeing Tract 1 South
Figure 7-1	Exposure Area 6: Sub-areas 6A, 6B, 6C, & 6D, GKN Facility, Boeing Tract 1 North
Figure 7-2	Shallow Groundwater Isopleth Map for Area 6: GKN Facility, Boeing Tract 1 North
Figure 7-3	Groundwater Data Collected at MW3W-N, Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri
Figure 7-4	Groundwater Data Collected at MW3AW-N, Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri
Figure 8-1	Exposure Area 7: Engineering Campus, Boeing Tract 1 North
Figure 8-2	Shallow Groundwater Isopleth Map for Area 7: Engineering Campus, Boeing Tract 1 North
Figure 9-1	Exposure Area 8: Sub-areas 8A, 8B, & 8C, North Office Complex, Boeing Tract 1 North
Figure 9-2	Shallow Groundwater Isopleth Map for Area 8: North Office Complex, Boeing Tract 1 North
Figure 10-1	Exposure Area 9: Gun Range, Boeing Tract 1 South

LIST OF ATTACHMENTS

APPENDICES

Appendix A	Equations Used In Development Of Receptor Point Concentrations And
	Target Risk Levels
Appendix B	Area 1: Runway Protection Zone
Appendix C	Area 2: Demolished Area

Appendix D	Area 3: Retained Area
Appendix E	Area 4: Power Plant
Appendix F	Area 5: IWTP
Appendix G	Area 6: GKN Facility
Appendix H	Area 7: Engineering Campus
Appendix I	Area 8: Office Complex North
Appendix J	Area 9: Gun Range
Appendix K	Multiple Analysis Data

Airport Lambert St. Louis International Airport

AST Aboveground Storage Tank

ATV All Terrain Vehicle bgs below ground surface

BNI Bechtel National, Incorporated

BTEX Benzene, Toluene, Ethylbenzene, and total Xylenes

CALM Cleanup Levels for Missouri cm/sec centimeters per second centimeters squared per second

CMS Corrective Measures Study
COCs constituents of concern

4°C degrees Celsius 4°F degrees Fahrenheit DL **Detection Limit** DO Dissolved Oxygen **Data Quality Level** DOL Data Quality Objective DQO DRO Diesel Range Organics **EAs Environmental Assessments**

EM Exposure Model

ESA Environmental Site Assessment

Facility Boeing Tract 1 facility
FS Feasibility Study
ft/ft feet per foot

FUSRAP Formerly Utilized Sites Remedial Action Program

GRO Gasoline Range Organics
HDPE High Density Polyethylene

HI Hazard Index

HISS Hazelwood Interim Storage Site HRC Hydrogen Release Compound

HSA Hollow-Stem Auger HWP Hazardous Waste Program HZ Hydrostrastigraphic Zone

ID Internal Diameter

IELCR Individual Excess Lifetime Cancer Risk

ITLs Investigative Threshold Levels

IWTP Industrial Wastewater Treatment Plant
LNAPL Light Non-Aqueous Phase Liquid
MCL Maximum Contaminant Level
MCLG Maximum Contaminant Level Goal

MDNR Missouri Department of Natural Resources

MEK
μg/kg
micrograms per kilogram
μg/L
micrograms per liter
mg/L
milligrams per liter
MIBK
Methyl Isobutyl Ketone

MRBDM Missouri Risk-Based Decision Making MSD Metropolitan St. Louis Sewer District

msl mean sea level

MTBE Methyl Tertiary-Butyl Ether

NPDES National Pollutant Discharge Elimination System

OD Outside Diameter ORP Redox Potential

OSHA Occupational Safety and Health Administration

PAH Polynuclear Aromatic Hydrocarbons

PCB Polychlorinated Byphenols

PCE Perchloroethylene

PCOCs Potential Chemicals of Concern

PID Photoionization Detector

ppm parts per million PR Preliminary Review

PRG Preliminary Remediation Goal

PVC Polyvinyl Chloride RA Risk Assessment

RCRA Resource Conservation and Recovery Act

RFA RCRA Facility Assessment RFI RCRA Facility Investigation

SAIC Science Applications International Corporation

SC Specific Conductivity
SLAPS St. Louis Airport Site

SWMUs Solid Waste Management Units

TCE Trichloroethene

TOV Total Organic Volatiles

TPHs Total Petroleum Hydrocarbons
USACE U.S. Army Corps of Engineers
USCS Unified Soil Classification System
USEPA U.S. Environmental Protection Agency

USGS U.S. Geological Survey
UST Underground Storage Tank
VOC Volatile Organic Compounds

VSI Visual Site Inspection

The Boeing Tract 1 Facility (Facility) is located in Hazelwood, St. Louis County, Missouri and covers a total area of 228 acres. The Facility includes several buildings used to service and manufacture aircraft, office buildings, parking lots, a coal fueled power plant, and a waste water treatment facility. The Facility included several underground storage tanks (USTs), above ground storage tanks (ASTs), and other waste handling areas.

Based on an investigation in 1995, 32 solid waste management units (SWMUs) were identified. Boeing has conducted numerous site investigations and remedial actions at the Facility. As a result of these, a large volume of data has been collected. Data indicates that at various locations within the Facility soil and groundwater impacts have consisted of semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), total petroleum hydrocarbon (TPH), and metals.

To perform a risk evaluation, the site was divided into the following areas:

- Area 1 <u>Runway Protection Zone</u>: (includes former Buildings 40, 45L, 45C, 45D, 45E, and parts of 45 and 45K).
- Area 2 <u>Demolished Area</u>: (includes former Buildings 45J, 51, 52, 48, 48A, and part of 45K).
 - O Sub-area 2A: Western portions of Buildings 45J, 51, and 52, northwestern corner of Building 45, northern portion of Building 45K, and parking lots, entrance road, and open space between these buildings and the west property line.
 - Eastern portion of Buildings 45J, 51, and 52, northwestern portion of Buildings 45, western portions of Buildings 48 and 48A, smaller associated buildings, and associated parking lots and access areas.
 - O Sub-area 2C: Eastern portions of Buildings 48 and 48A, northeastern portion of Building 45, smaller associated buildings, and associated parking lots and access areas.
- Area 3 Retained Area: (includes Buildings 42, 43, 45H, 41, 44, 44A, 46, 49, 1, 2, 3, and 4).
 - O Sub-area 3A: Buildings/structures 44, 44A, 46, and 49, western portion of Building 41, northern edge of Building 42, and associated parking lots and access areas primarily to the west and south of these buildings.
 - o Sub-area 3B: Small open area between Buildings 2 and 42 including the parking access area on the western side of Building 2.
 - O Sub-area 3C: All but the northern edge of Building 42, several buildings/structures to the south of Building 42, and associated paved parking and access areas primarily to the east and south of these buildings to the runway on the south.
 - O Sub-area 3D: Eastern portion of Buildings 41, northern half of Building 2, and the associated open and parking areas on the west side of

Building 2.

O Sub-area 3E: Small open area between Buildings 2 and 4 including parking

and access areas.

o Sub-area 3F: Small rectangular area at the southwestern corner of Building 1,

including parking and access areas and the southwest corner of

Building 1.

o Sub-area 3G: Small rectangular area between Buildings 1, 2, and 3, including

parking and access areas and the northeastern portion of

Building 1 and the northwestern portion of Building 3.

O Sub-area 3H: Building 4 and the open access areas to the north, east, and south

sides of the building.

• Area 4 Power Plant: (includes Buildings 5 and 6).

• Area 5 Industrial Water Treatment Plant: (includes Building 14).

Area 6 GKN Facility: (includes Buildings 21, 22, 25, 27, 28, 29, 29A, and 39).

O Sub-area 6A: Buildings 21, 29, and 29A, and all parking lots and open space to

the south and west of these buildings.

o Sub-area 6B: The area between Buildings 29 and 27, containing Buildings 22,

28, 39.

O Sub-area 6C: Buildings 25 and 27 and parking lots and open space to the south

of these buildings and within about 450 feet to the east.

O Sub-area 6D Parking lots and open areas beginning about 450 feet east of

Buildings 25 and 27 and extending to the north, south, and east

property lines.

Area 7 Engineering Campus: (includes Buildings 27A, 32, 33, and 34).

• Area 8 Office Complex North: (includes Buildings 220 and 221).

Sub-area 8A: Southern portion of Building 220, associated parking areas to the

south and access areas to the east.

O Sub-area 8B: Northern portion of Building 220 and the open area to the

northwest of the building to the property boundary including smaller associated buildings, parking areas, and unpaved areas

along the property boundary.

O Sub-area 8C: Building 221 and the associated parking and access areas to the

north, east, and west of the building.

• Area 9 Gun Range: (includes Buildings 10, 11, 11A, 12, and 13).

These Areas/Sub-areas are characterized by similarities in factors that affect public health risk under current and reasonable future land use conditions. Constituent data for soil and groundwater was compiled for each Area/Sub-area. The receptors, pathways, and complete routes of exposure for current and future land use were identified for each Area/Sub-area. Following are the critical receptors, pathways and complete routes of exposure for each Area/Sub-area:

Area	Current or Future	Receptor	Pathways/Complete Routes of Exposure								
Area 1	Current	None	None								
	Future	Construction	Ingestion of soil,								
		worker	Dermal contact with soil,								
			Outdoor inhalation of vapors and particulates								
		*	from soil,								
			Dermal contact with groundwater, and								
			Outdoor inhalation of vapors from groundwater.								
Sub-area 2A	Current	Non-residential	Indoor inhalation of vapors from subsurface soil,								
to 2C, Sub-		worker	and								
area 3A to			Indoor inhalation of vapors from groundwater.								
3H, Area 4,	Future	Construction	Ingestion of soil,								
Area 5, Sub-		worker	Dermal contact with soil,								
area 6A to			Outdoor inhalation of vapors and particulates								
6D, Sub-area			from soil,								
8A to 8C,			Dermal contact with groundwater, and								
and Area 9			Outdoor inhalation of vapors from groundwater.								
Area 7	Current	Non-residential	None								
		worker									
	Future	Construction	None								
		worker									

Additional receptors include occasional visitors and maintenance workers whose exposure frequency and exposure duration are expected to be less than that for the non-residential worker and construction worker; hence the risk to these receptors will not be quantified.

The large number of constituents analyzed in soil and groundwater were screened to identify the constituents of concern (COC) for which quantitative risk was evaluated. Constituents that were non-detect in all soil samples were eliminated. Similarly, constituents that were non-detect in all groundwater samples were eliminated. The remaining constituents were further screened as discussed below.

Groundwater screening level was identified as one of the following (in the order shown):

- (i) Maximum Contaminant Levels (MCL), or
- (ii) EPA Health Advisory Concentration Levels (HA), or
- (iii) Secondary Drinking Water Standards (SDWS), or
- (iv) Risk-based target levels developed assuming water is used for residential purposes.

Constituents in groundwater for which the maximum detected concentration did not exceed the screening criteria in a specific Area/Sub-area were eliminated.

Constituents in soil were further screened using the following criteria:

 Background concentrations for metals. Metal constituents for which the maximum concentration in soil was less than these background concentrations in a specific Area/Sub-area, were not considered further. The sample locations for which all the constituents in a specific chemical group (VOCs, TPH, Metals, PAHs, or PCBs) were non-detect, were not included in the calculation of average concentrations for constituents in that particular chemical group.

From the above screening, the list of COCs for each Area/Sub-area based on all media and all receptors is presented on Table ES-1. Arithmetic average concentrations for each COC for each receptor and each media were estimated.

Using the arithmetic averages as the representative concentrations for each COC, average site-specific data, and the models recommended in the Missouri Department of Natural Resources (MDNR) draft risk-based corrective action (RBCA) process document; risk for each Area/Sub-area was calculated. This would be the equivalent of a Tier 2 evaluation. The cumulative risk for each receptor in each Area/Sub-area is summarized on Table ES-2.

Based on the above evaluation, the cumulative risk for the following areas exceeded the regulatory acceptable level of 1×10^{-4} for carcinogens and hazard index (HI) of 1 for non-carcinogens:

- Sub-area 2A,
- Sub-area 2B,
- Sub-area 3A
- Sub-area 3C.
- Sub-area 3E,
- Sub-area 3G
- Sub-area 6B,
- Sub-area 6C, and
- Sub-area 8B.

For Areas/Sub-areas where the cumulative risk or risk for each COC and all exposure pathways exceeded the target risk, the primary constituents and routes of exposure that caused the exceedence are identified below:

Area	COC	Exceedence Due to										
Sub-area 2A	TPH-GRO	Indoor inhalation from groundwater by non-residential worker										
	TPH-DRO	Indoor inhalation from groundwater by non-residential worker										
Sub-area 2B	Aliphatics >nC12 to nC16	Indoor inhalation from groundwater by non-residential worker										
	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker										
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker										
	Tetrachloroethene	Dermal contact with groundwater by future construction worker										
Sub-area 3A	TPH-DRO	Indoor inhalation from groundwater by non-residential worker										

Area	COC	Exceedence Due to							
Sub-area 3C	TPH-DRO	Indoor inhalation from groundwater by non-residential worker							
	TPH-ORO	Indoor inhalation from groundwater by non-residential worker							
	Total TPH	Outdoor inhalation of vapors from groundwater by construction worker							
Sub-area 3E	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker							
Sub-area 3G	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker							
Sub-area 6B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker							
	Benzo(a)anthracene	Dermal contact with groundwater by construction worker							
Sub-area 6C	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker							
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker							
Sub-area 8B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker							
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker							

The risk evaluation was based on a non-residential current and future land use and non-domestic use of groundwater.

The risk evaluation also identified the absence of ecological risks at the site and that the groundwater was not a source of domestic water.

Sub-areas that exceed acceptable levels will be considered in the corrective measure study (CMS).

Table ES-1 Chemicals of Concern (COCs) Boeing Tract 1, St. Louis, Missouri

	1,	ea 2A	ea 2B	ea 2C	ea 3A	ea 3B	ea 3C	еа 3D	ea 3E	ea 3F	ea 3G	еа ЗН	4 a	a 5	ea 6A	ea 6B	ea 6C	ea 6D	7**	ea 8A	ea 8B	ea 8C	Area 9
COCs	Area 1*	Sub-area 2A	Sub-area 2B	Sub-area 2C	Sub-area 3A	Sub-area 3B	Sub-area 3C	Sub-area 3D	Sub-area 3E	Sub-area 3F	Sub-area 3G	Sub-area 3H	Area 4	Area 5	Sub-area 6A	Sub-area 6B	Sub-area 6C	Sub-area 6D	Area 7**	Sub-area 8A	Sub-area 8B	Sub-area 8C	Are
1,1-Dichloroethane	Ш															X			<u> </u>				<u> </u>
1,1-Dichloroethene			X					Х								Х							—
1,1,2-Trichloro-1,2,2-trifluoroethane	Ш	_														X			<u> </u>				\vdash
1,2,3-Trimethylbenzene	X		X													X			<u> </u>				
1,2,4-Trimethylbenzene	X		Х		X			X	Х		X					Х					ļ		
1,3,5-Trimethylbenzene	ļ				X			Х			Х								ļ	ļ	<u> </u>		<u> </u>
2-Hexanone (MBK)																	X	<u> </u>			ļ	<u> </u>	
Acetone	X		X			X	X		X		X	X	Х		Χ	X	X	<u> </u>	 	X	<u> </u>	X	X
Benzene	X	Х	X	X	X	Х	Х	Х	Х		X				X	Х					_		
Bromomethane											_					Х		ļ	<u> </u>			 	
Carbazole													X						<u> </u>		ļ	<u> </u>	
Carbon disulfide	 	!				Х	<u> </u>	L		L								ļ	ļ		<u> </u>	<u> </u>	 -
Chloroethane	↓		Х			ļ	<u> </u>	X	ļ	<u> </u>		ļ	L		Щ	ļ	<u> </u>	<u> </u>	ļ	<u> </u>	 	ļ	igspace
Chloroform	1					L_	<u> </u>		<u> </u>	<u> </u>	L	ļ			 	L	Х	<u> </u>			<u> </u>	<u> </u>	<u> </u>
cis-1,2-Dichloroethene	1	Щ	X		Х	L	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	L		<u> </u>	Х	Х		<u> </u>	X		<u> </u>	<u> </u>
Dichlorodifluoromethane	 	Х	أسبا		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		Ļ	 	<u> </u>		<u> </u>	X	Х	X		<u> </u>	ļ		
Ethylbenzene	X	X	X	X	X	X	ļ	X	X		X	_				X	Х	ļ	ļ.,		<u> </u>	ļ	<u> </u>
Isopropylbenzene			X		Х	Х	X	X	Х		<u></u>					L_			ļ.,	<u> </u>	L		$ldsymbol{ldsymbol{\sqcup}}$
m,p-Xylene			X		Х			X	Х		X						<u> </u>		<u> </u>	<u> </u>	L		
Methylene chloride	ļ	X	X	X	Х		Х	<u> </u>	Х	<u> </u>		Х	X			Х	ļ	<u> </u>	<u> </u>	X	<u> </u>	<u> </u>	X
Methyl ethyl ketone			Х		<u>.</u>	<u> </u>	<u> </u>				<u> </u>	X	Х		X	Х	X	X	L	Х	X		L-
Methyl isobutyl ketone	1								<u> </u>	<u> </u>							X		ļ	_	ļ	L_	<u> </u>
Methyl tert-butyl ether			X	L	L		Х		Х		X		L	ļ		X				<u> </u>	<u> </u>	ļ	╙
Naphthalene			X	L					X	L	Х	<u> </u>		L			<u> </u>	ļ	<u> </u>	ļ		ļ	X
n-Butylbenzene	ļ.,,		X				X	X	X	<u> </u>		<u> </u>		<u>L.</u>			ļ	ļ	ļ	<u> </u>	<u> </u>	L_	<u> </u>
n-Propylbenzene	X		X		X	Х	X	X	X	Ļ	Ш.	<u> </u>		L	L		ļ	<u> </u>	ļ	<u> </u>		<u> </u>	<u> </u>
o-Xylene			X	L		<u> </u>	L	Х		<u> </u>	X	<u> </u>		ļ	ļ		X	<u> </u>	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>
p-Isopropyitoluene	1	<u> </u>	Х		Х	<u> </u>		X	<u> </u>	<u> </u>	X	<u>L</u>	<u> </u>		<u> </u>		<u> </u>	ļ	ļ				Щ
sec-Butylbenzene			X		X	X	X	Х	X	<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>	<u> </u>
tert-Butylbenzene	<u> </u>	<u> </u>	<u> </u>			<u> </u>	Х	Х	<u> </u>			<u> </u>	ļ	ļ	<u> </u>	<u> </u>	L	<u> </u>	ļ	<u> </u>	 	<u> </u>	
Tetrachloroethene		X	X	<u> </u>			<u> </u>	Х	$oxed{oldsymbol{oldsymbol{oldsymbol{eta}}}$	<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>	Х	<u> </u>	X	<u> </u>	ļ	<u> </u>	X	<u> </u>
Toluene	X	X	Х	X	Х	X	X		X	<u> </u>	X	<u> </u>	X		<u> </u>	Х		X	<u> </u>	X	ļ	ļ	Х
trans-1,2-Dichlorobenzene		<u>L.</u>					<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>	Х	L	<u> </u>	<u> </u>	_	ļ	 	<u> </u>
trans-1,2-Dichloroethene			X				<u> </u>	<u> </u>		<u> </u>		<u>L</u>	<u> </u>		<u> </u>	Х	<u> </u>	ļ	<u> </u>	ļ	<u> </u>		<u> </u>
Trichloroethene		X	X		<u> </u>	<u> </u>	<u> </u>	Х	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	ļ	X	X	<u> </u>	_	X	↓	<u> </u>	Щ.
Vinyl chloride		<u> </u>	X		X	ļ		Х			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	X	Х	1	<u> </u>	X	ļ	ļ	<u> </u>
Xylenes, Total	X	X	Х	X	Х	X	Х	X	X	<u> </u>	X	X	Х	<u> </u>	<u> </u>	X	Х	<u> </u>	<u> </u>	<u> </u>	 	ļ	ـــــ
Aroclor 1254	<u> </u>	<u> </u>		<u>L</u>		<u> </u>			<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	ļ	Х		<u> </u>	<u> </u>	ऻ	<u> </u>	ļ	↓
Acenaphthene				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>				<u> </u>			<u> </u>	X		1	<u> </u>	<u> </u>	<u> </u>		╙
Acenaphthylene	Ц_	<u> </u>	1	L	<u>L</u>		ļ	<u> </u>		<u> </u>	<u> </u>	ļ	<u> </u>		<u> </u>	X			<u> </u>	<u> </u>	1_		↓
Anthracene		<u> </u>	<u> </u>	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	ļ	Х	<u> </u>	ļ		<u> </u>	<u> </u>	1_	1	<u> </u>	ļ.,	
Benzo(a)anthracene	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	1	1	<u> </u>	<u> </u>	$oxed{igspace}$	_	<u> </u>	X	<u> </u>	<u> </u>	X	X	1	<u> </u>	 	 	1	↓
Benzo(a)pyrene		<u> </u>			ļ	_	 	X	_	_	_	<u> </u>	X	<u> </u>	ļ	ļ	<u> </u>	1	4_	1_	↓_	ـــــ	ــــ
Benzo(b)fluoranthene	1		<u> </u>	_	<u> </u>		_			1_	_	1_	X	<u> </u>	1	X	X	<u> </u>	1	<u> </u>	X	1_	₩
Benzo(g,h,i)perylene	<u> </u>		<u> </u>		<u></u>	1	<u> </u>	<u> </u>			_	<u> </u>	X	<u> </u>	1	ļ	<u> </u>	_	_	1_	<u> </u>	1	<u> </u>
Benzo(k)fluoranthene								<u> </u>					X		<u> </u>	_	<u></u>		_	_	ļ	<u> </u>	<u> </u>
Chrysene													X	1	X	X	X	<u> </u>	<u> </u>		X	_	<u> </u>
Dibenzo(a,g)anthracene		1		<u> </u>									X					<u> </u>			1		
Fluoranthene											L		X			X	X					L	<u></u>
Fluorene	\mathbb{L}^{-}															X							
Indeno(1,2,3-cd)pyrene													X										
Phenanthrene	1				T	1		1					X			Х							
Pyrene	1	1	1	Ī			1	1	1				X			X	Г				L		
Total Organics	8	8	25	5	14	9	11	19	14	0	12	4	18		4		16	4	0	7	3	2	4

Table ES-1 Chemicals of Concern (COCs) Boeing Tract 1, St. Louis, Missouri

	Т																					_	
COCs	Area 1*	Sub-area 2A	Sub-area 2B	Sub-area 2C	Sub-area 3A	Sub-area 3B	Sub-area 3C	Sub-area 3D	Sub-area 3E	Sub-area 3F	Sub-area 3G	Sub-area 3H	Area 4	Area 5	Sub-area 6A	Sub-area 6B	Sub-area 6C	Sub-area 6D	Area 7**	Sub-area 8A	Sub-area 8B	Sub-area 8C	Area 9
Aliphatics > nC6 to nC8 (TX1006)			х			х			Х		Х					Х	Х				X		
Aliphatics > nC8 to nC10 (TX1006)			X			x			X		X					X	Х				Х		
Aromatics > nC8 to nC10 (TX1006)		$\neg \neg$	х			X			Х		Х					Х	Х				X		
TPH-GRO ·	X	X	x	\mathbf{x}	x	x	Х	Х	X	X	Х	Х	X	X	X	X	X	X				X	X
Aliphatics > nC10 to nC12 (TX1006)			X			X			X		х					Х	Х				X		
Aliphatics > nC12 to nC16 (TX1006)			X			X			Х		Х					X	X				X		
Aliphatics > nC16 to nC21 (TX1006)			X			Х			X		Х					X	Х				Х		
Aromatics > nC10 to nC12 (TX1006)			х			х			X		Х					X	Х				Х		L
Aromatics > nC12 to nC16 (TX1006)			x			х			X		Х					X	X				Х		
Aromatics > nC16 to nC21 (TX1006)			X			x			Х		X				,	X	Х				X	<u> </u>	
TPH-DRO	Х	х	X	X	Х	Х	Х	Х	Х	X	X	Х	Х	Х	X	X	Х	Х				X	X
Aliphatics > nC21 to nC35 (TX1006)			$\overline{\mathbf{x}}$			х			Х		Х					X	Х				X		
Aromatics > nC21 to nC35 (TX1006)			X			х			Х		X					Х	X		Ī		X		\Box
TPH-ORO	Х	X	x	$\overline{\mathbf{x}}$	Х	X	Х	Х	Х	Х	X	Х	X					Х					X
Total TPH	3	3	14	3	3	14	3	3	14	3	14	3	3	2	2_	13	13	3	0	0	11	2	3
Aluminum																						Ľ.,	
Antimony	Х	X	X													Х						丄	<u> </u>
Arsenic	X	Х	Х		Х			X				X	X	X	X	Х	Х	Х		X	X	<u> </u>	X
Barium								X							X	Х	Х			X		<u>L</u>	X
Beryllium	Х	X	X					X								X							Х
Cadmium		Х	Х					Х							X	Х	Х		l			<u>L</u>	X
Chromium			X					X						Х	X	X	Х	X		Х	X		X
Chromium, hexavalent																	X					<u>L</u> _	
Cobalt	Х	Х	Х													X			L				
Copper	X	Х	Х					X								Х			<u> </u>				X
Cyanide, total											L			X			L	i				$oldsymbol{ol}}}}}}}}}}}}}}}}}$	<u> </u>
Manganese	Х		X					X				X	Х			X	1	<u> </u>	<u> </u>	X		<u></u>	X
Mercury	Х	X	X		X									X		X	X			X	X		X
Nickel	X	X	Х					X						Х		Х							X
Selenium	X		X					X					Х	Х	Х	X	X						X
Silver			Х													Ī.,_							X
Thallium			Х					Х														L	
Vanadium																						上	1_
Zinc	L	X	X					X								X							X
Total Metals	9	9	14	0	2	0	0	11	0	0	0	2	3	6	5	13	7	2	0	5	3	0	12
TOTAL COCs	20	20	53	8	19	23	14	33	28	3	26	9	24	8	11	57	36	9	0	12	17	4	19

Notes:

X: COC

^{*} Area 1 risk estimate was not revised since risk using maximum concentration is acceptable as per draft risk assessment completed in July 2004.

^{**} No risk calculation was completed for Area 7 since there is only one sample location and no industrial activities (see text for further details).

Table ES-2 Summary of Risk Results Boeing Tract 1, St. Louis, Missouri

	Non-resident	tial Worker	Construction Worker						
Area	IELCR	HI	IELCR	HI					
Area 1 (Max.)	N/A	N/A	6.34E-07	0.50					
Sub-area 2A	5.97E-08	22	3.52E-07	0.31					
Sub-area 2B	7.57E - 06	96	1.89E-05	3.1					
Sub-area 2C	2.02E-08	0.95	3.92E-08	0.047					
Sub-area 3A	7.90E-08	2.6	4.52E-08	0.055					
Sub-area 3B	3.35E-09	0.31	4.66E-10	0.0071					
Sub-area 3C	2.00E-08	77	2.34E-08	1.3					
Sub-area 3D	2.93E-08	0.075	1.17E-07	0.048					
Sub-area 3E	4.31E-08	10	8.02E-10	0.12					
Sub-area 3F	NA	0.86	NA	0.0082					
Sub-area 3G	6.02E-08	2.8	9.38E-08	0.12					
Sub-area 3H	NA	0.70	6.35E-13	0.0058					
Area 4	2.17E-10	0.47	2.60E-06	0.014					
Area 5	NA	0.00053	6.37E-08	0.013					
Sub-area 6A	1.12E-10	0.054	5.33E-08	0.0089					
Sub-area 6B	1.44E-06	7.9	2.44E-05	0.17					
Sub-area 6C	7.03E-08	4.1	8.36E-08	0.060					
Sub-area 6D	2.99E-10	0.00014	8.25E-08	0.013					
Area 7	N/A	N/A	N/A	N/A					
Sub-area 8A	2.37E-08	0.00031	1.02E-07	0.020					
Sub-area 8B	NA	55	3.74E-10	0.49					
Sub-area 8C	NA	0.064	1.25E-12	0.0052					
Area 9	1.79E-11	0.19	1.29E-11	0.008					

Notes:

Number in bold exceeds the cumulative acceptable target levels.

IELCR: Individual excess lifetime cancer risk

HI: Hazard index NA: Not available N/A: Not applicable

1.1 INTRODUCTION

This section presents an overview of the site, the available data, and our overall approach to evaluate risk for the Tract 1 Boeing site (Facility), located in Hazelwood, St. Louis County, Missouri. The overall risk approach presented here is consistent with the draft policies made by the Missouri Groundwater Rule Stakeholders Group. These draft policies have been documented in the process document (Missouri Department of Natural Resources (MDNR) Preliminary Draft Process Document, June 2003). It is anticipated that the results of this evaluation will be used to make risk based decisions to manage the impacts at this site.

1.2 ORGANIZATION OF REPORT

The Report consists of an Executive Summary followed by 12 sections and 10 appendices (see Table of Contents) bound in two separate volumes. The report text is provided in Volume 1 and the appendices are provided in Volume 2. Following the text in each Section 1.0 through 10.0 are the tables, figures, and attachments related to that individual section. The Report has two final sections to present the conclusions and recommendations, and references.

1.3 SITE DESCRIPTION

The Facility is located in Hazelwood, St. Louis County, Missouri, within Section 5, Township 46E, Range 6E. It is bounded to the south by St. Louis Lambert International Airport, to the west and northwest by Lindbergh Boulevard on the east by the Formerly Utilized Facility Remedial Action Program (FUSRAP) St. Louis Airport Site (SLAPS), and to the north by James S. McDonnell Boulevard (with the exception of a small portion of land to the north of McDonnell Boulevard, (see Figure 1-1 for details). In general, the Facility is located in a highly urbanized (industrial/commercial) setting. Tract 1 is divided into two sections: Tract 1-South (approximately 108 acres) is located south of Banshee Road; and Tract 1-North (approximately 120 acres) is located north of Banshee Road. There are approximately 80 buildings located within Tract 1 (North and South).

In 2001, Boeing sold a portion of the North Tract containing Buildings 27, 29 and 29A to GKN Aerospace (GKN). Boeing is in the process of vacating the South Tract and turning the buildings and land over to the owner, Lambert St. Louis International Airport, except for the Power Plant (Risk Area 4) and the Industrial Wastewater Treatment Plant (Risk Area 5). This process is scheduled to be completed by mid-2005. Boeing is retaining the Engineering Office Complex consisting of Buildings 32, 33, and 34 along with office and warehouse facilities in Buildings 27A, 220, and 221, and the Power Plant and Industrial Water Treatment Plant.

Aerospace manufacturing has been in continuous operation at the Facility since 1941. The Facility activities primarily consisted of the manufacturing of fighter aircraft and components. Processes include the fabrication of aluminum, titanium, composite structures, and other air frame material. The manufacturing processes also include metal cutting, metal forming and grinding, degreasing, painting, aircraft assembly, aircraft fueling, and aircraft flight testing.

Access to the Facility is strictly controlled. The Facility is surrounded by a chain-link fence and is patrolled by a security force 24 hours a day, 365 days per year. Employees and visitors must pass through security gates at the main entrance to the Facility before entering any building.

The Facility was permitted to store hazardous waste under RCRA permit number OSO 62284002. The Facility was also permitted to transport hazardous wastes from other Boeing (St. Louis) facilities for management and solvent recycling.

Boeing generated approximately 48 different waste streams that the Facility considered to be hazardous waste. The largest quantities of wastes generated consist of emulsified cutting oils, waste jet fuels, paint solids, solvent and paint wastes, wastewater treatment sludges, and acid and caustic wastes. Boeing stores hazardous waste at various locations around the Facility. Waste solvents, paints, and oils are accumulated in drums at numerous satellite accumulation locations. Boeing stored on-site-generated waste in drums at three less-than-90-day storage areas. Non-petroleum liquid wastes are either transported off-site for disposal, or neutralized and processed through the industrial wastewater treatment plant (IWTP). Liquids pretreated in the IWTP are discharged to the Metropolitan St. Louis Sewer District (MSD) publicly-owned treatment works under an industrial discharge permit. Petroleum wastes are stored in tanks or drums, and either blended and used as fuel for boilers (off-spec jet fuel only) or transported to a disposal facility. Sludge from the IWTP is transported to an off-site disposal facility.

In the past, Boeing operated three solvent distillation units which were certified as resource recovery units by the MDNR. Two of the distillation units were used to recover spent methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). One of these was located at the painting area in Building 27 and the other was located at the main paint booth in Building 48. Distillation bottoms were collected in 55-gallon drums and disposed as hazardous waste. The other distillation unit was a steam stripping carbon adsorption bed unit that recovered spent perchloroethylene (PCE) and was located in Building 51.

A total of approximately 68 underground storage tanks (USTs) have been located at the Facility since operations began in 1941. These USTs primarily have been used to store petroleum products (jet fuels JP-4 and JP-5, gasoline, diesel, and hydraulic oil) along with waste petroleum products (jet fuels, used oil). At various times, some USTs at the Facility were used to store solvents, lacquer thinner, hazardous waste sludge, alcohol, and water. A total of 11 USTs are currently in use at the Facility: 3 on the North Tract and 8 on the South Tract. A summary listing of all known USTs at the Facility is presented in Table 1-1.

Approximately 90-95% of the surface area of the Facility is covered with buildings, paved streets, paved parking lots, tankfarms, and docks.

1.4 INVESTIGATION HISTORY

Numerous investigations have been completed at the Boeing Tract 1 Facility, including document and operation reviews, visual inspections, and sampling efforts. These investigations have been conducted as part of the RCRA program [RCRA Facility Assessment (RFA) and RCRA Facility Investigation (RFI)], USTs removals and/or investigations, and environmental assessments with subsequent environmental investigations.

As summarized in the draft RFI (MACTEC, 2004), numerous assessment investigation activities have occurred at the Facility. These have resulted in a large body of soil and groundwater data.

In summary:

- 32 Solid Waste Management Units (SWMUs) were identified at the facility by the RFA (SAIC, 1995) (Table 1-2).
- 68 USTs have been present at the Facility (Table 1-2).
- 23 shallow monitoring wells (20 feet deep or less) were installed as part of the RFI; an additional 55 shallow monitoring wells were installed at the Facility during previous investigations. Eighteen of these monitoring wells have been closed.
- Nine monitoring wells were installed as part of the RFI to monitor the deep groundwater zone.
- Approximately 207 shallow soil borings and 10 soil borings to the top of bedrock were installed as part of the RFI investigation between February 1998 and July 2003.
- Temporary piezometers were installed in 172 of the shallow RFI borings and eight of the deep RFI borings to allow for the collection of groundwater samples.
- Nine shallow RFI borings and two deep RFI borings were completed as permanent piezometers to allow for collection of groundwater samples over time.
- 14 temporary piezometers and 2 monitoring wells sampled groundwater for TPH speciation/fractionation in April/May 2004.

Samples have typically been analyzed for a range of constituents; volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) including polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, metals, total petroleum hydrocarbon (TPH) and cyanide, by a variety of analytical methods.

Laboratory data collected for RFI (1998 to 2003) and supplemental TPH in 2004 is available in a master database, however data collected for other investigations were only available in a hard copy. This risk evaluation considered all relevant historic soil and groundwater data. Generally, all soil data was used for quantitative evaluation. For groundwater, a minimum of the most recent two years of data up to a maximum of the most recent six years of data depending on the availability of data in each area was used. The objective was to use the data most representative of current conditions.

1.5 SITE GEOLOGY

A detailed description of the site's geology and hydrogeology is presented in the RFI (MACTEC, 2004). The following summary is based on the RFI. The geology at the site is divided into unconsolidated material (overburden) and bedrock.

Unconsolidated Material

The unconsolidated material which overlies the bedrock consists predominantly of silt, clay, silty clay, and clayey silt. The total thickness of this material is approximately 70 to 90 feet. There is a general increase in clay content with depth, with low permeability clay separating the upper zone [approximately zero to 15 feet below ground surface (bgs)] from the underlying bedrock. The upper zone consists predominantly of clayey silt (e.g., loess) with fill material (reworked silt/clay, bricks, gravel, etc.) in some areas. The fill is up to 10 feet thick. A distinct organic silt layer was noted across the site at approximately 10 to 15 feet bgs. Predominantly dense clay is present below the organic silt and extends down to bedrock. A thin (approximately one to three feet) basal (top of bedrock) sandy or gravelly interval was encountered in some borings, but (in general) has low permeability due to clay content and is not continuous across the site.

Bedrock

The bedrock underlying the unconsolidated material consists of either Mississippian Age limestone (eastern side of site) or Pennsylvanian Age cyclotherms (western side of site). The limestone is composed of the Ste. Genevieve and St. Louis formations. The limestones are generally clean, without abundant shale or chert. The Pennsylvanian Age cyclotherms consist of interbedded coal, shale, clay/silt, and limestone. The overall permeability of the Pennsylvanian beds is low, and these formations are considered an aquitard or barrier to groundwater flow.

1.6 HYDROGEOLOGY

The groundwater at the site has been divided into shallow and deep zones which are separated by low permeability clay. The shallow groundwater is typically encountered 4 to 14 feet bgs and is considered unconfined. The shallow groundwater elevations consistently show a flow direction towards Coldwater Creek, the receiving stream.

The hydraulic gradients, estimated from the 2002/2003 water levels, ranged from 0.007 to 0.015 feet/foot (ft/ft), with a Facility wide average of 0.01 ft/ft.

Numerous laboratory and field tests to determine the hydraulic conductivity of the unconsolidated materials have been conducted at the Facility as part of the RFI and during earlier investigations at the Facility. Similar tests have also been conducted at the nearby SLAPS. These tests included:

- Laboratory tests (Triaxial),
- Field slug tests, and
- Field pump tests.

An average hydraulic conductivity (K) value for the upper zone was determined to be 3.83 x 10⁻⁵ centimeters per second (cm/sec), with the shallow groundwater flow velocity estimated at 4.2 feet per year (MACTEC, 2004).

The deep groundwater zone includes an organic silt and low permeability clay (aquitard), which separates the deep and shallow groundwater zones and the underlying silty clay and basal sands and gravel. The deep groundwater zone is hydraulically separate from the upper groundwater zone (MACTEC, 2004). The groundwater potentiometric elevations for the deep zone vary considerably across the Facility and indicate that the deep groundwater zone is not a continuous or well defined hydrologic unit. Although the deep groundwater is within a confined groundwater zone and not directly hydraulically connected to Coldwater Creek, the deep groundwater is expected to flow to the northeast down the Coldwater Creek valley. The overall trend, however, is decreasing elevations towards the north, which follows the Coldwater Creek flow direction.

1.7 TOPOGRAPHY

The topography at the Facility is mostly level to gentle rolling hills, with local surface elevations ranging from 545 to 555 ft above mean sea level. The topography generally slopes across the Facility from west to east.

1.8 RELEVANT CLIMATE CONDITIONS

The annual average rainfall for the City of St. Louis is 37.5 inches per year. The prevailing winds at the site tend to be from the south in the Summer and Fall at an average speed of 8.7 miles per hour, and from the west and northwest in the Winter and Spring at an average speed of 11 miles per hour.

1.9 EXPOSURE ASSESSMENT

The quantification of risk at a site requires the following information:

- 1. Identification of constituents of concern (COCs),
- 2. Physical-chemical properties of COCs,
- 3. Toxicological properties of COCs,
- 4. Receptor Specific Exposure factors,
- 5. Fate and transport and uptake models to estimate the exposure point concentrations and dose, and
- 6. Fate and transport parameters.

In addition, for a Facility as large as this with varying conditions (primarily COCs and land use) across the Facility, the Facility has to be discretized into smaller areas that are more "homogeneous" from an exposure and risk perspective. This discretization of the Facility is presented in Section 1.9.1.

Each of the above inputs is discussed subsequently.

1.9.1 Discretization of Site

The Boeing facility, (Tract 1 North and Tract 1 South) has a total area of 228 acres. The area consists of a number of different land uses (manufacturing buildings, office buildings, parking lots, area for future runway, power plant, etc.). For risk assessment purposes the site was divided into the following nine Areas based on the current and future land use and activity patterns. The intent of these Areas is to define portions of the site that are relatively homogeneous in terms of risk and exposure factors, and to develop target levels for each Area consistent with the land use and/or other characteristics to the exposure condition of that Area. These Areas are presented below and locations are indicated on Figure 1-1:

- Area 1 Runway Protection Zone: (includes former Buildings 40, 45L, 45C, 45D, 45E, and parts of 45 and 45K).
- Area 2 <u>Demolished Area</u>: (includes former Buildings 45J, 51, 52, 48, 48A, and part of 45K).
- Area 3 Retained Area: (includes Buildings 42, 43, 45H, 41, 44, 44A, 46, 49, 1, 2, 3, and 4).
- Area 4 Power Plant: (includes Buildings 5 and 6).
- Area 5 Industrial Water Treatment Plant: (includes Building 14).
- Area 6 GKN Facility: (includes Buildings 21, 22, 25, 27, 28, 29, 29A, and 39).
- Area 7 Engineering Campus: (includes Buildings 27A, 32, 33, and 34).
- Area 8 Office Complex North: (includes Buildings 220 and 221).
- Area 9 Gun Range: (includes Buildings 10, 11, 11A, 12, and 13).

If there were multiple sources or multiple regions of an Area impacted by the same group of constituents (i.e. VOCs, PAHs, PCBs), the Area was further subdivided into Sub-areas. These Sub-areas were sized to contain single Areas of Impact.

The reasons for dividing the Areas into Sub-areas included:

- Focus the risk assessment calculation to match each Area of Impact;
- Avoid the perception of "diluting" the representative concentration by averaging beyond the Area of Impact for each source;
- Reduce the size of the area over which representative concentrations are calculated to better reflect the exposure domain for receptors,
- Use the results of the risk assessment to focus the Corrective Measures Study (CMS) on smaller areas found to exceed acceptable risk; and
- Receive no further action determination for Areas of the Facility that do not pose an unacceptable risk.

Four of the nine Areas were subdivided into Sub-areas. Area 1 was not subdivided since the maximum detected concentrations of the chemicals of concern did not result in unacceptable risk. Areas 4, 5, 7, and 9 were not subdivided since there were not multiple Areas of Impact within these Areas. Area 2 was divided into Sub-areas 2A, 2B and 2C. Area 3 was divided into eight Sub-areas 3A through 3H. Area 6 was further divided into four Sub-areas 6A, 6B, 6C and 6D. Area 8 was divided into Sub-areas 8A, 8B, and 8C. The details for each Sub-area are discussed in Sections 2 to 10.

1.9.2 Screening to Identify Constituents of Concern

All the organic and inorganic constituents (except for certain parameters that were analyzed to provide information regarding biodegradation activity – i.e., ammonia as nitrogen, nitrate as nitrogen, chloride, fluoride, sulfate, etc.) were retained for evaluation if they had (i) a positive detected value, or (ii) where a numerical detection limit was known.

Historic data, identified as 'ND', i.e., without the specific detection limit, was not used in the quantitative risk evaluation process. The number of samples analyzed for each constituent includes the "NDs" in the count.

1.9.2.1 Groundwater

The risk assessment used only the groundwater sample data collected by MACTEC for its RFI, which included data from 1998 to 2003, along with subsequent sampling in 2004 for TPH. For metals, only total metal analyses were considered. Dissolved metal results were not considered. This is the conservative approach since total metal results are typically at higher concentrations than dissolved metal results.

When all the historic groundwater data collected at the Boeing facility was evaluated, a total of 189 chemicals had been analyzed in at least one sample. In order to screen this list into a more manageable list of COCs, the data was first broken down into each of the nine Areas. Constituents were screened as follows:

• Constituents were removed from consideration where the maximum concentration detected in groundwater was below the Maximum Contaminant Level (MCL) or other target level criteria. For constituents that do not have MCLs, three other target level criteria were compared in the following order of priority: (i) EPA Health Advisory

Concentration Levels (HA), (ii) Secondary Drinking Water Standards (SDWS), and (iii) risk-based target levels were developed assuming water is used for residential purposes, i.e., it included the ingestion of water and indoor inhalation of vapors from residential water use.

• Constituents were removed from consideration if they were not detected in any of the groundwater samples analyzed for that constituent in a specific Area/Sub-area.

The comparison for these constituents is presented in each of the Sections 2 to 10. Table 1-3 lists the MCLs and other target levels criteria. Once this comparison was completed, the remaining COCs were carried forward in the risk assessment.

1.9.2.2 Soil

If a VOC, TPH, PAH, or PCB constituents was detected in a soil sample for an Area/Sub-area, that constituent was retained as a COC. Metal constituents for which the maximum detected concentration in an Area/Sub-area was less than background concentrations were not considered. Also, individual metals that were non-detect for all soil samples analyzed in an Area/Sub-area were not considered further. Specific comparisons are presented in each area (Sections 2 to 10).

Table 1-4 lists the background concentrations for metals that were compiled based on a review of the following:

- StL MACTEC Engineering and Consulting, Inc., May 2004, Draft RCRA Facility Investigation Report for McDonnell Douglas, Hazelwood, Missouri, Table 6-1 (St. Louis County Geometric Mean)
- MO Tidball, Ronald R., 1984, Geochemical Survey of Missouri, Geological Survey Professional Paper 954-H,I (Missouri Statewide Geometric Mean)
- US Shacklette, Hansford T. and Boerngen, Josephine G., 1984, U.S. Geological Survey Professional Paper 1270 (Eastern United States Geometric Mean)
- SLAPS Environmental Assessment Division, Argonne National Laboratory, November 1993, Baseline Risk Assessment for Exposure to Contaminants at the St. Louis Site, St. Louis, Missouri, Table 2.8

1.9.2.3 Laboratory Qualifiers

The soil and groundwater samples included some detectable and non-detectable concentrations of constituents that also contained one or more of the following laboratory qualifiers. Typically, all detectable concentrations were considered in the risk assessment, including laboratory qualified data.

- B The indicated analyte was found in the associated method blank as well as in the sample (the sample value may be above or below the reporting limit).
- D Diluted: The original sample was diluted due to high amounts of one or more target analytes. Analytes will be subject to elevated detection limits relative to the dilution factor.

- DL Diluted: The original sample was diluted due to high amounts of one or more target analytes. Analytes will be subject to elevated detection limits relative to the dilution factor.
- E Estimated value: Analytical result exceeded the method upper calibration curve and the actual value is known to be higher than the upper calibration range.
- F Diluted: The original sample was diluted due to high amounts of one or more target analytes. Analytes will be subject to elevated detection limits relative to the dilution factor.
- H Re-analyzed: The indicated analytical results were generated from a re-injection of the same sample extract or aliquot.
- J Estimated value: Analytical result is estimated due to one of the following factors: constituent was detected above the method detection limit but below the practical quantitation limit or reporting limit; constituent did not successfully meet the established quality control criteria for accuracy, precision, or spike recovery; surrogate recoveries were not within method limits or diluted out.
- L Sample pretreatment: The sample reaction impaired the ability to analyze the sample using normal analytical determination. Treatment outside of method protocol was required to determine the analytical result.
- O Diluted: The original sample was diluted due to matrix interference of one or more target analytes. Analytes will be subject to elevated detection limits relative to the dilution factor.
- Q Sample was held beyond the accepted method holding time.
- R Rejected result: Indicated analytical result was rejected/not used due to failure of sample analysis to meet minimum method analysis requirements.
- T Sample was received past the method hold time or too close to the method holding time expiration.
- V Sample concentration was too high to evaluate spike recoveries.
- X Re-run sample analysis: The sample was diluted and re-analyzed (possibly performed re-analysis outside of recommended method hold time).

1.9.3 Representative Concentration Methodology

Representative concentrations were calculated for each constituent analyzed in each Area or Sub-Area using the following conventions:

 Constituents were grouped into VOCs, PAHs, PCBs, and TPH. The Area of Impact for soil was defined by the soil samples that had detections of an analyte within that group (i.e. if a sample had a benzene detection, that sample was utilized to calculate the representative concentrations for all of the VOC constituents analyzed in that sample. If VOC constituents were below method detection limits in the sample, one half of the method detection limit for that constituent was used. This process was separately completed for groundwater.

- Samples (soil or groundwater) were not included in the Area of Impact representative concentration calculation for VOCs if the only detection in the sample was acetone and/or methylene chloride. These constituents are common laboratory contaminants and inclusion of the samples with just these detections would have resulted in a reduction of the calculated representative concentration for other COCs.
- Multiple groundwater samples collected from a monitoring well or permanent piezometer were averaged together to give a representative concentration for that well prior to use in the calculation of the representative concentration for the Area/Sub-area.
- Duplicate groundwater samples were averaged with the entire set of samples from the well as unique samples.
- Multiple analysis for constituents by different laboratory methods were averaged together as unique samples (i.e., BTEX analysis by EPA Methods OA-1 and 8260B). See Appendix K for multiple analysis data.

1.9.4 Physical and Chemical Properties of COCs

To perform the risk calculations, COCs were assigned physical and chemical properties from the MDNR Cleanup Levels for Missouri (CALM) document. A number of constituents were identified at the Boeing facility that did not have physical and chemical properties available from the CALM document. For these chemicals alternative sources were used to obtain this information. The following sources were used:

- U.S. EPA Region IX, April 2002. Preliminary Remediation Goals,
- Texas Commission on Environmental Quality, March 2001. Texas Risk Reduction Program, and
- TPH Criteria Working Group, June 1999. TPHCWG Series Volume 5: Human Health Risk-Based Evaluation of Petroleum Contaminated Sites: Implementation of the Working Group Approach.

Table 1-5 presents the physical and chemical properties for all constituents identified for risk calculation at the Boeing Facility.

1.9.5 Toxicological Properties of COCs

As with the physical and chemical properties, the MDNR CALM document did not contain toxicological properties for all constituents identified at the Boeing Facility. The following sources were used to obtain this information:

- U.S. EPA Region IX, April 2002. Preliminary Remediation Goals,
- Texas Commission on Environmental Quality, March 2001. Texas Risk Reduction Program, and
 - TPH Criteria Working Group, June 1999. TPHCWG Series Volume 5: Human Health Risk-Based Evaluation of Petroleum Contaminated Sites: Implementation of the Working Group Approach.

Table 1-6 presents the toxicological properties for all constituents identified for risk calculation at the Boeing Facility.

1.9.6 Exposure Factors

The risk to each receptor in an area is calculated based on exposure factors presented in the MDNR CALM document except skin surface area for dermal contact with soil and soil to skin adherence factor where values were based on the Department of Health and Social Services (DHSS) recommendation. Table 1-7 presents the exposure factors used for risk calculation. Note that in general these are the upper 95th percentile values and are hence conservative. Note it is likely that future workers may spend time in more than one Area/Sub-area, i.e., they could be exposed to chemicals in multiple areas. However, the risk assessment considers the maximum exposure to a worker within each specific area. This is a conservative assumption because if a worker is present in more than one area, the risk to that worker will be less than the risk to a worker who stays in the same area.

1.9.7 Fate and Transport Models

The following models were used to estimate the risk as per the process document.

Outdoor Inhalation from Subsurface Soil Emission – Jury Dispersion – Open Box

Indoor Inhalation from Subsurface Soil Emission – Johnson and Ettinger Dispersion – Closed Box

Indoor Inhalation from Groundwater
Emission – Johnson and Ettinger
Dispersion – Closed Box

Appendix A includes the specific equations used to estimate the calculated risk-based concentrations.

1.9.8 Fate and Transport Parameters

Table 1-8 presents the fate and transport parameters required for the indirect routes of exposure. These parameters can be divided into three categories:

- 1. Parameters for which default literature values are used across the site.
- 2. Parameters for which site-specific values are used across the site.
- 3. Parameters for which site-specific values are used that vary for each exposure area.

Following is a discussion of the site-specific parameters.

Prevailing Wind Direction/Dimension of Soil Source

The Draft RFI report (MACTEC, 2004) presents average prevailing wind speed is 8.7 miles per hour (mph) from the south during the Summer and Fall, and 11.0 mph from the west and northwest during the Winter and Spring. Therefore, we used an average wind speed of 9.85 mph, and selected the most conservative dimension (longest dimension for an Area/Sub-area consistent with the varying wind directions). The dimensions for soil source used by Area/Sub-area are presented in Table 1-9.

Depth to Subsurface Soil Sources

Depth to subsurface soil sources was determined on an Area/Sub-area specific basis. It was always conservatively determined to be the average of the minimum depths at which organic impact was observed in the soil samples collected within that area. This is the depth at which the volatile chemicals predominantly occur and varies for each area. However, since the depth to subsurface soil source is based on the average depth of several samples in an Area/Sub-area, the average depth to subsurface soil source used in the risk calculations was no deeper than the average depth to groundwater for that specific Area/Sub-area. The depths to subsurface soil source used by Area/Sub-area are presented in Table 1-9.

Enclosed Space Volume/Infiltration Area Ratio

This parameter represents the ratio of the volume of the building to the surface area through which vapors migrate into the building. For Areas/Sub-areas where vapors migrate through the floor of the building only; i.e., buildings without basements, this parameter is equal to the height of the building. Conservatively, default value by MDNR of 300 cm (= approximately 12 ft) was used.

For buildings with basements where a portion of the basement height is surrounded by contaminated soil or groundwater, the vapor infiltration area is estimated as the area of the portion of the walls through which vapors enter the basement. In these cases, the enclosed space volume is conservatively assumed as the volume of the basement, not the entire building.

Fractional Organic Carbon Content in Soil

A total of 3 soil samples were collected at non-impacted locations across the Facility. An average of the results was used to produce a site-wide fractional organic carbon content in soil of 0.0477 g/cc (Table 1-10). This is a reasonable value, given that the lacustrian genesis of the shallow soil (the area was previously a lake); and therefore, would be anticipated to have significant organic carbon content.

Soil Moisture Content

In all, 35 soil samples collected above the average water depth (by Area/Sub-area) at the Facility for the RFI have been analyzed for water content in the unsaturated zone (0 – 10 ft). The gravimetric water content values range from 9.8 to 27.4 % with an average of 20.8 %. The gravimetric water content was converted to volumetric water content, 31.6 % and used for the risk calculations (Table 1-11).

Capillary Fringe Thickness

Based on the general soil type at 10-20 ft bgs (silty clay) and the typical depth to groundwater across the Facility, the capillary fringe thickness was estimated to be 192 cm. This value was obtained from US EPA (June 19, 2003). For the areas where the depth to groundwater is less than 192 cm, 70% of the depth to groundwater was used for the risk calculations.

Total Soil Porosity

Based on the general soil type in the upper zone (silty clay), the total soil porosity was estimated to be 0.48 cm³/cm³. This value was obtained from US EPA (June 19, 2003).

Dry Bulk Density

Two soil samples collected in shallow soil zone at the Facility have been analyzed for dry bulk density. The average of these, 1.52 g/cm³, was used for the calculation (Table 1-12).

Depth to Groundwater

Depth to groundwater was determined for each Area/Sub area and was always conservatively determined to be the average depth to groundwater based upon measurements from up to four quarterly monitoring events per well between December 2002 and June 2003 (Table 1-13). Note Areas 5 and 9 have piezometers but no monitoring wells. For these two areas, the depth to groundwater was determined based on evaluation of the boring logs, and was the average depth at which the boring logs indicated groundwater. If there was no indication, then the average depth at which the first occurrence wet or saturated soil samples (average depth to first description of saturated or wet soils in the boring logs for the Area) was used.

Thickness of Vadose Zone

The thickness of the vadose zone is equivalent to the total depth to groundwater minus the capillary fringe thickness. It is determined by the capillary fringe thickness and the depth to groundwater, hence this value varies by Area/Sub-area.

1.9.9 Acceptable Risk Level

The risk to human health was calculated using the forward mode, i.e. the risk from each chemical was calculated, and compared with a target risk, set by MDNR. As per the process document following are the target risks for each receptor:

- 1. An individual excess lifetime cancer risk (IELCR) of 1 x 10⁻⁵ for each carcinogenic constituent and all exposure pathways was used. A hazard index (HI) of 1 for each non-carcinogenic constituent and all exposure pathways was used.
- 2. For all constituents and all exposure pathways, the cumulative IELCR of 1 x 10⁻⁴ and the HI of 1 were used for comparison purposes.

1.9.10 Consideration of TPH in the Risk Assessment

Several soil and groundwater samples have been analyzed for TPH using a variety of different TPH methods. These have resulted in a variety of different TPH values, e.g., diesel # 1, kerosene, stoddard solvent, motor oil, etc.

Since the TPH values reported are a mixture of several constituents whose composition and toxicity change due to weathering (note toxicity generally decreasing), there is no unique way to evaluate the risk from TPH measurements. As such the following approach was used:

The various TPH values reported were classified as TPH-GRO (gasoline range organic), TPH-DRO (diesel range organic), or TPH-ORO (oil range organic). Table 1-14 shows the various

TPH values and their allocations to one of these three TPH fractions.

Each of the TPH-GRO, TPH-DRO, and TPH-ORO fractions was considered to consist of the following aromatic and aliphatic fractions:

TPH-GRO		TPH-	DRO	TPH-ORO		
Aliphatics	Aromatics	Aliphatics	Aromatics	Aliphatics	Aromatics	
>C6-C8	>C8-C10	>C10-C12	>C10-C12	>C21-C35	>C21-C35	
>C8-C10		>C12-C16	>C12-C16			
		>C16-C21	>C16-C21			

C: Carbon atom

In order to get site-specific estimate of the aliphatic and aromatic fractions, groundwater samples were collected in April/May 2004 for several Sub-areas and analyzed for TPH-GRO, TPH-DRO, and TPH-ORO using TX Method 1005 and SW 846 Method 8260, and the fractions using the Texas method 1006. These results were used in the risk assessment as follows:

- If there are TPH-GRO results by both TX 1005 and SW 8260, the results by SW 8260 were used for the calculations of average TPH-GRO concentration.
- If there are TPH-DRO and TPH-ORO results by TX 1005, the results were used for the calculations of average concentration.
- Using TX 1006, the ratio of each aliphatic and aromatic fraction to the total TPH concentration was estimated and is shown in Table 1-15. The TX 1006 results for aliphatic C6 and aromatic C7 C8 were not used since these lower fractions were measured by individual volatile organic compounds.
- These ratios were applied to the average TPH results in each Sub-area to estimate the individual fraction concentrations. These fractions are shown highlighted in Table 1-15.

If there were no TX 1006 results (soil and some groundwater results), then the average concentrations for TPH-GRO, TPH-DRO, and TPH-ORO were divided equally for their specific fractions shown above. The risk for each of the carbon fractions was calculated (as if each were a single constituent). The risk for TPH fractions were calculated as the sum of the risk of the various carbon fractions.

1.9.11 Consideration of Lead

The primary toxicity of lead is to children in a residential scenario and fetuses carried by female workers in non-residential scenarios. For children, human exposures to lead are estimated using the integrated exposure uptake biokinetic (IEUBK) model to estimate the risk of elevated blood levels in children under the age of seven. For non-residential scenarios, US EPA (1996) uses the adult lead methodology (ALM) to assess the risk to fetuses. Both these models are under review by EPA.

Based on these models, EPA (1996) has developed a screening level for non-residential soils of 750 mg/kg and 400 mg/kg for residential areas. The value of 750 mg/kg has been used to determine whether lead is a constituent of concern in soil.

For groundwater, MCL of lead of 15 ug/L has been used to determine whether lead is a constituent of concern in groundwater. However, in some areas monitoring wells/piezometers were sampled for both total lead and dissolved lead concentrations in groundwater. In general, and as expected, total lead concentrations exceed dissolved lead concentrations due to the

suspended solids content in a sample. For example, a sample with little or no suspended solids content would typically have similar concentrations for total lead and dissolved lead. For samples with increasing suspended solids content, the total lead concentration is typically higher than the dissolved lead concentration since the analysis detects both the dissolved lead in the water as well as the lead content of the suspended solid particles. For samples with dissolved lead concentrations, the determination to screen lead out is based on comparing the dissolved lead concentration to the MCL.

Locations/samples where lead concentrations exceed these levels are discussed in the respective sections.

1.9.12 Consideration of 1,2-Dichloroethene

The laboratory data for 1,2-dichloroethene (total), cis-1,2-dichloroethene, and trans-1,2-dichloroethene have been reported in two different ways. For some samples, only 1,2-dichloroethene (total) has been reported. For others, values of cis-1,2-dichloroethene and trans-1,2-dichloroethene, were reported.

For the former case, the entire concentration was conservatively assigned to cis-1,2-dichloroethene which is the more toxic of the two isomers. If the calculated risk exceeded the acceptable level, 1,2-dichloroethene (total) concentration was assigned 50% as cis-1,2-dichloroethene and 50% as trans-1,2-dichloroethene. This is consistent with a tiered risk evaluation where constituents are screened first using very conservative assumptions and if they do not screen out, less conservative but still reasonable assumptions are made. However, all calculated risks using 100% cis-1,2-dichloroethene for 1,2-dichloroethene (total) were acceptable; therefore, there were no instances where the risk was recalculated using 50% cis-1,2-DCE and 50% trans-1,2-DCE for 1,2-DCE (total). By substituting cis-1,2-DCE for 1,2-DCE (total), a "worst-case" risk is calculated, since cis-1,2-DCE is the most toxic compared to trans-1,2-DCE.

For risk calculation in the second case, the individual concentrations of cis-1,2-dichloroethene and trans-1,2-dichloroethene were used.

1.10 WATER USE

Water supplies in the St. Louis area are obtained from the Mississippi, Missouri and Meramec Rivers. Aquifers exist in both the bedrock and unconsolidated deposits along the Mississippi and Missouri Rivers. At its closest point, the Missouri River is three miles to the northwest of the site. Bedrock aquifers are present throughout the St. Louis area to depths of up to 800 feet. The majority of the water occurs in fractures and solution pathways of the limestone which results in very erratic yields usually between 10-15 gpm. The bedrock aquifers are generally not utilized for drinking water purposes in the St. Louis area.

A total of eight private wells were identified within a 3-mile radius of the FUSRAP North County site consisting of SLAPS and the Hazelwood Interim Storage Site (HISS) (USACE, 2003). These wells range in depth from 35 feet to 400 feet and none of these are used for drinking water. Four of these wells had been used for irrigation and one for industrial purposes. The three other wells had been used for domestic use and were capped and abandoned in 1962, 1968, and 1979 (BNI, 1992). Most of these wells are installed into fractured bedrock where better yields can be obtained as compared to the shallow unconsolidated formation (USACE, 2003). Only one well was identified within one mile of the Facility (Golder and Associates, 2003). This well was reported to have been installed in 1968 to a depth of 44 feet as an observation well. The well is

located approximately 0.5 mile southwest of the Facility in the area of the current westward airport expansion.

Therefore, the groundwater underlying the Facility is not currently used as a drinking water supply and is not likely to be used for this purpose given the industrial/urban setting and the availability of the public water supply system.

The Facility is located in an area that is not considered favorable for the development of high-yield wells due to yields generally less than 50 gallons per minute (gpm) in shallow aquifers containing potable water, and deeper aquifers yield saline water. The Facility is in a bedrock area mapped as having high chloride content and high sulfate concentrations; therefore, the water quality of the uppermost bedrock aquifer is likely poor and not suitable as potable water (MACTEC, 2004).

Additionally, the area around SLAPS and HISS does not contain any ecologically vital groundwaters (MACTEC, 2004).

An evaluation of groundwater use as a potential drinking water source has concluded that groundwater (shallow and deep) is not currently being used at the Facility and is not considered a likely drinking water source in this area. Hence the drinking water pathway will not be further evaluated during this risk assessment.

1.11 SURFACE WATER BODIES

Coldwater Creek is located at the eastern edge of the Facility (Sub-area 6D) and below Area 9 between Area 4 and Area 5. Surface water and groundwater from the site flows toward the creek. The creek flows northeast within an underground culvert from the southwest side of the airport, across the central portion of the airport, and then flows into an open culvert beginning north of the railroad tracks on the north side of Banshee Road north of Area 9 and continues to the north for several miles until it rejoins its original channel. The creek eventually discharges into the Missouri River.

Coldwater Creek is designated as a metropolitan no-discharge stream except for permitted discharges and non-contaminated storm water flows. Coldwater Creek from its mouth at the Missouri River upstream 5.5 miles to its crossing with US Highway 67 (Lindbergh Boulevard) is classified by MDNR as a Class "C" waterway meaning that there are periods of no flow in the Creek, but permanent pools are always present. The upstream portion of the Creek between the Airport and Highway 67, which includes the Facility and SLAPS, is an unclassified water of the state.

The water quality in Coldwater Creek is generally poor. Studies of aquatic life (USACE, 2001) indicate that the stream ecology is severely impacted. The nature of pollution causing this impact is not definitively known but is believed to result from storm water from commercial and industrial facilities, residential areas, and the Airport. More than a dozen facilities that are permitted under the National Pollutant Discharge Elimination System (NPDES) program discharge directly into the stream, including Ford Motor Company, Lambert-St. Louis International Airport, and Boeing. These discharges include storm water runoff, cooling water discharge, water treatment, and airport and road deicing (MACTEC, 2004).

Table 1-1
Summary of Underground Storage Tanks at Boeing Tract 1, Hazelwood, Missouri

	ui	DNR Tank	Ť	Volume			Year	Catus	Leak .	Remedial Actions
Number	Building/Location	Registration	Regulated	(gals)	Contents	Construction Materials	Installed	Status	Detection	Remedia Activio
Bl	Bldg. 41	N/A	Yes	4,000	T-979 Solvent	Single Wall Steel	1947	Removed 1981/not Replaced	N/A	Excavated
B2	Bldg. 41	N/A	Yes	4,000	Lacquer Thinner	Single Wall Steel	1947	Removed 1981/not Replaced	N/A	Excavated
B3	Bldg. 41	N/A	Yes	8,000	Aviation Gas	Single Wall Steel	1947	Removed 1981/Replaced	N/A	Excavated
B4	Bldg. 41	N/A	Yes	8,000	Gasoline	Single Wall Steel	1947	Removed 1981/Replaced	N/A	Excavated
B5	Bidg. 41	N/A	Yes	4,000	JP-5	Single Wall Steel	1981	Removed 1989/Replaced by F41	N/A	Excavated
B6	Bidg. 41	N/A	No	15,000	JP-4	Single Wall Steel	1947	Removed 1957/Replaced	N/A	Excavated
B7	Bldg. 41	N/A	No	15,000	JP-4	Single Wall Steel	1947	Removed 1957/Replaced	N/A	Excavated
B8	Bkdg. 41	N/A	Yes	15,000	JP-4	Single Wall Steel	1948	Removed 1989/Replaced by A41	N/A	Excavated
В9	Bidg. 41	N/A	Yes	15,000	JP-4	Single Wall Steel	1948	Removed 1989/Replaced by B41	N/A	Excavated
B10	Bldg. 41	N/A	Yes	15,000	JP-4	Single Wall Steel	1957	Removed 1989/Replaced by C41	N/A	Excavated
Bit	Bldg. 41	N/A	Yes	15,000	JP-4	Single Wall Steel	1957	Removed 1989/Replaced by D41	N/A	Excavated
BI2	Bldg. 41	N/A	Yes ·	8,000	Gasoline	Fiberglass Reinforced Plastic	1981	Removed 1989/Replaced by E41	N/A	Excavated
B13	Bidg. 41	N/A	Yes	8,000	JP-5	Fiberglass Reinforced Plastic	1981	Removed 1989/Replaced by F41	Inventory Stick	Excavated
B14	Flight Operations/A-41	8027	Ne/Exempt	30,000	Jet Fuel	Double Wall Fiberglass	1989	Current	Interstitial Alarm	None
B15	Flight Operations/B-41	8027	Ne/Exempt	30,000	Jet Fuel	Double Wall Fibergiass	1989	Current	Interstitial Alarm	None
B16	Flight Operations/C-41	8027	Ne/Exempt	30,000	Jet Fuel	Double Wall Fiberglass	1989	Current	Interstitial Alarm	None
B17	Flight Operations/D-41	8027	Ne/Exempt	30,000	Jet Fuel	Double Wall Fiberglass	1989	Current	Interstitial Alarm	None:
BIS	Company Vehicles/E-41	8027	Yes	8,000	Gasoline	Double Wall Fiberglass	1969	Current	Interstitial Alarm	None
B19_	Flight Operations/F-41	8027	Ne/Exempt	8,000	Water	Double Wall Fiberglass	1989	Current/Not In use	Interstitial Alarm	None
B20	Bidg. i	N/A	No	500	Gasoline	Single Walt Steel	1956	Removed 1961/Not Replaced	N/A	Excavated
B21	Bldg. 1	N/A	No	500	Gasoline	Single Wall Steel	1961	Removed 1972/Not Replaced	N/A	Excavated
B22	Bldg, 1	8021	Yes .	6,000	Diesel	Single Wall Steel	1972	Removed 1980/Not Replaced	N/A	Excavated
B23	Bldg. I	8021	Yes	5,000	Gasoline	Single Wall Steel Relined in 1979	1941	Removed 1989/Not Replaced	Inventory Control	Excavated
B24	Bldg. 2	N/A	Yes	1,000	Gasoline/Diesel	Single Wall Coated Tar Epoxy Steel	1942	Removed 1989/Not Replaced	N/A	Excavated
B25	Bldg. 45	N/A	Yes	335	Diesel	Single Wall Steel	1958	Removed 1987/Not Replaced	N/A	Excavated .
B26	Bldg. 45C/45D (Site #4)	N/A	Yes	3,380	Waste JP-4	Single Wall Steel	. 1963	Removed 1983/Not Replaced	N/A	Excavated
B27	Bldg. 45C/45D (Site #4)	·N/A	Yes	3,380	Waste JP-4	Fiberglass Reinforced Plastic	1983	Removed 1989/Not Replaced	Inventory Stick	Excavated
B28	Bldg. 45E	N/A	Yes	2,130	Waste JP-4	Fiberglass Reinforced Plastic	1978	Removed 1990/Not Replaced	Inventory Stick	Excavated
	Bldg. 45, Fuel Pit #3					•		,		
B29	(Site #2)	N/A	Yes	. 2,000	Waste JP-4	Single Wall Steel	1977	Removed 1992/Not Replaced	Inventory Stick	Excavated/ Recovery Wells with closure 2002
	Bldg. 45, Fuel Pit #4									
B30	(Site #2)	N/A	Yes	2,000	Waste JP-4	Single Wall Steel	1983	Removed 1992/Not Replaced	Inventory Stick	Excavated/ Recovery Wells with closure 2002
B31	Bldg. 45K (Site #1)	N/A	Yes	4,380	Waste JP-4	Fiberglass Reinforced Plastic	1983	Removed 1993/Not Replaced	Inventory Stick	Excavated/Recovery Wells with closure 1999
B32	Bidg. SI	N/A	Yes	6,000	Solvents	Single Wall Steel	1977	Removed 1986/Not Replaced	Inventory Stick	Excavated
В33	Bklg. 43 Fuel Farm	UT0005886	Yes	20,000	Jet Fuel	Single Wall Steel	1957	Removed 1991/Not Replaced	Inventory Stick	Excavated total site of 799 cu yds
B34	Bldg. 43 Fuel Farm	UT0005886	Yes	20,000	Jet Fuel	Single Wall Steel	1957	Removed 1991/Not Replaced	Inventory Stick	Excavated total site of 799 cu yds
B35	Bkig. 43 Fuel Farm	UT0005886	Yes	20,000	Jet Fuel	Single Wall Steel	1957	Removed 1991/Not Replaced	Inventory Stick	Excavated total site of 799 cu yds

Table 1-1 Summary of Underground Storage Tanks at Boeing Tract 1, Hazelwood, Missouri

Number	Building/Location	DNR Tank Registration	Regulated	Volume (gals)	Contents	Construction Materials	Year Installed	Status	Leak Detection	Remedial Actions
B36	Bidg. 43 Fuel Farm	UT0005886	Yes	20,000	Jet Fuel	Single Wall Steel	1957	Removed 1991/Not Replaced	Inventory Stick	Excavated total site of 799 ca yds
B37	Bldg. 43 Fuel Farm	UT0005886	Yes	20,000	Jet Fuel .	Single Wall Steel	1957	Removed 1991/Not Replaced	Inventory Stick	Excavated total site of 799 cu yds
B38	Bldg. 6 (Boeing)	N/A	No/Exempt	20,000	Fuel Oil	Double Wall Steel/Plastic Coated	1989	Closed in Place	Inventory Control	No action
B39	Bldg. 6 (Boeing)	N/A	Ne/Exempt	20,000	Fuel Oil	Double Wall Steel/Plastic Coated	1989	Current	Inventory Central	Ne action
B40	Bldg. 14 (Beeing)	N/A	No/Exempt	120,000	Haz Waste Sludge	Concrete with Rubber Liner	1941	Current	Visual Inspection	Ne action
B41	Bldg, 5	N/A	No	15,000	Fuel Oil	Single Wall Steel	1941	Removed 1988	Visual Inspection	Excavated
B42	· Bldg. 5	N/A	No	15,000	Fuel Oil	Single Wall Steel .	1941	Removed 1988	Visual Inspection	Excavated
B43	Bidg. 5	N/A	No	6,000	Fuel Oil	Single Wall Steel	1941	Removed 1988	Visual Inspection	Excavated
B44	Bldg. 6	N/A	Yes	1,000	Waste Oil	Single Wall Steel	1970	Removed 1988	Visual Inspection	Excavated
B45	Bidg. 221	N/A	No	5,000	Fuel Oil	Single Wall Steel	1954	Removed 1990/Not Replaced	Visual Inspection	Excavated
B46	Bldg. 33	N/A	Yes	3,000	Diesel '	Single Wall Steel	1960	Removed 1990/Not Replaced	Visual Inspection	Excavated
B47	Bidg. 33	N/A	No	20,000	Fuel Oil	Single Wall Steel	1960	Removed 1990/Not Replaced	Visual Inspection	Excavated
B48	Bldg. 32	N/A	Yes	500	Gasoline	Single Wall Steel	1975	Removed 1990/Not Replaced	Visual Inspection	Excavated
B49	Bidg. 32	N/A	No	10,000	Fuel Oil	Single Wall Steel	1955	Removed 1990/Not Replaced	Visual Inspection	Excavated
B50	Bkig. 34	N/A	Yes	850	Diesel	Single Wall Steel	1961	Removed 1990/Not Replaced	Visual Inspection	Excavated
B51	Bldg. 34	N/A	No	10,000	Fuel Oil	Single Wall Steel	1961	Removed 1990/Not Replaced	Visual Inspection	Excavated
B52	Bidg. 22	N/A	Yes	5,000	Leaded Gasoline	Single Wall Steel	1942	Removed 1961 & Replaced	Visual Inspection	Excavated
B53	Bldg. 22	N/A	Ycs	7,520	Leaded Gasoline	Single Walf Steel	1961	Removed 1989 & Replaced	Inventory Control	Excavated
B54	Bidg. 22	UT0008016	Yes	8,000	Unleaded Gasoline	Double Wall Fiberglass	1989	Retrefitted in 1995	Inventory Control	No action
B55	Bidg. 22	UT0008016	Yes	000,01	Unleaded Gasoline	Single Wall Fiberglass	1981	Removed in 1995 & Replaced	Inventory Control	Excevated
B56	8idg. 22	UT9008016	Yes	10,000	Unleaded Gasoline	Double Wall Plastic Coated Steel	1995	Current	Interstitial Alarm	No action
B57	Bidg. 22	UT0008016	Yes	10,000	Diesel	Single Wall Fiberglass	1981	Removed in 1995 & Replaced	Inventory Control	Excavated
B58	Bldg. 22	UT0008016	Yes	10,000	Diesel	Double Wall Plastic Coated Steel	1995	Current	Interstitial Alarm	No action
B59	Bidg. 25	UT0005954	Yes	8,000	Methyl Alcohol	Single Wall Steel	1984	Removed in 1995/Not Replaced	Inventory Control	Excavated
B60	Bidg. 28	UT0008017	Yes	5,000	Jet Fuel	Single Walt Steel	1955	Removed in 1989 & Replaced	Inventory Control	Excavated
B61	Bldg. 28	UT0008017	Yes	5,000	Jet Fuel	Single Wall Steel	1955	Removed in 1989 & Replaced	Inventory Control	Excavated
B62	Bidg. 28	UT0008017	Yes	5,000	Waste Jet Fuel	Single Wall Steel	1953	Removed in 1989 & Replaced	Inventory Control	Excavated
B63	Bldg. 28	UT0008017	Yes	5,000	Jet Fuel	Double Wall Steel	1989	Removed in 2000/Not Replaced	Inventory Control	Excavated
B64	Bldg. 28	UT0008017	Yes	5,000	Jet Fuel	Double Wali Steel	1989	Removed in 2000/Not Replaced	Laventory Control	Excavated
B65	Bidg. 28	UT0008017	Yes	5,000	Waste Jet Fuel	Double Wall Steel	1989	Removed in 2000/Not Replaced	Inventory Control	Excavated/RCRA Corrective Action
B66	Bldg. 29	UT0008019	Yes	4,000	Hydraulic Oil	Single Wall Fiberglass	1980	Removed in 1994/Not Replaced	Visual Inspection	Excavated
B67	Bldg. 20	N/A	No	250	Fuel Oil	Single Wall Steel	1943	Removed in 1999/Not Replaced	Visual Inspection	Excavated
B68	Bidg, 42	N/A	No	Unknowa	Aviation Gasoline	Single Wall Fiberglass	Unknowa	Removed Date Unknown/ Not Replaced	Visual Inspection	Excavated

Notes

Bidg - Building
gals - gallons
cu yds - cubic yards
N/A - Not Applicable

Bold indicates the status of the tank is current

Table 1-2
Solid Waste Management Units (SWMU) at Boeing Tract 1, Hazelwood, Missouri

Unit	Description	Building
1	Waste Sodium Hydroxide Storage, AST Tanks H19 and H 20	52
2	Waste Nitric and Hydrofluoric Acid Solution Storage, AST Tanks H12, H13, and H14	52
3	Wastewater Sludge Collection and Holding Tank	14
4	Leaked or Spilled Jet Aircraft Fuel Storage Tank	28
5	Current Reactive Cyanide and Sulfide-Bearing Waste Storage, Area 2	- 22
6	Former Reactive Cyanide and Sulfide-Bearing Waste Storage, Area 2	22
7	Explosive Waste Storage, Area 3	10
8	Scrap Dock Shelter, Area 1	39
9	Waste Nitric and Hydrofluoric Acid Solution Storage, AST Tanks H1, H2, H3, H4, H5, and H6	52
10	Current Waste Oil AST	5
11	Former Waste Oil UST	6
12	Waste Jet Aircraft and Hydraulic System Spillage, F-18 Silencer	45E
13	Waste Jet Aircraft Fuel and Hydraulic System Spillage Storage Tank, Hush House	45C/45D
14	Waste Jet Aircraft Fuel Storage Tanks, Fuel Pits #3 and #4	45
15	Waste Jet Fuel Storage Tank, Ramp Station 1 and 2	45K
16	Methyl Ethyl Ketone (MEK)/Methyl Isobutyl Ketone (MIBK) Recovery Unit	48
17	Perchloroethylene (PCE) Recovery Unit	51
18	Methyl Ethyl Ketone/Methyl Isobutyl Ketone Recovery Unit	27
19	Drum Storage Areas and Related Satellite Accumulation Areas	Numerous
20	Paints Solids Satellite Accumulation Areas	Numerous
21	Industrial Wastewater Treatment Plant Tanks, S-1, S-2, S-3, S-4, E-1, E-2, and E-3	14
22	Paint Booth Satellite Accumulation Drum	2
23_	Less-Than-90-Day Storage Area	45C/45D
24	Less-Than-90-Day Storage Area	2
25	Less-Than-90-Day Storage Area	51
26	Former Less-Than-90-Day Storage Area	40
27	Waste Nitric and Hydrofluoric Acid Scrubber Saddles Drums Storage	52
28	Leaking Transformer	6
29	Waste Ferracoat, Methyl Ethyl Ketone, and Trichloroethylene Drum Storage	29A
30	Chemical Etching Spill Containment Area	27
31	Maintenance Shop Waste Oil Tank	22
• 32 .	Polychlorinated Biphenyls (PCB) Storage Area	39

Notes:

AST: Above ground storage tank UST: Underground storage tank

Table 1-3 Groundwater Screening Criteria Boeing Tract 1, St. Louis, Missouri

coc	MCL	Health Advisory	Sec. Std.	GW Target Level
	(ug/L)	(ug/L)	(ug/L)	(ug/L)
1,1,1,2-Tetrachlorethane		70		
1,1,1-Trichloroethane	200			
1,1,2,2-Tetrachloroethane		0.3		
1,1,2-Trichloro-1,2,2-trifluoroethane				12.3
1,1,2-Trichloroethane	5			
1,1-Dichloroethane				157
1,1-Dichloroethene	7			
1,1-Dichloropropene				4.41
1,2,3-Trichlorobenzene				8.55
,2,3-Trichloropropane		40		
1,2,3-Trimethylbenzene				2.6
1,2,4-Trichlorobenzene	. 70			
1,2,4-Trimethylbenzene				2.59
1,2-Dibromo-3-chloropropane	0.2			
1,2-Dibromoethane		0.04		
1,2-Dichlorobenzene		600		
1,2-Dichloroethane	5			
1,2-Dichloropropane	5		,	
1,3,5-Trimethylbenzene		10,000		
1,3-Dichlorobenzene		600		
1,3-Dichloropropane		30		
1,4-Dichlorobenzene	75			
1.4-Dioxane		300		
2,2-Dichloropropane				1.75
2,2-oxybis (1-Chloropropane)				
2,4,5-TP (Silvex)	50			
2,4,5-Trichlorophenol				121
2,4,6-Trichlorophenol		10		
2,4-D	70			
2,4-Dichlorophenol		20		
2,4-Dimethylphenol		····		24.3
2,4-Dinitrophenol		<u> </u>		2.43
2,4-Dinitrotoluene		5		
2,6-Dinitrotoluene		5		
2-Butanone (MEK)	İ	4,000.		
2-Chloroethyl vinyl ether				30.4
2-Chloronaphthalene				461
2-Chlorophenol	1	40		1
2-Chlorotoluene	1	100		·
2-Hexanone		1		1.74
2-Methylnaphthalene				115
2-Methylphenol (o-Cresol)				60.7
2-Nitroaniline				0.0347
2-Nitrophenol				1.53
2-Nitropropane				0.0151
3,3'-Dichlorobenzidine				1.49
3-Nitroaniline				0.748
4,4'-DDD			**************************************	2.8
4,4'-DDE				1.98

Table 1-3 Groundwater Screening Criteria Boeing Tract 1, St. Louis, Missouri

A-Chloroshenol 4-Chloroshenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorophenyl phenyl ether 4-Chlorotoluene 4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 4-Methylphenol (p-Cresol) 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein	(ug/L)	100 100 2,000	(ug/L)	(ug/L) 1.98 31.3 1.28E-05 9.04 4.86 1.28E-05 32.7 6.07 31.3
1.4'-DDT 1.6-Dinitro-2-methylphenol 1.Bromophenyl phenyl ether 1Chloro-3-methylphenol 1Chloroaniline 1Chlorophenyl phenyl ether 1Chlorotoluene 1Isopropyltoluene 1Isopropyltol		60 2,000		31.3 1.28E-05 9.04 4.86 1.28E-05 32.7 6.07 31.3
-Bromophenyl phenyl ether -Chloro-3-methylphenol -Chloroaniline -Chlorophenyl phenyl ether -Chlorotoluene -I-Isopropyltoluene -I-Methyl-2-pentanone (MIBK) -I-Methylphenol (p-Cresol) -I-Nitroaniline -I-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		60 2,000		1.28E-05 9.04 4.86 1.28E-05 32.7 6.07 31.3
-Chloro-3-methylphenol -Chloroaniline -Chlorophenyl phenyl ether -Chlorotoluene -I-Isopropyltoluene -I-Methyl-2-pentanone (MIBK) -I-Methylphenol (p-Cresol) -I-Nitroaniline -I-Nitrophenol -Chlorophenol -Chlorophenyl phenyl ether		60 2,000		9.04 4.86 1.28E-05 32.7 6.07 31.3
A-Chloroaniline I-Chlorophenyl phenyl ether I-Chlorotoluene I-Isopropyltoluene I-Methyl-2-pentanone (MIBK) I-Methylphenol (p-Cresol) I-Nitroaniline I-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		60 2,000		4.86 1.28E-05 32.7 6.07 31.3
I-Chlorophenyl phenyl ether I-Chlorotoluene I-Isopropyltoluene I-Methyl-2-pentanone (MIBK) I-Methylphenol (p-Cresol) I-Nitroaniline I-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetone Acetonitrile Acrolein		60 2,000		32.7 6.07 31.3
I-Chlorotoluene I-Isopropyltoluene I-Methyl-2-pentanone (MIBK) I-Methylphenol (p-Cresol) I-Nitroaniline I-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		60 2,000		32.7 6.07 31.3
4-Isopropyltoluene 4-Methyl-2-pentanone (MIBK) 4-Methylphenol (p-Cresol) 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		60 2,000		6.07 31.3 346
4-Methyl-2-pentanone (MIBK) 4-Methylphenol (p-Cresol) 4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		2,000		6.07 31.3 346
i-Methylphenol (p-Cresol) i-Nitroaniline i-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		2,000		6.07 31.3 346
4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		2,000		31.3
4-Nitroaniline 4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		2,000		346
4-Nitrophenol Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein		2,000		
Acenaphthene Acenaphthylene Acetone Acetonitrile Acrolein				
Acenaphthylene Acetone Acetonitrile Acrolein				
Acetone Acetonitrile Acrolein				
Acetonitrile Acrolein				141
Acrolein	······································			20.6
	··			0.00877
Acrylonitrile		6		
Alachlor	2		, 	
Aldrin		0.2	******	
Allyl chloride		- 0.5		. 0.445
Alpha-BHC				0.107
				1.92
Aluminum		- 	50-200	1.92
Aniline		 	30-200	0.441
Anthracene		10,000		0.441
Antimony	6	10,000		
Aroclor 1016	0.5	- -	·· ····	
Aroclor 1221	0.5			
	0.5			
Aroclor 1232 Aroclor 1242		 		
Aroctor 1242 Aroctor 1248	0.5			
Aroclor 1248 Aroclor 1254				
	0.5			
Aroclor 1260	0.5	 		
Arsenic	10			
Atrazine	3	<u> </u>		
Azobenzene (1,2-Diphenylhydrazine)			<u>.</u>	6.11
Barium	2,000	·		
Benzene	5		·	
Benzidine				0.00292
Benzo(a)anthracene		<u> </u>		0.921
Benzo(a)pyrene	0.2		· · · · · · · · · · · · · · · · · · ·	
Benzo(b)fluoranthene				0.921
Benzo(g,h,i)perylene				469
Benzo(k)fluoranthene		- 		9.21
Benzoic acid	;			2.2
Benzyl alcohol				364
Beryllium Beta-BHC	4		•	

Table 1-3 Groundwater Screening Criteria Boeing Tract 1, St. Louis, Missouri

coc	MCL (ug/L)	Health Advisory (ug/L)	Sec. Std. (ug/L)	GW Target Level (ug/L)
Bis(2-chloroethoxy)methane	(ug/2)	(0,0)	(002)	6.57E-04
Bis(2-chloroethyl)ether				0.124
	6			
Bis(2-ethylhexyl)phthalate	10			
Bromate		4 000		
Bromobenzene		4,000 90		
Bromochloromethane			····	
Bromodichloromethane		60		-
Bromoform		400		
Bromomethane	. 	10		
Butyl benzyl phthalate		7,000		
Cadmium	5	<u> </u>		
Carbazole				7.08
Carbofuran	40			
Carbon disulfide	·	<u> </u>		201
Carbon tetrachloride	5			_
Chlordane	2			
Chloride			250,000	
Chlorite	1,000			
Chlorobenzene	100			
Chlorodibromomethane		40		
Chloroethane				48.8
Chloroform		400		
Chloromethane		30		
Chromium	100			
Chrysene				92.1
cis-1,3-Dichloropropene				0.482
cis-1,2-Dichloroethene	70			
Copper	1,300	•		
Cyanide, total	200			`
Dalapon	200		·	
Delta-BHC				0.374
Di(2-ethylhexyl) adipate	400		· · · · · · · · · · · · · · · · · · ·	5,5.1
Di(2-ethylhexyl) phthalate	6			
Dibenzo(a,h)anthracene				0.0921
Dibenzofuran				5.99
Dibromochloromethane		40		3.77
Dibromomethane				156
Dichlorodifluoromethane		1,000		130
Dichloromethane	5	1,000	· · · · · · · · · · · · · · · · · · ·	
Dieldrin		0.2	·	
Diethyl phthalate		30,000		
Di-isopropyl ether		30,000		0.430
Dimethyl phthalate			. "-	0.439
Di-n-butyl phthalate				1,560
Di-n-octyl phthalate	7			313
Dinoseb				
Dioxin (2,3,7,8-TCDD)	0.00003			
Diquat Endothall	20 100			

Table 1-3 Groundwater Screening Criteria Boeing Tract 1, St. Louis, Missouri

coc	MCL	Health Advisory	Sec. Std.	GW Target Level	
	(ug/L)	(ug/L)	(ug/L)	(ug/L)	
ndosulfan I				31.3	
indosulfan II				93.9	
indosulfan sulfate				93.9	
indrin	2				
Endrin aldehyde				4.69	
Endrin ketone				4.69	
Sthane					
Sthene				•	
Ethyl methacylate				1,410	
Ethylbenzene	700				
Ethylene dibromide	0.05				
Ethylene glycol		14,000	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Fluoranthene			***	626	
Fluorene		1,000			
Fluoride	4,000	1,550			
Gamma-BHC (Lindane)	0.2				
Gamma-Chlordane				1.92	
Glyphosate	700			<u> </u>	
Haloacetic acids (HAA5)	60		*		
Heptachlor	0.4		******		
Heptachlor epoxide	0.2				
Hexachlorobenzene					
Hexachlorobutadiene	1	. 1			
Hexachlorocyclopentadiene	50		·		
Hexachloroethane		1		· 	
				0.001	
Indeno(1,2,3-cd)pyrene				0.921	
lodomethane				3.19	
Iron			300		
isopnorone		100	···		
Isopropylbenzene (Cumene)		4,000			
Lead	15				
m,p-Xylene				185	
Manganese, total			50		
Mercury	2				
Methacrylonitrile				1.56	
Methoxychlor	40				
Methyl ethyl ketone (MEK)	·	4,000			
Methyl methacrylate				296	
Methyl tert butyl ether				146	
Methylene chloride				49.1	
Naphthalene		100			
n-Butylbenzene				48.6	
Nickel	×	100			
Nitrate as Nitrogen (Cadmium reduction)	10,000				
Nitrate-nitrite	10,000				
Nitrite (measured as nitrogen)	1,000				
Nitrobenzene				0.672	
n-Nitrosodimethylamine				0.00287	
n-Nitrosodi-n-propylamine				0.0202	

Table 1-3 Groundwater Screening Criteria Boeing Tract 1, St. Louis, Missouri

COC	MCL	Health Advisory	Sec. Std.	GW Target Level
COC	(ug/L)	(ug/L)	(ug/L)	(ug/L)
n-Nitrosodiphenylamine	·			2.87E-03
n-Propylbenzene				5.27
o-Dichlorobenzene	600			
Oxamyl (Vydate)	200			
o-Xylene				185
PCB	0.5		•	
p-Dichlorobenzene	75			
Pentachlorophenol	1			·
Phenanthrene				173
Phenol		4,000		
Picloram	500			
p-lsopropyltoluene				107
Propionitrile				1.51
Pyrene				469
Pyridine				1.21
sec-Butylbenzene				48.6
Selenium	50			
Silver			100	
Simazine	4			
Styrene	100			
Sulfate			250,000	
t-Butylbenzene				48.6
Tetrachloroethene	5			
Thallium	2			
Toluene	1,000			
Total Trihalomethanes (TTHMs)	80			
Toxaphene	3			
trans-1,2-Dichloroethene	100			•
trans-1,3-Dichloropropene				4.41
trans-1,4-Dichloro-2-butene				0.0197
Trichloroethene	5			
Trichlorofluoromethane		2,000		
Vinyl acetate				86.4
Vinyl chloride	2			
Xylenes, Total	10,000			<u> </u>
Zinc		2,000		

Table 1-4
Representative Background Concentrations for Metals in Soils
Boeing Tract 1, St. Louis, Missouri

Metals	Background Concentration	Reference
<u> </u>	(ug//kg)	
Aluminum	41,000,000*	MO
Antimony	520	US
Arsenic	9,200	StL
Barium	725,000	StL
Beryllium	800 .	МО
Cadmium	<1,000	МО
Calcium	3,300,000	МО
Chromium	58,000	StL
Cobalt	10,000 .	МО
Copper	13,000	МО
Iron	21,000,000*	МО
Lead	21,800	StL
Magnesium	2,600,000	MO
Manganese	740,000	MO
Mercury	39	StL
Nickel	14,000	MO
Potassium	14,000,000*	MO
Selenium	260	StL
Silver	<700	МО
Sodium	5,300,000*	МО
Thallium	<100	SLAPS
Vanadium	69,000	МО
Zinc	49,000	MO

Notes:

*: Arithmetic Mean

References:

StL - Mactec Engineering and Consulting, Inc., October 22, 2003, Draft RCRA Facility Investigation Report for McDonnell Douglas, Hazelwood, Missouri, Table 6-1 (St. Louis County Geometric Mean)

MO - Tidball, Ronald R., 1984, Geochemical Survey of Missouri, Geological Survey Professional Paper 954-H.I (Missouri Statewide Geometric Mean)

US - Shacklette, Hansford T. and Boerngen, Josephine G., 1984, U.S. Geological Survey Professional Paper 1270 (Eastern United States Geometric Mean)

SLAPS - Environmental Assessment Division, Argonne National Laboratory, November 1993, Baseline Risk Assessment for Exposure to Contaminants at the St. Louis Site, St. Louis, Missouri, Table 2.8

Table 1-5
Physical/Chemical Properties for Potential Constituents of Concern
Boeing Tract 1, St. Louis, Missouri

Chemicals of Concern	Molecular Weight	Water Solubility	Henry's Law Constant	Org. Carbon Adsorption Coeff.	Soil Water Partition Coeff.		r Diffusion ficient
	(M)	(S)	(H)	(K,,)	(K_d)	in air (D*)	in water (Dw)
		(mg/L)	(L-water/L-air)	(cm ³ /g)	(cm ³ /g)	(cm²/s)	(cm ² /s)
1,1,2-Trichloro-1,2,2-trifluoroethene	1.87E+02	1.70E+02	2.16E+01	3.72E+02	NA	2.88E-02	8.07E-06
1,2,3-Trimethylbenzene	1.20E+02	7.52E+01	1.33E-01	5.89E+02	NA	6.77E-02	7.41E-06
1,2,4-Trimethylbenzene	1.20E+02	5.70E+01	2.53E-01	3.72E+03	NA	7.50E-02	7.10E-06
1,3,5-Trimethylbenzene	1.20E+02	4.82E+01	3.60E-01	8.19E+02	NA	7.50E-02	7.10E-06
1,2-Dichlorobenzene	1.47E+02	1.56E+02	7.79E-02	6.17E+02	NA	6.90E-02	7.90E-06
2-Hexanone	1.00E+02	1.79E+04	3.38E-03	1.78E+01	NA	6.96E-02	7.75E-06
Acenaphthene	1.54E+02	4.24E+00	6.36E-03	7.08E+03	NA	4.21E-02	7.69E-06
Acenaphthylene	1.52E+02	3.93E+00	4.74E-03	6.92E+03	NA	4.39E-02	7.07E-06
Acetone	5.81E+01	1.00E+06	1.59E-03	5.75E-01	NA	1.24E-01	1.14E-05
Anthracene	1.78E+02	4.34E-02	2.95E-02	2.95E+04	NA	3.24E-02	7.74E-06
Aluminum	2.70E+01	NA	NA	NA	NA	NA	NA '
Antimony	1.22E+02	NA	NA	NA	4.47E+01	NA	NA
Aroclor 1254	NA	NA	NA	NA	NA	NA	ΝA
Arsenic	NA	NA	NA	NA	2.51E+01	NA	NA
Barium	NA	NA	NA	NA	1.10E+01	NA.	NA
Benzene	7.81E+01	1.75E+03	2.28E-01	5.89E+01	NA	8.80E-02	9.80E-06
Benzo[g,h,i] perylene	2.76E+02	2.60E-04	5.82E-06	1.58E+06	NA	4.90E-02	5.65E-05
Benzo[a]anthracene	2.28E+02	9.40E-03	1.37E-04	3.98E+05	NA	5.10E-02	9.00E-06
Benzo[a]pyrene	2.52E+02	1.62E-03	4.63E-05	1.02E+06	NA	4.30E-02	9.00E-06
Benzo[b]fluoranthene	2.52E+02	1.50E-03	4.55E-03	1.23E+06	NA	2.26E-02	5.56E-06
Benzo[k]fluoranthene	2.52E+02	8.00E-04	3.40E-05	1.23E+06	NA	2.26E-02	5.56E-06
Beryllium.	9.01E+00	NA	NA	NA	2.29E+01	NA	NA
Bromomethane	9.50E+01	1.50E+04	2.60E-01	9.00E+00	NA	7.30E-02	1.20E-05
Cadmium	1.12E+02	NA	NA	NA	1.51E+01	NA	NA
Carbazole	167	7.48E+00	6.27E-07	3.39E+03	NA	3.90E-02	7.03E-06
Carbon disulfide	76	1.19E+03	1.24E+00	4.57E+01		1.04E-01	1.00E-05
Chloroethane	6.50E+01	5.70E+03	4.50E-01	1.50E+01	NA	1.00E-01	1.20E-05
Chloroform	1.19E+02	7.92E+03	1.52E-01	3.98E+01	NA	1.04E-01	1.00E-05
Chromium (Total)	5.20E+01	NA	NA	NA	1.20E+03	NA	NA
Chromium, hexavalent	5.20E+01	NA	NA	NA	1.41E+01	NA	NA
Chrysene	2.28E+02	1.60E-03	3.88E-03	3.98E+05	NA	2.48E-02	6.21E-06
Cobalt	5.89E+01	NA	NA	NA	4.47E+01	NA	NA
Copper	6.35E+01	NA	NA	NA	3.98E+01	NA	NA
Cyanide, total	2.70E+01	1.00E+06	5.30E-03	1.70E+01	NA	1.80E-01	1.80E-05
Dibenzo[a,h]anthracene	2.78E+02	2.49E-03	6.03E-07	3.80E+06	NA	2.02E-02	5.18E-06
Dichlorodifluoromethane	1.20E+02	2.80E+02	4.10E+00	5.80E+01	NA	8.00E-02	1.10E-05
Dichloroethane, 1,1-	9.90E+01	5.10E+03	2.30E-01	3.20E+01	NA	7.40E-02	1.10E-05
Dichloroethylene, 1,1-	9.69E+01	2.25E+03	1.07E+00	5.89E+01	NA	9.00E-02	1.04E-05
Dichloroethylene, cis-1,2-	9.69E+01	3.50E+03	1.67E-01	3.55E+01	NA	7.36E-02	1.13E-05
Dichloroethylene, trans -1,2-	9.69E+01	6.30E+03	3.85E-01	5.25E+01	NA	7.07E-02	1.19E-05
Ethylbenzene	1.06E+02	1.69E+02	3.23E-01	3.63E+02	NA	7.50E-02	7.80E-06
Fluoranthene	2.02E+02	2.06E-01	6.60E-04	1.07E+05	NA	3.02E-02	6.35E-06
Fluorene	1.66E+02	1.98E+00	2.61E-03	1.38E+04	NA NA	3.63E-02	7.88E-06
Indeno[1,2,3-cd]pyrene	2.76E+02	2.20E-05	6.56E-05	3.47E+06	NA	1.90E-02	5.66E-06
Isopropylbenzene m/p-Xylene	1.20E+02	6.13E+01	3.57E+00	4.54E+02	NA	7.50E-02	7.10E-06
	1.06E+02	1.60E+02	3.05E-01	1.95E+02	NA NA	7.00E-02	7.80E-06
Manganese Mercury	5.49E+01	NA NA	NA A CETE OF	NA NA	5.01E+01	NA NA	NA
Methyl ethyl ketone (2-Butanone)	4.01E+02	NA 2.23E+05	4.67E-01	NA .	5.25E+01	3.07E-02	6.30E-06
Methyl isobutyl ketone	7.21E+01 1.00E+02	2.23E+05	2.33E-03	4.50E+00	NA	8.95E-02	9.80E-06
firramily rangerly warmite	1.00ETU2	1.90E+04	5.66E-03	1.34E+02	NA	7.50E-02	7.80E-06

Table 1-5
Physical/Chemical Properties for Potential Constituents of Concern
Boeing Tract 1, St. Louis, Missouri

Chemicals of Concern	Molecular Weight	Water Solubility	Henry's Law Constant	Org. Carbon Adsorption Coeff.	Soil Water Partition Coeff.		r Diffusion ficient
	(M)	(Ş)	(H)	(K₀)	(K_d)	in air (D ^a)	in water (Dw)
	·	(mg/L)	(L-water/L-air)	(cm ³ /g)	(cm ³ /g)	(cm ² /s)	(cm²/s)
Methylene chloride	8.49E+01	1.30E+04	8.98E-02	1.17E+01	NA	1.01E-01	1.17E-05
Naphthalene	1.28E+02	3.10E+01	1.98E-02	2.00E+03	NA	5.90E-02	7.50E-06
n-Butylbenzene	1.30E+02	1.40E+01	5.40E-01	2.80E+03	NA	7.50E-02	7.80E-06
Nickel	5.87E+01	NA	NA	NA	1.88E+01	NA	NA
n-Propylbenzene	1.20E+02	5.22E+01	4.31E-01	7.41E+02	NA	7.50E-02	7.80E-06
o-Xylene	1.06E+02	1.78E+02	7.36E-04	1.29E+02	NA	8.70E-02	1.00E-05
Phenanthrene	1.78E+02	9.94E-01	5.40E-03	1.41E+04	NA	3.33E-02	7.47E-06
p-Isopropyltoluene	1.34E+02	1.72E+01	4.66E-01	2.29E+03	NA	5.72E-02	6.73E-06
Pyrene	2.02E+02	1.35E-01	4.51E-04	1.05E+05	NA	2.72E-02	7.24E-06
sec-Butylbenzene	1.30E+02	1.70E+01	7.70E-01	2.20E+03	NA	7.50E-02	7.80E-06
Selenium	7.90E+01	NA	NA	NA	2.20E+00	NA	NA
Silver	1.08E+02	NA	NA	NA	1.00E-01	NA	NA
t-Butylbenzene	1.30E+02	3.00E+01	5.20E-01	2.20E+03	NA	7.50E-02	7.80E-06
Tetrachloroethylene	1.66E+02	2.00E+02	7.54E-01	1.55E+02	NA	7.20E-02	8.20E-06
Thallium	2.40E+02	2.90E+03	NA .	NA	4.37E+01	NA	NA
Toluene	9.21E+01	5.26E+02	2.72E-01	1.82E+02	NA	8.70E-02	8.60E-06
TPH-GRO							-
Aliphatics C6 - C8	1.00E+02	5.408+00	5.00E+01	3.985+03	NA	1.00E-01	1.00E-05
Aliphatics C8 - C10	1.30E+02	4.30E-01	8.00E+01	3 16E+04	NA	1.00B-01	1.00E+05
Aromatics C8 - C10	1.20E+02	6.50B+01	4.80E-01	1.58E+03	NA	1.00E-01	1.00E-05
TPH-DRO							
Aliphatics C10 - C12	1.60E+02	3.40E-02	1.20E+02	2.51E+05	NA	1.00E-01	1.00E-05
Aliphatics C12 - C16	2.00E+02	7.60E-04	5.20E+02	5.018+06	NA	1.00E-01	1.00E-05
Aliphatics C16 - C21	2.70E+02	2.50E-06	4.90E+03	6.31E+08	NA	1.00E-01	1.00E-05
Aromatics C10 - C12	1.30E+02	2.50E+01	1:40E-01	2.51E+03	NA	1.00E-01	1.00E+05
Aromatics C12 - C16	1.506+02	5.80E+00	5.30E-02	5.01E+03	NA	1.00E-01	1.00E-05
Aromatics C16 - C21	1.90E+02	6.50E-01	130E-02	1.58E+04	NA	1.00B-01	1.00E-05
TPH-ORO							
Aliphatics C21 - C35	2.70E+02	2.50E+06	4.90E+03	631E+08	NA	1.00E-01	1.00E-05
Aromatics C21 - C35	2.40E+02	6.60E-03	6.70E-04	1.26E+05	NA	1.00E-01	1.00E-05
Trichloroethylene	1.31E+02	1.10E+03	4.22E-01	1.66E+02	NA NA	7.90E-02	9.10E-06
Vanadium .	5.09E+01	NA	NA	NA	1.00E+03	0.00E+00	0.00E+00
Vinyl chloride	6.25E+01	2.76E+03	1.11E+00	1.86E+01	NA	1.06E-01	1.23E-06
Xylene	1.06E+02	1.61E+02	3.01E-01	4.07E+02	NA	7.00E-02	7.80E-06
Zinc	6.54E+01	NA	NA	NA	1.58E+01	NA	NA
Note:			`- ,				

NA: Not available

References:

Values in bold: Missouri Department of Natural Resources, Sep. 1998. Cleanup Levels for Missouri (CALM), Table A4 Effective Sep. 1, 2001. Values in regular: EPA Region 9, April 2002. Preliminary Remediation Goals.

Values in italic: Texas Commission on Environmental Quality, Texas Risk Reduction Program, 2001.

TPH Criteria Working Group, June 1999. TPHCWG Series Volume 5: Human Health Risk-Based Evaluation of Petroleum Contaminated Sites: Implementation of the Working Group Approach.

Table 1-6
Toxicological Properties for Poential Constituents of Concern
Boeing Tract 1, St. Louis, Missouri

:	Slope	Factor	Referen	ice Dose	Oral RA	Dermal RA
Chemicals of Concern	Oral (SF _o)	Inh. (SF _i)	Oral (R _t D _o)	Inh. (R _t D _i)	Factor	Factor
	(kg-day/mg)	(kg-day/mg)	(mg/kg-day)	(mg/kg-day)	(RAF _o)	(RAF _d)
1,1,2-Trichloro-1,2,2-trifluoroethene	NA	NA	3.00E+01	8.60E+00	1	0.3
1,2,3-Trimethylbenzene	NA	NA	5.00E-02	1.71E-03	NA	NA
1,2,4-Trimethylbenzene	NA	NA	5.00E-02	1.70E-03	1	0.3
1,3,5-Trimethylbenzene	NA	NA	5.00E-02	1.71E-03	1	0.3
1,2-Dichlorobenzene	NA	NA	9.00E-02	5.71E-02	0.5	0.3
2-Hexanone	NA	NA	6.00E-02	1.14E-03	NA	NA
Acenaphthene	NA	NA	6.00E-02	6.00E-02	1	. 0.3
Acenaphthylene	NA	NA	6.00E-02	NA	NA	NA
Acetone	NA	NA	1.00E-01	1.00E-01	0.95	0.3
Aluminum	NA	NA	1.00E+00	1.42E-03	1	1
Anthracene	NA	NA	3.00E-01	3.00E-01	1	0.3
Antimony	NA	NA	4.00E-04	5.70E-05	1	0.01
Aroclor 1254	2.00E+00	2.00E+00	2.00E-05	2.00E-05	NA NA	0.14
Arsenic	1.50E+00	1.50E+01	3.00E-04	NA NA	0.95	0.001
Barium	NA	NA	7.00E-02	1.40E-04	1	0.01
Benzene	2.90E-02	2.91E-02	3.00E-03	1.71E-03	1	0.3
Benzo[g,h,i] perylene	NA	NA	3.00E-02	NA	NA	NA
Benzo[a]anthracene	7.30E-01	7.30E-01	NA	NA	1	0.13
Benzo[a]pyrene	7.30E+00	6.09E+00	NA	NA	0.85	0.13
Benzo[b]fluoranthene	7.30E-01	7.30E-01	NA	NA	1	0.13
Benzo[k]fluoranthene	7.30E-02	7.30E-02	NA	NA	1	0.13
Beryllium	4.30E+00	8.40E+00	2.00E-03	5.71E-03	0.01	0.01
Bromomethane	NA	NA	1.40E-03	1.40E-03	NA	NA
Cadmium	NA	6.30E+00	5.00E-04	NA	1	0.01
Carbazole	2.00E-02	2.00E-02	- NA	NA	7.00E-01	1.00E-01
Carbon disulfide	NA	NA	1.00E-01	2.00E-01	6.30E-01	NA .
Chloroethane	2.90E-03	2.90E-03	4.00E-01	2.90E+00	NA	NA
Chloroform	6.10E-03	8.05E-02	1.00E-02	8.60E-05	1	0.3
Chromium (Total)	NA	4.20E+01	NA	NA	NA	NA
Chromium, hexavalent	NA	2.90E+02	3.00E-03	NA	0.025	0.01
Chrysene	7.30E-03	7.30E-03	NA	NA	1	0.13
Cobalt	NA	9.80E+00	2.00E-02	5.70E-06	NA	NA
Copper	NA	NA	4.00E-02	2.86E-04	1	0.01
Cyanide, total	NA	NA	NA	NA	NA	NA
Dibenzo[a,h]anthracene	7.30E+00	7.30E+00	NA	NA	1	0.13
Dichlorodifluoromethane	NÁ	NA	2.00E-01	5.70E-02	NA	NA NA
Dichloroethane, 1,1-	NA	NA	1.00E-01	1.40E-01	NA	NA
Dichloroethylene, 1,1-	6.00E-01	1.75E-01	9.00E-03	5.70E-02	1	0.3
Dichloroethylene, cis-1,2-	NA .	NA	1.00E-02	1.00E-02	1	0.03
Dichloroethylene, trans -1,2-	NA	NA	2.00E-02	2.00E-02	1	0.03
Ethylbenzene	NA	NA	1.00E-01	2.86E-01	0.92	0.3
Fluoranthene	NA	NA	4.00E-02	4.00E-02	0.5	0.1
Fluorene	NA	NA	4.00E-02	4.00E-02	1	0.3
Indeno[1,2,3-cd]pyrene	7.30E-01	7.30E-01	NA	NA	1	0.13
Isopropylbenzene	NA	NA	1.00E-01	1.14E-01	1	0.3
m/p-Xylene	NA	NA	2.00E+00	1.22E-01	NA	NA NA
Manganese	NA	· NA	1.40E-01	1.40E-05	1	0.3
Mercury	NA	NA	3.00E-04	8.60E-05	0.15	0.001
Methyl ethyl ketone (2-Butanone)	NA	NA	6.00E-01	2.86E-01	1	0.3

Table 1-6 Toxicological Properties for Poential Constituents of Concern Boeing Tract 1, St. Louis, Missouri

-	Slope	Factor	Reference Dose		Oral RA	Dermal RA
Chemicals of Concern	Oral (SF _o)	Inh. (SF ₁)	Oral (R _t D _o)	Inh. (R _f D _i)	Factor	Factor
•	(kg-day/mg)	(kg-day/mg)	(mg/kg-day)	(mg/kg-day)	(RAF _a)	(RAF _d)
Methyl isobutyl ketone	NA	NA·	8.00E-02	2.29E-02	1	0.30
Methyl tert butyl ether (MTBE)	3.30E-03	3.50E-04	8.60E-01	8.60E-01	1	0.3
Methylene chloride	7.50E-03	1.65E-03	6.00E-02	8.57E-01	1	0.3
Naphthalene	NA	NA	2.00E-02	8.60E-04	0.84	0.3
n-Butylbenzene	NA	NA	4.00E-02	4.00E-02	NA	NA
Nickel	NA	8.40E-01	2.00E-02	5.71E-05	0.1	0.0005
n-Propylbenzene	NA	NA	1.00E-03	4.00E-02	1	0.3
o-Xylene	NA	NA	2.00E+00	1.22E-01	NA	NA
Phenanthrene	NA	NA	3.00E-02	NA	NA	NA
p-Isopropyltoluene	NA	NA	1.00E-01	8.57E-02	NA	NA
Pyrene	NA	NA	3.00E-02	3.00E-02	1	0.1
sec-Butylbenzene	NA	NA	4.00E-02	4.00E-02	NA	NA
Selenium	NA	NA	5.00E-03	5.70E-05	1	0.1
Silver	NA	NA	5.00E-03	2.86E-06	1	0.3
t-Butylbenzene	NA	NA	4.00E-02	4.00E-02	NA	NA
Tetrachloroethylene	5.20E-02	2.03E-03	1.00E-02	1.14E-01	1	0.03
Thallium	NA	NA	8.00E-05	NA	1	0.01
Toluene	NA	NA	2.00E-01	1.14E-01	1	0.03
TPH-GRO						
Aliphatics C6 - C8	NA	NA	5 00E+00	5.26E+00	1	NA
Aliphatics C8 - C10	NA	NA	1.00E-01	2.86E-01	.1	NA
Aromatics C8 - C10	NA	NA	4.00E-02	5.71E-02	1	NA
TPH-DRO						
Aliphatics C10 - C12	NA	NA	1.00E-01	2.86E-01	1	0.1
Aliphatics C12 - C16	NA	NA	1.005-01	2.86E-01	1	0.1
Aliphatics C16 - C21	NA .	NA	2.00E+00	2.86E-01	1	0.1
Aromatics C10 - C12	NA	NA	4.00E-02	5.70E-02	1	0.1
Aromatics C12 - C16	NA	NA	4.00E-02	5 70E-02	ī	0.1
Aromatics C16 - C21	NA	NA	3.00E-02	5.70E-02	1	0.13
TPH-ORO						
Aliphatics C21 - C35	NA	NA	2.00E+00	2 86E-01	1	0.1
Aromatics C21 - C35	NA	NA	3.00E-02	5.70E-02	<u> </u>	0.13
Trichloroethane, 1,1,1-	NA	NA	2.00E-02	2.86E-01	1	0.0005
Trichloroethylene	1.10E-02	5.95E-03	6.00E-03	1.00E-02	1	0.0005
Vinyl chloride	1.90E+00	2.95E-01	3.00E-03	2.90E-02	1	0.0003
Xylene	NA	NA	2.00E+00	· 2.00E-01	0.92	0.3
Vanadium	NA	NA	7.00E-03	NA NA	1	0.01
Zinc	NA	NA	3.00E-01	NA NA	0.25	0.01

NA: Not available

For chemicals which oral and dermal RA factors were not available, 1.0 was used for risk calculation.

References:

Values in bold: Missouri Department of Natural Resources, Sep. 1998. Cleanup Levels for Missouri (CALM), Table A3 Effective Sep. 1, 2001.

Values in regular: EPA Region 9, April 2002. Preliminary Remediation Goals.

Values in italic: Texas Commission on Environmental Quality, Texas Risk Reduction Program, 2001.

TPH Criteria Working Group, June 1999. TPHCWG Series Volume 5: Human Health Risk-Based Evaluation of Petroleum Contaminated Sites: Implementation of the Working Group Approach.

Table 1-7
Exposure Factors Used to Estimate Risk
Boeing Tract 1, St. Louis, Missouri

Parameter	Symbol	Unit	Values Used
Averaging Time for Carcinogen	AT _c	уеаг	70
Averaging Time for Non-Carcinogen	AT _{nc}	уеаг	=ED
Body Weight:			•
Non-Residential Worker	BW	kg	70
Construction Worker	BW	kg	70
Exposure Duration:			
Non-Residential Worker	ED	year	25
Construction Worker	ED	year	1
Exposure Time for Dermal Contact with Groundwater			
Non-Residential Worker	ETd	hr/day	11
Construction Worker	ETd	hr/day	4
Exposure Frequency:			,
Non-Residential Worker	EF	day/year	250
Construction Worker	EF	day/year	30
Soil Ingestion Rate:	,	,	·i
Non-Residential Worker	IR _{soil}	mg/day	100
Construction Worker	IR _{soil}	mg/day	330
Groundwater Ingestion Rate:			
Non-Residential Worker	IR _w	L/day	2
Indoor Inhalation Rate (hourly):	•		
Non-Residential Worker	IR _{ai}	m³/hr	0.833
Exposure Time for Indoor Inhalation:			•
Non-Residential Worker	ET _{in}	hr/day	18
Indoor Inhalation Rate (daily):		·	·
Non-Residential Worker	IRa	m³/day	15.0
Outdoor Inhalation Rate (hourly):	. 		
Non-Residential Worker	IR _{ao}	m³/hr	0.833
Construction Worker	IRao	m³/hr	0.833
Exposure Time for Outdoor Inhalation:		1111/111	0.655
Non-Residential Worker	ET _{out}	hr/day	T 4
Construction Worker		 	6
	ETout	hr/day	8
Outdoor Inhalation Rate (daily):	т	1 -	
Non-Residential Worker	IRa	m ³ /day	5.0
Construction Worker	IRa	m ³ /day	6.7
Skin Surface Area for Dermal Contact with Soil:			
Non-Residential Worker	SA	cm ² /day	3300
Construction Worker	SA	cm ² /day	3300
Skin Surface Area for Dermal Contact with Groundw	ater:	<u> </u>	
Non-Residential Worker	SA	cm ² /day	4714
Construction Worker	SA		4714
Soil to Skin Adherence Factor:	I SA	cm ² /day	4/14
	1 34	. 1	1 65
Non-Residential Worker	M	mg/cm ³	0.2
Construction Worker	M	mg/cm ²	0.3
Target Risk Level	TR		1.00E-05
Target Hazard Quotient	THQ		1

Table 1-8 Fate and Transport Parameters Used to Estimate Risk Boeing Tract 1, St. Louis, Missouri

Parameter	Symbol	Unit	Values Used	Comment
SOIL PARAMETERS:	· · · · · · · · · · · · · · · · · · ·			
Soil Source Dimension Parallel to Wind Direction	W _a	cm		Area Specific
Depth to Subsurface Soil Sources	d _{ts}	cm		Area Specific
Depth of Surficial Soil Zone	d,	cm	91.44	MDNR Default
VADOSE ZONE:				
Total Soil Porosity	θ_{T}	cm³/cm³-soil	0.48	Facility Specific
Volumetric Water Content	θ _{ws}	cm ³ /cm ³	0.316	Facility Specific
Volumetric Air Content	θ _{as}	cm ³ /cm ³	0.114	Calculated
Thickness	h,	.cm		Calculated
Dry Soil Bulk Density	ρ,	g/cm ³	1.52	Facility Specific
Fractional Organic Carbon Content	focv	g-C/g-soil	0.0477	Facility Specific
SOIL IN CRACKS:	-0cv	8 0 8 30.1	0.0477	Tacinty opecine
Total Soil Porosity (set equal to q _T)	θ _{Terack}	cm³/cm³-soil	0.480	Same as Vadose Zone
Volumetric Water Content	θ _{wcrack}	cm³/cm³	0.316	Same as Vadose Zone
Volumetric Air Content	θ _{acrack}	cm³/cm³	0.114	Same as Vadose Zone
CAPILLARY FRINGE:	- acrack	Cin /Cin	0.114	Danie us Vadose zone
Total Soil Porosity (set equal to q _T)	θ _{Tcáp}	cm³/cm³-soil	0.48	Same as Vadose Zone
Volumetric Water Content	θ _{wcap}	cm ³ /cm ³		· Calculated
Volumetric Air Content	θ _{acap}	cm³/cm³		Calculated
Thickness	h _c	1		
GROUNDWATER PARAMETERS:	: 14c	cm		Area Specific
Depth to Groundwater	Lgw	cm		Area Specific
AMBIENT AIR PARAMETERS:	, ->gw	i ciii		Alea Specific .
Breathing Zone Height	δ_a	cm	200	MDNR Default
Inverse of Mean Concentration at Center of Square Source	Q/C	$(g/m^2-s)/(kg/m^3)$	81.64	MDNR Default
Fraction of Vegetative Cover	V	m ² /m ²	0.5	MDNR Default
Mean Annual Wind Speed	U _m	m/s	9.85	
Equivalent Threshold Value of Windspeed	U,	m/s	11.32	Facility Specific MDNR Default
Windspeed Distribution Function from Cowherd et. al, 1985	F(x)	unitless	0.194	
ENCLOSED SPACE PARAMETERS:	1 1(A)	unitiess.	0.194	MDNR Default
Enclosed Space Air Exchange Rate:	-			
Non-Residential Structure	ER	1/sec	0.00023	MDNR Default
Enclosed Space Volume/Infiltration Area Ratio:		1	<u> </u>	
Non-Residential Structure	L _B	cm		Area Specific
Enclosed Space Foundation or Wall Thickness:				
Non-Residential Structure	L _{crack}	cm	25	Facility Specific
Area Fraction of Cracks in Foundation/Walls:				
Non-Residential Structure	h	cm ² /cm ²	0.001	MDNR Default
AVERAGING TIME FOR VAPOR FLUX:				
Non-Residential Worker	τ	sec	7.88E+08	MDNR Default
Construction Worker Notes:	τ	sec	3.15E+07	MDNR Default

Facility specific: Applicable to all areas and subareas.

Table 1-9
Soil Source Dimension Parallel to Wind Direction and Depth to Subsurface
Soil
Boeing Tract 1, St. Louis, Missouri

Area	Soil Source Dimension Parallel to Wind Direction (ft)	Depth to Subsurface Soil (ft)
Area 1	1500	NA
Sub-area 2A	525	4.3
Sub-area 2B	480	5.6
Sub-area 2C	600	5.1*
Sub-area 3A	495	4.0*
Sub-area 3B	210	4.0*
Sub-area 3C	885	4.0*
Sub-area 3D	1305	6.4
Sub-area 3E	240	7.5
Sub-area 3F	165	NA NA
Sub-area 3G	210	6.7*
Sub-area 3H	240	9.5*
Area 4	495	3.0
Area 5	285	10.0
Sub-area 6A	1380	8.3*
Sub-area 6B	975	4.0
Sub-area 6C	1635	6.0
Sub-area 6D	900	7.0
Area 7	1425	NA NA
Sub-area 8A	600	2.5
Sub-area 8B	690	6.3*
Sub-area 8C	615	4.4*
Area 9	615	12.0

^{*:} Depth to groundwater since sample was collected below groundwater table. NA: Not applicable.

Table 1-10
Fractional Organic Carbon
Boeing Tract 1, St. Louis, Missouri

Sample ID	Fractional Organic Carbon (g/cc)
B10W1-8*	0.023
B5E2-6*	0.037
B1W1-8*	0.083
B42S7-8	0.032
B42N3-4	0.028
Average	0.0477

Notes:

^{*} Used for risk calculation. Other samples had low level VOC impacts. g/cc: grams per cubic centimeter

Table 1-11
Moisture Content
Boeing Tract 1, St. Louis, Missouri

Area/Sub-area	Ave. GW Depth	Sample ID	Sample Depth (ft)	Moisture Content (%)
2A	6.6	B51W4-6	6	22.33
2C .	5.1	MW-6-2	2	18.8
3A	4.0	B42N3-4	4	22.49
3A	4.0	MW-4-2	2	22.9
3A	4.0	MW-4-2 DUP	2	22.7
3B	4.0	B42E3-4	4	19.9
3D	6.7	B2N6-6	6	21.47
3D	6.7	B2N7-6	6	21.22
3E	9.5	B2E2-8	8	21.56
4	9.5	B5E1-6	6	20.9
4	9.5	B5E2-6	6	21
4	9.5	MW-8-2	2	20
6A	8:3	RR2-3	3	9.8
6B	4.8	B22N1-4	4	15.6
6B	4.8	B27W1-3	3	21.5
6B	4.8	B27W3-2	2	20.3
6B	4.8	RC9-4	4	20.5
6C	10.0	B20E1-6	6	23.5
6C	10.0	B20E2-8	8	22.9
6C	10.0	B27E1-9	. 9	20.2
6C	10.0	B27E1-9 DUP	9	20.4
6C	10.0	B27I10-9	9	20.9
6C	10.0	B27I11-9	9	20.6
6C	10.0	B27I4-5	5	19.3
6C	10.0	B27I6-8	8	20.7
6C	10.0	B27I6-8 DUP	8	27.4
6C	10.0	B27I7-3	3	24.7
6C	10.0	B27I9-9	9	21.7
6C	10.0	B27S1-5	5	21.5
6C	10.0	B27S2-8	8	21.6
6C	10.0	RR3-2	2	21.3
6C	10.0	RR4-3	3	22.4
6D	9.1	EPE1-2	2	19
6D	9.1	EPE2-2	2	18.4
6D	9.1	SEWER-5	5	18.7
	A	erage		20.8

Table 1-12
Dry Bulk Density
Boeing Tract 1, St. Louis, Missouri

Somelo ID	Dry Bull	Dry Bulk Density		
Sample ID	(lb/ft ³)	(g/cc)	(ft bgs)	
MW-5AD	105.2	1.68	29-30	
MW-5AD	116.5	1.86	75-76	
MW-8AD	93.6	1.50	39-41	
MW-8AD	104.1	1.67	64-66	
MW-8AS*	95.2	1.52	10-12	
MW-11S*	95.3	1.52	9-11	
MW-11I	100.9	1.61	36-38	
MW-11D	108.4	1.73	59-60	
verage	95.25	1.52		

Note: ·

^{*} Used for risk calculation. Other samples were at depths not representative of the shallow soil zone.

Table 1-13
Depth to Groundwater
Boeing Tract 1, St. Louis, Missouri

Area	Date	Depth to Groundwater (ft btoc)	Well ID
Area 1	12/17/2002	6.39	B45CMW-3A
	12/17/2002	4.9	B45CMW-3B
	12/17/2002	8.95	MW-A1
	6/23/2003	8.73	MW-A17
	12/17/2002	5.43	MW-A22
	3/21/2003	4.04	MW-A22
	6/23/2003	3.96	MW-A22
	12/17/2002	7.43	MW-A27
	3/21/2003	3.52	MW-A27
	6/23/2003	4.55	MW-A27
	12/17/2002	7.26	MW-A28
	6/23/2003	3.64	MW-A3
	Averagé	5.73	
	Value Used for Risk Calculation*	6.1	
Sub-area 2A & 2B*	12/17/2002	7.65	MW-10S
	8/16/2002	6.35	MW-11S
•	12/17/2002	6.58	MW-11S
	3/21/2003	7.46	MW-11S
	6/23/2003	7.44	MW-11S
	12/17/2002	4.56	MW-6S
	8/16/2002	6.39	MW-8S
	12/17/2002	8.86	MW-8S
	3/21/2003	5.22	MW-8S
	6/23/2003	6.32	MW-8S
	8/16/2002	4.79	MW-9S
	12/17/2002	7.06	MW-9S
	3/21/2003	4.49	MW-9S
	6/23/2003	3.96	MW-9S
	Average	6.22	1111170
	Value Used for Risk Calculation*	6.6	•
Sub-area 2C	12/17/2002	4.38	MW-A12
	12/17/2002	5.1	MW-A12
	3/21/2003	4.96	MW-A13
	6/23/2003	4.35	MW-A13
	Average	4.70	IVI W-A 13
	Value Used for Risk Calculation*	5.1	
Sub-areas 3A, 3B, & 3C	12/17/2002	4.45	D413434 10
, ,	3/21/2003	3.23	B41MW-18
	6/23/2003	4.11	B41MW-18
	12/17/2002		B41MW-18
	3/21/2003	4.54	B41MW-5
	6/23/2003	3.34	B41MW-5
	12/17/2002	2.97	B41MW-5
	Average	2.8	B41MW-7
	Value Used for Risk Calculation*	3.63	
Sub-areas 3D, 3F, & 3G**		4.0	
areas on, or, or our	Value Used for Risk Calculation*	6.7	

Table 1-13
Depth to Groundwater
Boeing Tract 1, St. Louis, Missouri

Area	Date	Depth to Groundwater (ft btoc)	Well ID
Area 4 and Sub-areas 3E &	12/17/2002	9.63	B4MW-9
ВН	3/21/2003	8.81	B4MW-9
	6/23/2003	9.01	B4MW-9
	7/29/2003	9.09	B5MW-22
	8/26/2003	8.96	B5MW-22
	Average	9.10	
	Value Used for Risk Calculation*	9.5	
Areas 5 & 9***	Value Used for Risk Calculation*	12.0	
Sub-area 6A	8/16/2002	8.42	MW1
	12/16/2002	8.47	MW1
	3/21/2003	7.42	MW1
	6/23/2003	7.41	MW1
	Average	7.93	I AA IAI
	Value Used for Risk Calculation*	8.3	
Sub-area 6B	8/16/2002	3.86	B28MW1
	12/16/2002	5.44	B28MW1
	3/21/2003	4.37	B28MW1
	6/23/2003	4.35	B28MW1
	12/16/2002	5.07	B28MW2
	12/16/2002	4.28	B28MW3
	8/16/2002	4.51	MW3
	12/16/2002	5.39	MW3
· 6	3/21/2003	5.86	MW3
	6/23/2003	2.27	MW3
	12/16/2002	3.16	MW3A
	12/16/2002	5.27	MW3B
	8/16/2002	2.76	MW7
	12/16/2002	2.45	MW7
	3/21/2003	2.25	MW7
	6/23/2003	2.49	MW7
	8/16/2002	5.64	MW9S
	12/16/2002	7.11	MW9S
	3/21/2003	6.55	MW9S
*	6/23/2003	5.76	MW9S
	Average	4.44	
	Value Used for Risk Calculation*	4.8	
Sub-area 6C	8/16/2002	11.27	MW5AS
	12/16/2002	11.97	MW5AS
	3/21/2003	11.48	MW5AS
	6/23/2003	10.61	MW5AS
	12/16/2002	9.06	MW5BS
	12/16/2002	13.03	MW5CS
	8/16/2002	8.26	MW5DS
	12/16/2002	8.38	MW5DS
	3/21/2003 6/24/2003	8.74	MW5DS
	1 6/74/2002	7.64	MW5DS
	8/16/2002	9.58	MW8
	8/16/2002 12/16/2002	10.19	MW8
	8/16/2002 12/16/2002 3/21/2003	10.19 9.29	MW8 MW8
	8/16/2002 12/16/2002 3/21/2003 6/23/2003	10.19 9.29 3.69	MW8 MW8 MW8
	8/16/2002 12/16/2002 3/21/2003	10.19 9.29	MW8 MW8

Table 1-13
Depth to Groundwater
Boeing Tract 1, St. Louis, Missouri

Area	Date	Depth to Groundwater (ft btoc)	Well ID
Sub-area 6D	8/16/2002	9.28	MW6
	12/16/2002	11.36	MW6
	3/21/2003	5.58	MW6
	6/23/2003	8.5	MW6
	Average	8.68	
	Value Used for Risk Calculation*	9.1	
Area 7	8/16/2002	4.42	MW2
	12/16/2002	5.78	MW2
	3/21/2003	4.89	MW2
	6/23/2003	4.61	MW2
	Average	4.93	
	Value Used for Risk Calculation*	5.3	
Sub-areas 8A & 8C	8/12/2002	3.96	MW10S
	12/16/2002	4.2	MW10S
	3/21/2003	4.4	MW10S
	6/23/2003	3.69	MW10S
	Average	4.06	
	Value Used for Risk Calculation*	4.4	
Sub-area 8B	12/16/2002	6.25	MW4
	6/23/2003	5.61	MW4
	Average	5.93	
	Value Used for Risk Calculation*	6.3	

Notes:

ft btoc - feet below top of casing

^{*} Value used for risk calculation is 0.37 ft greater than average for top of casing correction. This correction is based on the average of the difference between ground surface elevations and the top of casing (TOC) elevations for selected monitoring wel

^{**} For Sub-areas 3D, 3F, and 3G; the average of the depths selected for Sub-areas 3A, 3B, & 3C (3.63 feet) and for Sub-areas 3E & 3H (9.1 feet) was used. Therefore, 6.7 feet was used for Sub-areas 3D, 3F, and 3G including the 0.37 foot correction factor

^{***} For Areas 5 and 9, an average depth to groundwater of 12 feet was used. This was based on the depths at which "wet" or "saturated soil conditions were encounted as noted on the boring logs for these two areas as a group. There are no monitoring well

Table 1-14
Classification of TPH
Boeing Tract 1, St. Louis, Missouri

ТРН	Classification
#6 Fuel Oil (C10-C32)	TPH-ORO
Diesel	TPH-DRO
Diesel #1	TPH-DRO
Diesel #2	TPH-DRO
Diesel (C7-C26)	TPH-DRO
Gasoline	TPH-GRO
Gasoline (C6-C14)	TPH-GRO
Gasoline Range Organics	TPH-GRO
Hydraulic Fluid (C12-C33)	TPH-ORO
Kerosene	TPH-DRO
Kerosene (C9-C16)	TPH-DRO
Mineral Spirits	TPH-DRO
Mineral Spirits (C7-C14)	TPH-DRO
Misc_TPH (C10-C40)	TPH-DRO
Miscellaneous	TPH-DRO
Miscellaneous as Diesel Fuel	TPH-DRO
Motor Oil	TPH-ORO
Motor Oil (C16-C33)	TPH-ORO
Stoddard Solvent	TPH-DRO
ТРН	TPH-ORO
TPH (GC/FID) High Fraction	TPH-DRO
TPH (GC/FID) Low Fraction	TPH-GRO
TPH as Diesel	TPH-DRO
TPH as Gasoline	TPH-GRO
TPH as Hydraulic Fluid	TPH-ORO
TPH as Jet Fuel	TPH-DRO
TPH as Kerosene	TPH-DRO
TPH as Mineral Spririts	TPH-DRO
TPH as Motor Oil	TPH-ORO
Volatile Petroleum Hydrocarbons	TPH-GRO

Table 1-15 Groundwater TPH Ratios Boeing Tract 1, St. Louis, Missouri

Sub-area 2B		Area 2					Area 3					
Aliphatics >nC21 to nC35 (TX1006)		Sub-area 2B						* Ratio	Surata JL	* Ratio	Sub-area 50	
Aliphatics >nC21 to nC35 (TX1006)	OPPORTED TO A STATE OF THE STAT	MW2105-04	12/4/	1122		THU.	PERM	The second	**BN35/A.*	750	#.B2\$2\\	0.00
Refinal Str.C.1 (10 to C) C C C C C C C C C	Aliphatics >nC21 to nC35 (TX1006)	. 500	4000	50		8786	250	136	250	3/3	2000	
Ratio of Aliphatics >nC21 to nC35 (TX1006)/Total TPH-ORO 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5	Aromatics >nC21 to nC35 (TX1006)	500	2000	50		7028		136		4477		608
Ratio of Aromatics >nC21 to nC25 (TX1006)/Total TPH-DRO 0.50 0.33 0.50 0.44 0.5 0.5 0.92 0.2 Inchesics >nC21 to nC15 (TX1006)	Total TPH-ORO	1000	6000	100								
Aliphatics >nC10 to nC12 (TX1006)	Ratio of Aliphatics >nC21 to nC35 (TX1006)/Total TPH-ORO	0.50	0.67	0.50	0.56							
Aliphatics >nCl2 to nCl2 (TX1006)	Ratio of Aromatics >nC21 to nC35 (TX1006)/Total TPH-ORO		0.33	0.50								
Aliphatics >nCl0 to nCl2 (TX1006) 4000 250 500 17717 250 88 250 8338 250 22 Aliphatics >nCl2 to nCl6 (TX1006) 12000 1000 2000 63149 255 88 250 8338 1000 81 Aliphatics >nCl6 to nCl1 (TX1006) 18000 1000 2000 74726 250 88 250 8338 250 22 Aromatics >nCl2 to nCl2 (TX1006) 500 250 200 8107 250 88 250 8338 250 22 Aromatics >nCl2 to nCl6 (TX1006) 500 500 500 2000 30444 250 88 250 8338 250 22 Aromatics >nCl2 to nCl6 (TX1006) 500 500 500 2000 30444 250 88 250 8338 250 22 Aromatics >nCl3 to nCl2 (TX1006) 500 500 500 2000 30444 250 88 250 8338 250 22 Total TPH-DRO 38000 3500 7700 1500 1500 1500 2250 Ratio of Aliphatics >nCl6 to nCl2 (TX1006)/Total TPH-DRO 0.11 0.07 0.06 0.08 0.167 0.17 0.11 Ratio of Aromatics >nCl2 to nCl2 (TX1006)/Total TPH-DRO 0.04 0.29 0.26 0.29 0.167 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.08 0.14 0.15 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.08 0.14 0.15 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.08 0.14 0.15 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.08 0.14 0.15 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.08 0.14 0.15 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.03 0.04 0.167 0.17 0.11 Ratio of Aliphatics >nCl0 to nCl0 (TX1006) 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06	parente de la companya della companya della companya de la companya de la companya della company	in the second				2219968	ALC: A LEG					
Aliphatics >nC16 to nC21 (TX1006) 18000 1000 2000 74726 250 88 250 8338 250 2 Aromatics >nC10 to nC12 (TX1006) 500 250 200 8107 250 88 250 8338 250 2 Aromatics >nC10 to nC12 (TX1006) 500 500 2000 30484 250 88 250 8338 250 2 Aromatics >nC10 to nC12 (TX1006) 500 500 500 2000 500 5				500		17717	250	88	250			
Aromatics >nC12 to nC16 (TX1006)	Aliphatics >nC12 to nC16 (TX1006)	12000	1000	2000		63149	250	88	250	8338	1000	
Aromatics >nC12 to nC16 (TX1006)	Aliphatics >nC16 to nC21 (TX1006)	18000	1000	2000	,	74726	250	88	250	8338	250	222
Aromatics >nC16 to nC21 (TX1006) 3000 500 1000 25786 250 88 250 8338 250 22 Total TPH-DRO 38000 3500 7700 1500 1500 1500 2250 Ratio of Aliphatics >nC10 to nC12 (TX1006)/Total TPH-DRO 0.11 0.07 0.06 0.08 0.167 0.17 0.11 Ratio of Aliphatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.32 0.29 0.26 0.29 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.047 0.29 0.26 0.29 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO 0.01 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC6 to nC8 (TX1006) 0.08 0.14 0.13 0.12 0.167 0.17 0.17 0.11 Ratio of Aromatics >nC6 to nC8 (TX1006) 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.0		500	250	200		8107	. 250	. 88	250	8338		222
Aromatics Arom	Aromatics >nC12 to nC16 (TX1006)	500	500	2000	i .	30484	250	88	250			
Ratio of Aliphatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.11 0.07 0.06 0.08 0.167 0.17 0.11 Ratio of Aliphatics >nCl2 to nCl6 (TX1006)/Total TPH-DRO 0.32 0.29 0.26 0.29 0.167 0.17 0.17 0.44 Ratio of Aliphatics >nCl6 to nC21 (TX1006)/Total TPH-DRO 0.47 0.29 0.26 0.34 0.167 0.17 0.11 Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nCl2 to nCl6 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nCl2 to nCl6 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.17 0.11 Ratio of Aromatics >nCl2 to nCl6 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TX16 0	Aromatics >nC16 to nC21 (TX1006)	3000	500	1000		25786	250	- 88				
Ratio of Aliphatics >nC12 to nC16 (TX1006)/Total TPH-DRO	Total TPH-DRO	38000	3500	7700			1500		1500			
Ratio of Aliphatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.47 0.29 0.26 0.34 0.167 0.17 0.11 Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nC12 to nC16 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.17 0.11 Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.11 THE CLO CONTROL OF	Ratio of Aliphatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO	0.11	0.07	0.06	0.08		0.167					
Ratio of Aromatics >nCl0 to nCl2 (TX1006)/Total TPH-DRO 0.01 0.07 0.03 0.04 0.167 0.17 0.11 Ratio of Aromatics >nCl2 to nCl6 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.17 0.11 Ratio of Aromatics >nCl6 to nC21 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TPH 0.00 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TPH 0.00 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TPH 0.00 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TPH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	Ratio of Aliphatics >nC12 to nC16 (TX1006)/Total TPH-DRO	0.32	0.29	0.26	0.29		0.167		0.17		0.44	
Ratio of Aromatics >nCl 2 to nCl6 (TX1006)/Total TPH-DRO 0.01 0.14 0.26 0.14 0.167 0.167 0.17 0.11 Ratio of Aromatics >nCl 6 to nC21 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.11 0.11 0.11 0.11 0.11 0.12 0.167 0.17 0.11 0.11 0.11 0.11 0.11 0.11 0.1	Ratio of Aliphatics >nC16 to nC21 (TX1006)/Total TPH-DRO	0.47	0.29	0.26	0.34		0.167		0.17		0.11	
Ratio of Aromatics >nCl6 to nC21 (TX1006)/Total TPH-DRO 0.08 0.14 0.13 0.12 0.167 0.17 0.11 TX (C)	Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO	10.0	0.07	0.03	0.04		0.167		0.17		0.11	
TPH CIO	Ratio of Aromatics >nC12 to nC16 (TX1006)/Total TPH-DRO	0.01	0.14	0.26	0.14		0.167		0.17			
Aliphatics > nC6 to nC8 (TX1006) 500 250 250 4660 1000 2219 250 4917 250 166 Aliphatics > nC8 to nC10 (TX1006) 500 250 50 2732 250 555 250 4917 250 168 Aromatics > nC8 to nC10 (TX1006) 500 250 50 2732 250 555 1000 19667 250 168 Total TPH-GRO 1500 750 350 1500 1500 750 750 Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO 0.33 0.33 0.71 0.46 0.667 0.17 0.33 Ratio of Aliphatics > nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33	Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO	0.08	0.14	0.13	0.12		0.167		0.17			
Aliphatics > nC6 to nC8 (TX1006) 500 250 250 4660 1000 2219 250 4917 250 166 Aliphatics > nC8 to nC10 (TX1006) 500 250 50 2732 250 555 250 4917 250 168 Aromatics > nC8 to nC10 (TX1006) 500 250 50 2732 250 555 1000 19667 250 168 Total TPH-GRO 1500 750 350 1500 1500 750 750 Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO 0.33 0.33 0.71 0.46 0.667 0.17 0.33 Ratio of Aliphatics > nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33						(400 b)		200		29500		488 35040
Aromatics >nC8 to nC10 (TX1006) 500 250 50 2732 250 555 1000 19667 250 169 Total TPH-GRO 1500 750 350 1500 1500 750 Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO 0.33 0.33 0.71 0.46 0.667 0.17 0.33 Ratio of Aliphatics > nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33				250		4660	1000	2219	250	4917	250	1680
Total TPH-GRO 1500 750 350 1500 1500 750 Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO 0.33 0.33 0.71 0.46 0.667 0.17 0.33 Ratio of Aliphatics > nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33	Aliphatics >nC8 to nC10 (TX1006)											
Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO 0.33 0.33 0.71 0.46 0.667 0.17 0.33 Ratio of Aliphatics > nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33						2732		555				
Ratio of Aliphatics >nC8 to nC10 (TX1006)/Total TPH-GRO 0.33 0.33 0.14 0.27 0.167 0.17 0.33	Total TPH-GRO											
	Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO											
Paris of America > 0.00 (TY 1006) (Total TPU CPO 0.33 0.33 0.14 0.27 0.167 0.167 0.67 0.33	Ratio of Aliphatics >nC8 to nC10 (TX1006)/Total TPH-GRO											
National Transfer Service Control (17/10/07) 1/10/1 1/1	Ratio of Aromatics >nC8 to nC10 (TX1006)/Total TPH-GRO	. 0.33	0.33	0.14	0.27		0.167		0.67		0.33	

Note:

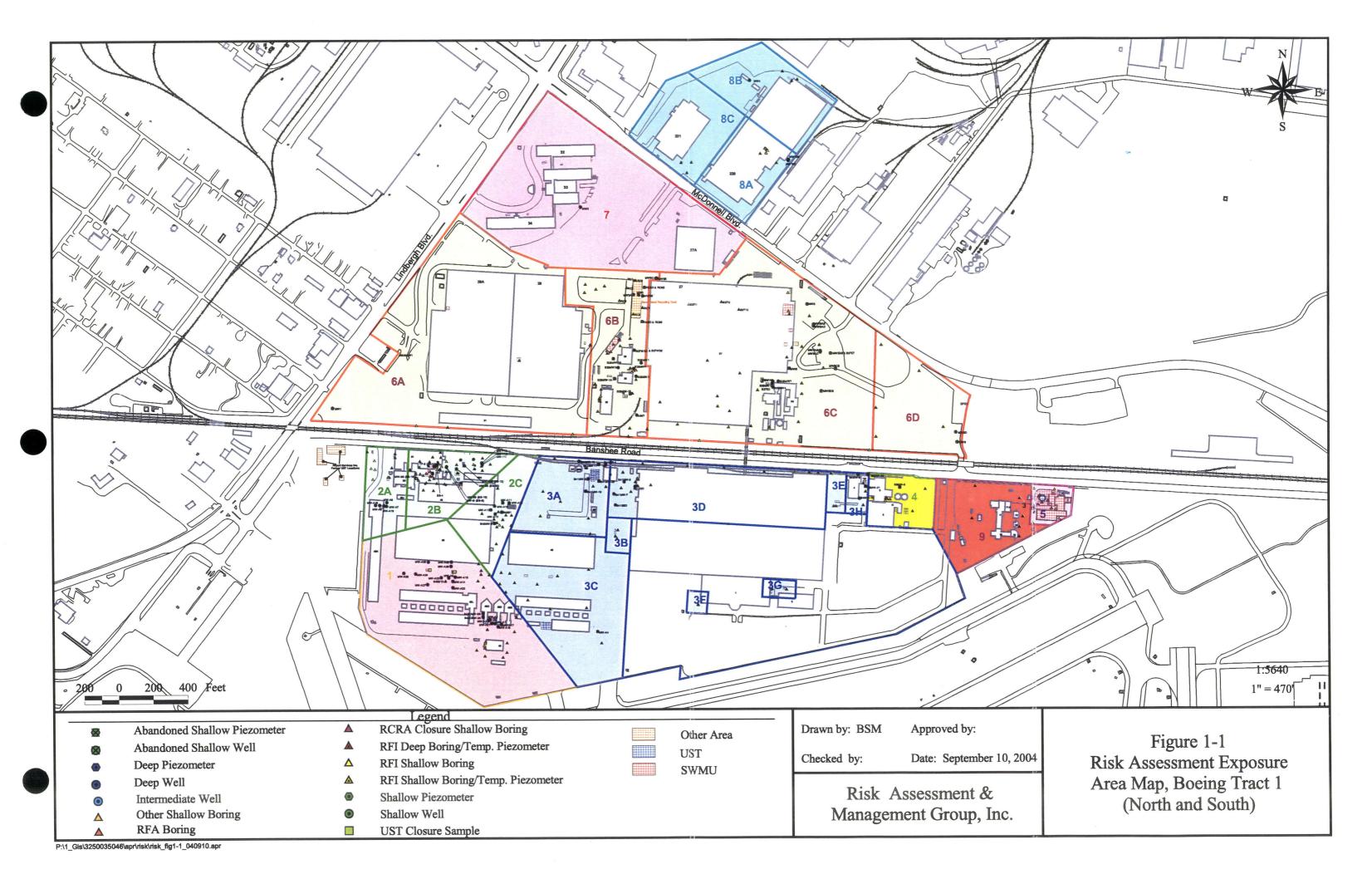

All concentrations are in micrograms per liter (ug/L).

Table 1-15 Groundwater TPH Ratios Boeing Tract 1, St. Louis, Missouri

	· · · · · ·	Area 6						
трн	Sub-area 6B	- Katio		Sub-area 6C		Mactech Avg *Avg.Ratios	Sub-area ob	Average Conc * Ratio
PPORO SE A MAN SE	TO ROAVIO	2.45.050	30B27D2AV	· Partition		1022	B220NIW	3283 32000
Aliphatics >nC21 to nC35 (TX1006)	250			3000		727	50000	22857
Aromatics >nC21 to nC35 (TX1006)	250		250	250		295	20000	9143
Total TPH-ORO	500		500	3250			70000	
Ratio of Aliphatics >nC21 to nC35 (TX1006)/Total TPH-ORO	0.5		0.5	0.92	0.71		0.71	
Paris of America SaCOL to aC35 (TY1006)/Total TPH_ORO	0.5		0.5	0.08	0.29		0.29	
PETODO		3451				2515		163 MAN 9500
Aliphatics >nC10 to nC12 (TX1006)	250		250	250		1497	250	
Aliphatics >nC12 to nC16 (TX1006)	250	5575	250	2000		4641	5000	
Aliphatics >nC16 to nC21 (TX1006)	250	5575	250	250		1497	15000	
Aromatics >nC10 to nC12 (TX1006)	250	5575	250	250		1497	250	
Aromatics >nC12 to nC16 (TX1006)	250	5575	250	500		1946	2000	
Aromatics >nC16 to nC21 (TX1006)	250	5575	250	250		1497	4000	
Total TPH-DRO	1500		1500	3500			26500	
Ratio of Aliphatics >nC10 to nC12 (TX1006)/Total TPH-DRO	0.17		0.17	0.071	0.12		0.01	
Ratio of Aliphatics >nC12 to nC16 (TX1006)/Total TPH-DRO	0.17		0.17	0.571	0.37		0.19	
Ratio of Aliphatics >nC16 to nC21 (TX1006)/Total TPH-DRO	0.17		0.17	0.071	0.12	,	0.57	
Ratio of Aromatics >nC10 to nC12 (TX1006)/Total TPH-DRO	0.17		0.17	0.071	0.12		0.01	
Ratio of Aromatics >nC12 to nC16 (TX1006)/Total TPH-DRO	0.17	•	0.17	0.143	0.15		0.08	
Ratio of Aromatics >nC16 to nC21 (TX1006)/Total TPH-DRO	0.17		0.17	0.071	0.12		0.15	
DUECTO SELECTION OF SELECTION O		建筑建设9 36						
Aliphatics > nC6 to nC8 (TX1006)	4000	885	1500	250		110	250	
Aliphatics >nC8 to nC10 (TX1006)	250		250	250		47	250	
Aromatics >nC8 to nC10 (TX1006)	250	55	250	250		.47	250	
Total TPH-GRO	4500		2000	750			750	
Ratio of Aliphatics > nC6 to nC8 (TX1006)/Total TPH-GRO	0.89		0.75	0.33	0.54		0.33	
Ratio of Aliphatics >nC8 to nC10 (TX1006)/Total TPH-GRO	0.06		0.125	0.33	0.23		0.33	
Ratio of Aromatics >nC8 to nC10 (TX1006)/Total TPH-GRO	0.06		0.125	0.33	0.23		0.33	<u> </u>

Note:

All concentrations are in micrograms per liter (ug/L).

2.1 INTRODUCTION

The Runway Protection Zone, also referred to as Area 1, is located in the southern portion of the Facility, adjacent to the current runway (see Figure 2-1). This section describes the constituents in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation. Note the risk was calculated using both the maximum and average concentrations, based on a request by the MDNR. The risks were acceptable using the average concentrations as presented in the draft risk assessment report submitted in December 2003. However, the MDNR requested that the risk be recalculated using the maximum concentrations.

2.2 DESCRIPTION OF AREA

The Runway Protection Zone is an Area approximately 1,500 feet long by 600 feet wide. Within this Area, there were 23 buildings or structures, in addition to portions of two buildings, and a small parking lot. All buildings within this Area will be demolished during construction of the St. Louis Airport expansion project and the Area will become a Runway Protection Zone. As per FAA regulations, no buildings can be built in a runway protection zone. This Area is currently paved and will remain paved.

2.2.1 Potential Sources within Area

The following five SWMUs were identified in this Area during the RFA investigation (SAIC, 1995):

- SWMU 12: Waste jet aircraft fuel and hydraulic system spillage (UST B28 2,130-gallon waste fuel/hydraulic oil UST);
- SWMU 13: 3,380-gallon waste jet fuel and hydraulic fluid USTs (B26 and B27);
- SWMU 14: Two 2,000-gallon waste jet fuel USTs. Fuel pits #3 and #4 (B29 and B30);
- SWMU 23: Less than 90 day storage area with capacity for twenty-eight 55-gallon drums for waste solvents, paints, and oils; and
- SWMU 26: Former less than 90-day storage area with capacity for twenty-eight 55-gallon drums for waste solvents, paints, and oils.

Including those noted above, five USTs (see Table 2-1) have been identified within this Area, ranging in size from 2,000 gallons to 3,380 gallons. The contents of the USTs were waste JP-4. No operating USTs remain within this Area; all have been excavated.

Additionally, a petroleum pipeline (carrying jet fuels JP-5 and JP-8) traverses this Area to the south of Building 45 (Figure 2-1), and is connected to a tank farm located to the north (outside of Area 1). The pipeline is anticipated to be emptied and abandoned in place.

Hence, within this Area, we anticipate constituents of concern to be primarily petroleum hydrocarbons, and possibly chlorinated solvents localized near the SWMU 23 and SWMU 26 areas.

2.2.2 Soil Stratigraphy within Area

There are 21 soil borings (in addition to borings for monitoring wells discussed in Section 2.2.3) within this Area, see Table 2-2 for further details of these borings. Based on information from soil boring logs, the soil stratigraphy within this Area is silty clay from approximately 0.5 foot bgs to 20 feet bgs, below which is clay. For additional details, refer to the *Draft RCRA Facility Investigation (RFI) Report for McDonnell Douglas, Hazelwood, Missouri*, dated October 22, 2003 by MACTEC Engineering and Consulting, Inc. (MACTEC, 2003). Bedrock is found in this Area at approximately 80 feet bgs (which consists of low permeability shale). No karst features have been identified in this Area (MACTEC, 2003).

2.2.3 Hydrogeology within Area

There are 19 monitoring wells located within this Area, each with 10 feet of screen in the upper 20 feet bgs, see Table 2-3(R) for further details of these wells. Note that monitoring well details for a few wells are not available. Based on recent (since 2000) groundwater gauging data, groundwater flow within the shallow zone is to the southeast (see Figure 2-2), towards the airport runway. The depth to shallow groundwater within this Area is between 3.5 and 9 feet bgs. No deep monitoring wells are located within this Area.

2.3 LAND USE

2.3.1 Current Land Use

The Area is owned by the St. Louis Airport Authority and is currently leased by Boeing. It is being used as an industrial facility. However, Boeing intends to vacate this Area in 2004, at which point the Area will become a runway protection zone for the St. Louis Airport expansion.

2.3.2 Future Land Use

This Area is anticipated to be part of the runway protection zone; and therefore, cannot have buildings erected according to FAA regulations (personal communication, St. Louis Airport).

2.4 AVAILABLE DATA

The following provides an overview of the available data within the Area:

- Nineteen monitoring wells are located within this Area, of which two are inactive.
- Recent groundwater sampling (since 2001) has been completed at eight wells (MW-A1, MW-A3, MW-A15, MW-A17, MW-A18, MW-A22, MW-A23, and MW-A27).
- Historic (pre-2002) groundwater monitoring was performed from 1990 to 2001 for 18 wells.
- Seventeen soil borings completed as piezometers exist in this Area and have been sampled for groundwater once since 2000.
- A total of 21 soil borings and two pits have been sampled within this Area since 1992 resulting in 28 individual soil samples.

2.5 CONSTITUENTS IDENTIFIED WITHIN AREA

2.5.1 Soil

From 1992 to date, 28 soil samples have been collected within Area 1 during various investigations. Twenty of the soil samples were collected as part of the RFI (MACTEC, 2003).

Data from eight pre-1998 soil samples were also used. These pre-1998 soil samples had some of the highest concentrations of constituents; therefore, by using these older samples in the risk assessment, the results can be considered very conservative since concentrations in these samples would have reduced by natural attenuation since the sources have been removed.

Four of these samples (PIT#3-M, PIT#3-E, PIT#3-D, and PIT#4-D) were collected on August 1, 1992 from Fuel Pits #3 and #4, and the data can be found in the MDNR UST Closure Reports (Part A) for the closure of these two pits. These samples were collected from the excavation limits of these two pits after the USTs had been excavated. The samples' nomenclature indicates where the samples were obtained within the pits (i.e., from the east (E), middle (M), and downgradient (D) ends of the excavations). These samples were obtained from native soils at the bottom of the excavations after the USTs had been excavated at a depth of 15 to 16 feet below the ground surface. These depths were just below the bottom of the tanks, as these USTs were oriented vertically in the subsurface.

Four of the samples (40-10012, 40-11224, 40-20012, and 40-21224) were collected on November 1, 1994 as part of the RFA (SAIC, 1995). These samples were collected from SWMU 26 at depths of 0-1 foot and 1-2 feet along a crack (40-1 samples) and a seam (40-2 samples) next to Building 40.

The soil samples have been analyzed for a comprehensive list of constituents that included VOCs, SVOCs, PCBs, TPH, and metals. Typical laboratory methods that were used include Test Methods for Evaluating Solid Waste (SW-846) methods 3546/DRO, 6010, 7060, 7421, 7471, 7740, 8020, 8021, 8240, 9073, OA1, and OA2. Table B-1 in Appendix B includes a comprehensive table of the laboratory data for soil. For the constituents that were not detected in any soil sample, Table B-2 lists the range of detection limits. PCBs and SVOCs including PAHs were analyzed in pre-1998 samples from this Area, but all were found to be non-detect. These data are not included in Tables B-1 and B-2. Evaluation of the data in Table B-1 indicated that the following 26 constituents were detected in at least one soil sample:

METAL	S	VOCs/TPH
Aluminum	Lead	Acetone
Antimony	Magnesium	Benzene
Arsenic	Manganese	Ethylbenzene
Barium	Mercury	Toluene
Beryllium	Nickel	TPH (2 types)
Chromium	Potassium	Xylenes
Cobalt	Selenium	3
Copper	Sodium	
Iron	Vanadium	
Calcium	Zinc	

The laboratory analysis data for the above listed constituents, i.e., constituents that were detected in at least one sample, are presented in Table 2-4(R).

The maximum and average concentrations of metals were compared with the background levels (Table 2-5(a)). In calculating the average and maximum concentrations for non-detectable constituents, the detection limits were replaced by ½ the detection limit. For this reason, Table 2-5(b) shows the Maximum Detected Concentration, as well as the Maximum Concentration, which may be ½ of the highest detection limit. Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration. Specifically for Area 1, the following metals were eliminated: aluminum, barium, chromium, potassium, sodium, vanadium, and zinc. Based on this elimination, the following are the remaining chemicals:

META	Ls	VOCs/TPH
Antimony	Lead	Acetone
Arsenic	Magnesium	Benzene
Beryllium	Manganese	Ethylbenzene
Cobalt	Mercury	Toluene
Copper	Nickel	TPH (2 types)
Iron	Selenium	Xylenes
Calcium		

Of the above constituents iron, calcium, and magnesium were eliminated, as they are ubiquitous in nature and not related to any known anthropogenic sources in this Area. Also, toxicity data for calcium and magnesium are not available. The concentration of lead ranged from 7,400 ug/kg to 34,100 ug/kg in the 11 samples analyzed for lead. Lead exceeded the background level of 21,800 ug/kg in four samples. However, since all of the detected concentrations are significantly less than the screening level of 750,000 ug/kg discussed in Section 1.9.10, lead was also eliminated. Lead is also discussed in the RFI (MACTEC, 2003).

Impact by petroleum organics was generally observed in vicinity of the fuel pits at SWMU 14 (which previously stored waste jet fuel in two underground storage tanks), and along an underground petroleum pipeline on the south side of Building 45, see Figure 2-1. Since these petroleum impacts were related to jet fuels (JP-4, JP-5, and JP-8); lead was not considered a chemical of concern since the jet fuels are not leaded fuels. The RFI provides more information and specifications on the makeup of the jet fuels (MACTEC, 2003). Petroleum impact was not observed at SWMU 26.

2.5.2 Groundwater

During the various investigations conducted within this Area, groundwater samples were analyzed for a comprehensive list of constituents that included VOCs, TPH, and metals using SW 846 laboratory analysis methods 3510/DRO, 6010, 7470, 8015, 8021, 8260, OA1, and OA2. Table B-3 of Appendix B includes a comprehensive list of the groundwater analytical data. For the constituents that were not detected in any groundwater sample, Table B-4 lists the range of detection limits.

Of the various constituents analyzed in groundwater, the following 21 constituents were detected in at least one groundwater sample:

METALs	VOC	s/TPH						
Arsenic	1,2,3-Trimethylbenzene	Acetone						
Barium	1,2,4-Trimethylbenzene	Benzene						
Chromium	Ethylbenzene Xylenes							
Lead	Isopropyl benzene	Toluene						
	Naphthalene	TPH (3 types)						
	n-Butylbenzene	MTBE						
	n-Propylbenzene	sec-Butylbenzene						
	p-Isopropyltoluene	tert-Butylbenzene						
		Trichloroethene						

Data for the above listed constituents is presented in Table 2-6. Note that SVOCs and PCBs were not analyzed in groundwater samples since these constituents had not been detected in soil samples collected from this Area, and are not listed on Table 2-6.

The maximum and average groundwater concentrations for each detected constituent were compared with various target level criteria. Constituents for which the target level criteria exceeded the maximum detected concentration were eliminated for further consideration. As shown in Table 2-7(a), these included ethylbenzene, isopropylbenzene, methyl tertiary butyl ether (MTBE), naphthalene, n-butylbenzene, p-isopropyltoluene, sec-butylbenzene, toluene, tertbutylbenzene, trichloroethene, xylenes, barium, chromium, and lead. The remaining constituents consist of the following five VOCs, TPHs, and one metal:

METALs	VOCs/TPH					
Arsenic	1,2,3-Trimethylbenzene	Acetone				
	1,2,4-Trimethylbenzene	Benzene				
	n-Propylbenzene	TPH (3 types)				

As shown on Table 2-7(b), the above includes detected constituents that exceeded the target level criteria, detected constituents that did not have target level criteria for comparison, and all types of TPH that were analyzed whether detected or not.

In calculating the average and maximum concentrations for non-detectable constituents, the detection limits were replaced by ½ of the detection limit for each specific constituent. For certain constituents, ½ the maximum detection limit exceeded the highest detected concentration. For this reason, Table 2-7(b) shows the Maximum Detected Concentration, as well as the Maximum Concentration, which may be ½ of the highest detection limit.

Within this Area, 25 groundwater-sampling points exist, which have been sampled recently. Additionally, there are a number of historic groundwater monitoring wells, which have not been sampled recently (see Table 2-8(R) for historic data). To demonstrate the overall concentration trend, concentration vs. time plots have been developed for six of these monitoring wells [see

Figures 2-3(a) through (f)] for which historic data is available. This evaluation of the overall concentration trend indicates that concentrations are decreasing.

The most recent data (2001 - 2003) is being used quantitatively in this risk evaluation, as it is most representative of current conditions; however, the historic data provides valuable information regarding the overall groundwater concentration trends.

As discussed in Section 2.6, free product was observed recently in March 2004 at well MW-Al with a sheen in B45CMW-3A and MW-A3, all located near the Hush Houses (Buildings 45C & 45D). B45CMW-3B had a sheen during all sampling events in 1998.

2.6 FREE PRODUCT

Free product has historically been observed within this Area near Buildings 45C, 45D, and 45E (Hush Houses/SWMU 12, 13, 23) where USTs for jet fuel and hydraulic fluid and 55-gallon drums were formerly located. Historically, observed thicknesses of free product range from a sheen to 6.5 feet. Free product removal activities have been performed in this Area since 1989. Table 2-3(R) provides screened intervals and free product data. Table 2-3(a) provides detailed free product thicknesses. Table 2-8(R) presents the historical groundwater data for BTEX. This data was used to prepare Figures 2-3(a)(R) to 2-3(f)(R), which show the dissolved BTEX concentration trend over time in six of the monitoring wells. Based on the data, there are four monitoring wells in Area 1, which have had free product present since 1992 (MW-A1, MW-A3, B45CMW-3A, and B45CMW-3B). All appear to be stable or decreasing. MW-A1 is the only monitoring well with measurable free product (0.02 to 0.04 foot) during the last six measurements from November 2003 to March 2004. The other three monitoring wells have had sheens during their last monitoring events:

- MW-A3 had sheen or none during last 14 measurements from February 2002 to March 2004
- B45CMW-3A had sheen or none during last 13 measurements from June 2003 to March 2004
- B45CMW-3B had sheen during last 21 measurements from January 1998 to November 1998

The screened interval for MW-A1 and MW-A3 is 5-15 feet bgs. All measured groundwater depths in MW-A1 from April 2001 to March 2004 were below the top of screen (27 events). All measured groundwater depths in MW-A3 from April 2003 to March 2004 were below the top of screen (8 events). The screened intervals for B45CMW-3A and B45CMW-3B are unknown.

This indicates that in recent years, free product thicknesses have been stable at low levels. Further, since dissolved concentrations of benzene, toluene, ethylbenzene, and total xylenes (BTEX) Figure 2-3(a)(R) to (f)(R) show a clear decreasing trend, the residual free product is not an ongoing source of constituents.

2.7 EXPOSURE MODEL

2.7.1 Current conditions

Under current conditions, Boeing has commercial workers within this Area; however, in the very near future, Boeing will shut down their operations, at which point there will be no workers onsite. Hence, the risk and exposure to these workers will not be quantified. The only receptor

under current conditions would be the visitor or maintenance worker to the Area. As the exposure duration for the visitor or maintenance worker is (i) small and (ii) site conditions will change in the very near future (few months); the risk from any soil or groundwater impact will not be quantitatively evaluated for the visitor or maintenance worker.

2.7.2 Future conditions

Under future conditions, this Area is anticipated to be used as the Runway Protection Zone (personal communication, St. Louis Airport) – an area where no building construction of any form can take place, as per FAA regulations. The Area will continue to be paved. There will be no receptor present in the Area other than a maintenance worker/visitor to the Area or construction worker. As the exposure duration for the maintenance worker/visitor is small and less than that for the construction worker, the risk from any soil or groundwater impact will not be quantitatively evaluated for the maintenance worker/visitor.

In the future, construction work could be performed within this Area; therefore, the potential future construction worker is a receptor. Exhibit 2-1 presents the Exposure Model (EM) for the construction worker.

EXHIBIT 2-1. EM FOR POTE	ENTIAL FU	TURE CONSTRUCTION WORKER
Scenario, Receptor, and Pathways/Routes Analyzed	C or NC	Justification
Dermal Contact with Soil	С	Soil is impacted at depths less than 10 feet, which is considered the construction zone; therefore, contact is possible.
Accidental Ingestion of Soil	С	Soil is impacted at depths less than 10 feet, which is considered the construction zone; therefore, contact is possible.
Outdoor Inhalation of Vapors and Particulates from Soil	С	Soil is impacted within this Area, and a number of the constituents identified are volatile; therefore, this pathway is complete.
Dermal Contact with Groundwater	С	Depth to groundwater ranges from 3.5 to 9 ft bgs, which is within the typical zone of construction. Hence this pathway is possible.
Outdoor Inhalation of Vapors from Groundwater	С	Groundwater within this Area is impacted by volatile constituents; hence, this pathway is complete.

Notes: NC: Not Complete C: Complete

Exposure pathways highlighted in bold indicate that these pathways are complete and will be quantitatively evaluated.

Additional receptors include occasional visitors and maintenance workers whose exposure frequency and exposure duration are expected to be less than that for construction worker, hence the risk to these receptors will not be quantified.

Note, in this Area any construction is anticipated to be regulated by FAA and construction workers would likely be Occupational Safety and Health Administration (OSHA) trained, thus providing another level of protection to the workers.

2.8 REPRESENTATIVE CONCENTRATIONS FOR CONSTRUCTION WORKER

Only one receptor, the potential future construction worker, exists within this Area. The representative concentration was determined to be the area wide average, as a construction worker could work in any portion of the Area, and there is not one specific source area present, but rather a number of smaller source areas. Tables 2-5(b) and 2-7(b) present the soil and groundwater average and maximum concentrations. For Area 1, carcinogen and non-carcinogen risks have been calculated using the maximum, as well as the average concentrations. The results are discussed below.

2.9 CALCULATION OF RISK

Table 2-9(R) presents the results for a future construction worker using the average soil and groundwater concentrations. The table presents the carcinogenic (Individual Excess Lifetime Cancer Risk, (IELCR)) and non-carcinogenic (Hazard Quotient (HQ) and Hazard Index (HI)) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk, which is the sum of risk for all the COCs and all the routes of exposures.

The risks were also calculated using the maximum soil and groundwater concentrations, which are shown on Table 2-10(R). The following are the key observations.

Carcinogenic Risk:

As indicated in Table 2-10(R), the cumulative IELCR (calculated using the maximum soil and groundwater concentrations) is 6.34×10^{-7} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 2-10(R), the cumulative HI is 0.5 (calculated using the maximum soil and groundwater concentrations) that is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

2.10 CONSIDERATION OF FREE PRODUCT

According to the MRBCA guidance document, the detection of LNAPL, also known as free product, at the site must trigger a response sufficient to achieve the following objectives. Each of which is discussed below:

1. LNAPL should not be present at levels that would cause explosive conditions to occur at or near the site. The source has been removed and the free product has had time to weather. There has not been construction in the Hush House area at which PID readings could have been taken; however, Boeing took lower explosive limit (LEL) readings on April 14, 2004 directly from three of the monitoring wells immediately after removing the top caps, from three storm sewer manway access locations, and from a subsurface oil/water separator vault that are located in the Hush House area. See Figure 2-4 for locations of LEL readings. The results of the LEL readings are shown in the table below, including the distances from the LEL measurement location to monitoring well MW-A1.

	LEL	Distance from
Location	Reading	MW-A1 (feet)
MW A3	0%	36.5
MW A1	>10 %	0
B45CMW-3A	0%	79
Storm sewer near MW 3A	2%	79
Storm sewer near MW A3	2%	~40
Storm sewer near MW A 17	0%	~40
Oil/water separator vault	2%	24.5

Monitoring well MW-A1 had an LEL reading that exceeded 10%. This is the monitoring well with recent free product measurements of 0.02 to 0.04 foot during the last six measurements from November 2003 to March 2004. This reading is not unexpected since the measurement was taken immediately after removal of the monitoring well top cap, and is certainly not representative of accumulation in confined spaces where a human activity may occur. All LEL readings in confined spaces (storm sewer and subsurface vault) were 2% LEL or zero. These are the areas in which human activities could occur, and the readings show these areas did not contain explosive atmospheres.

- 2. The LNAPL plume shall be fully delineated. There is one monitoring well, MW-A1, which has had measurable free product (0.02 to 0.04 foot) during the last six measurements from November 2003 to March 2004. The latest sampling event (7/2/03) detected total TPH of 20,900 ug/L and total BTEX of 3.1 ug/L with benzene and toluene non-detectable. The LNAPL plume has been delineated as shown by the following sampling locations. The data for which is presented on Tables 2-3(R), 2-3(a), 2-6, and 2-8(R). The sample locations are shown on Figure 2-1.
 - MW-A18 (25 feet southeast of MW-A1) Shallow Monitoring Well No free product since 1992;
 - MW-A17 (35 feet east of MW-A1) Shallow Monitoring Well No free product historically;
 - MW-A21 (15 feet west of MW-A1) Shallow Monitoring Well Sheen historically;
 - MW-A3 (35 feet northwest of MW-A1) Shallow Monitoring Well had sheen or none during last 14 measurements from February 2002 to March 2004 MW-A3 had sheen or none during last 14 measurements from February 2002 to March

- MW-A2 (30 feet northwest of MW-A1) Shallow Monitoring Well Sheen historically;
- B45CMW-3A (70 feet northwest of MW-A1) Shallow Monitoring Well had sheen or none during last 13 measurements from June 2003 to March 2004;
- B45CMW-3B (85 feet northwest of MW-A1) Shallow Monitoring Well had sheen during last 21 measurements from January 1998 to November 1998;
- B45CS1D (50 feet southwest of MW-A1) Deep Piezometer No free product historically;
- B45CS2 (120 feet south east of MW-A1) Shallow Piezometer No free product historically; and
- B45CS3D (125 feet northeast of MW-A1) Deep Piezometer No free product historically.
- 3. Dissolution of and volatilization from LNAPL should not generate dissolved phase or vapor phase concentrations that result in unacceptable human or ecological risk. Regarding dissolved phase, Figures 2-3(a)(R) and 2-3(b)(R) shows a definite decreasing concentration trend for BTEX from 1990 to 2003 for monitoring wells MW-Al and MW-A2. Lab data in Table 2-6 also indicates low dissolved concentration levels in other monitoring wells near MW-Al as summarized below:
 - MW-A18 Last sampling event (7/29/03) was non-detectable for BTEX with a low level detect for:
 - TPH-C10-C40 (210 ug/L J-value vs. 10,000 ug/L ITL);
 - MW-A17 Last sampling event (6/26/03) had low level detects for:
 - Acetone (60 ug/L vs. 121 ug/L MCL-equivalent);
 - TPH-C10-C40 (160 ug/L vs. 10,000 ug/L ITL);
 - MW-A21 Last sampling event (6/5/1990) detected:
 - Benzene (17 ug/L vs. 5 ug/L MCL);
 - Xylenes, total (32 ug/L vs. 10,000 ug/L MCL);
 - MW-A3 Last sampling event (6/26/03) had low level detects of:
 - Isopropylbenzene (5.5 ug/L vs. 4,000 ug/L EPA Health Advisory);
 - MTBE (5.1 ug/L vs. 146 ug/L calculated target level):
 - n-Propylbenzene (7.8 ug/L vs. 5.27 ug/L calculated target level);
 - p-Isopropyltoluene (5.4 ug/L vs. 107 ug/L calculated target level);
 - sec-Butylbenzene (5.1 ug/L vs. 48.6 ug/L calculated target level);
 - tert-Bbutylbenzene (2.3 ug/L vs. 48.6 ug/L calculated target level);
 - TPH, Misc C10-C40 (9,500 ug/L vs. 10,000 ug/L ITL);
 - TPH, GC/FID low fraction (3,800 ug/L vs. 10,000 ug/L ITL);
 - MW-A2 Last sampling event (7/6/93) had low level detect of:

- Xylenes, total (2 ug/L vs. 10,000 ug/L MCL);
- B45CMW-3A Last sampling event (7/2/03) had low level detects of:
 - sec-Butylbenzene (1.1 ug/L vs. 48.6 ug/L calculated target level)
 - 1,2,3-Trimethylbenzene (3.4 ug/L no established groundwater screening level);
 - 1,2,4-Trimethylbenzene (1.7 ug/L vs. 70 ug/L MCL);
 - TPH, GC/FID low fraction (220 ug/L vs. 10,000 ug/L ITL);
 - TPH, Misc C10-C40 (9,500 ug/L vs. 10,000 ug/L ITL);
- B45CMW-3B Last sampling event (6/26/03) had low level detects of:
 - Naphthalene (5.3 ug/L vs. 100 ug/L EPA Health Advisory);
 - TPH, GC/FID low fraction (160 ug/L vs. 10,000 ug/L ITL);
 - TPH, Misc C10-C40 (1,400 ug/L vs. 10,000 ug/L ITL);
- B45CS1D Last sampling event (11/15/02) was non-detectable for BTEX, MTBE, and TPH;
- B45CS2 Last sampling event (11/14/02) was non-detectable for BTEX, MTBE,
 & TPH; and
- B45CS3D Last sampling event (11/20/02) was non-detectable for BTEX, MTBE, & TPH.

Regarding vapor phase concentrations, inhalation is not an issue in Area 1 since this will be a Runway Protection Zone and no buildings are allowed.

- 4. Both the LNAPL and its associated dissolved phase plume shall be stable or shrinking. Table 2-3(a) shows a stable or decreasing LNAPL thickness trend for the four monitoring wells (MW-A1, MW-A3, B45CMW-3A, and B45CMW-3B) that have detected measurable LNAPL in Area 1 since 1992. Figures 2-3(a)(R) and 2-3(b)(R) shows a definite decreasing concentration trend for BTEX from 1990 to 2003 for monitoring wells MW-A1 and MW-A2.
- 5. <u>LNAPL</u> shall be removed to the maximum extent practicable. Boeing has been removing LNAPL from this area since 1989, and has gotten the LNAPL out of the ground to the maximum extent practicable.

The data collected from Area 1 shows that the MRBCA goals regarding free product have been achieved

2.11 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek, which flows north about 2,700 feet to the northeast of Area 1. There are no known unpermitted conduits present that could carry impacts from Area 1 to Coldwater Creek. Considering the geology, groundwater flow characteristics and the chemical types and concentrations of impacts in Area 1, it is not likely that migration of impacts from Area 1 to Coldwater Creek will occur. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as

Attachment 2-A(R), and Attachment 2-B(R). These checklists identified no potential ecological receptors or issues.

2.12 CONCLUSIONS

The calculated risk for all the COCs and all potentially complete routes of exposure for the construction worker is below the regulatory acceptable target levels.

TABLE 2-1 SUMMARY OF UNDERGROUND STORAGE TANKS (USTs) HISTORICALLY PRESENT WITHIN AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

UST No.	Location	Volume (Gallons)	Contents	Construction Material	Year Installed	Status	Comments
B26	Ramp D	3380	Waste JP-4	Single Wall Steel	1963	Removed 1983	Excavated
B27	Ramp D	3380	Waste JP-4	Fiberglass	1983	Removed 1989	Excavated
B28	Ramp A	2130	Waste JP-4	Fiberglass	1978	Removed 1990	Excavated
B29	Ramp B (Fuel Pit #3)	2000	Waste JP-4	Single Wall Steel	1977	Removed 1992	Excavated
B30	Ramp B (Fuel Pit #4)	2000	Waste JP-4	Single Wall Steel	1983	Removed 1992	Excavated

Note:

UST B27 replaced UST B26

TABLE 2-2 SOIL BORING INFORMATION FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

Area	Boring	Date Drilled
	40-1	11/1/1994
	40-2	11/1/1994
SWMU 26	S26B1	6/1/1998
3 W W 20	\$26B2	6/1/1998
<u> </u>	S26B3	6/1/1998
	B40E1	11/2/2002
	B40E2	11/2/2002
Building 40	B40S1	11/2/2002
	B40S2	11/2/2002
	B40W1 .	11/2/2002
	A1-1*	NA
	A2-2*	NA
	B45S1D*	11/2/2002
	B45S2	11/2/2002
	B45S3	11/2/2002
Buldings 45 & C,	B45S4	11/2/2002
D, E	B45S5D	11/2/2002
· · · · · · · · · · · · · · · · · · ·	B45S6	11/2/2002
	B45S7	11/2/2002
	. B45CS2	11/14/2002
	B45CS3D	11/20/2002

Notes:

NA: no information available

Total number of Borings = 21

Borings with available data = 18

Soil samples were also obtained from Pit #3 (3 samples) and Pit #4 (1 sample)

^{*} No analytical data available

TABLE 2-3(R) MONITORING WELL INFORMATION FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

Location	Monitoring Well	Diameter	Screened Interval (ft bgs)	Total Depth (ft)	Installation Date	Status	# of Times Sampled	Last Time Sampled	Free Product at Installation	Free Product Observed Since 1992
	MW-A22	2	4.5-14.5	15	10/30/1989	Active	2	3/20/2003	yes	no
	MW-A27	2	3.7-13.7	15	11/1/1989	· Active	2	7/29/2003	no	no
	MW-A28	2	4.5-14.5	15	11/1/1989	Active			yes	no
	MW-A29	2	4.5-14.5	15	11/1/1989	Active			no	no
	MW-A5	2	2-12.5	15	7/18/1989	Active			yes	no
South of Bldg. 45	MW-A15	2	4.5-14.5	15	8/3/1989	Active	1	7/2/2003	yes	no
	MW-A14	2	4.5-14.5	15	8/3/1989	Active			yes	NA
i	MW-A23	2	2.7-12.7	15	10/30/1989	Active	2	7/29/2003	yes	no
	MW-A24	2	3-13	15	10/31/1989	Active			no	no
	MW-A26	2	4-14	15	11/1/1989	Active			no	no
l.	MW-A25	2	3-13	15	11/1/1989	Active			NA	NA
	MW-A1	2	5-15	15	7/12/1989	Active	3	7/2/2003	yes	yes
	MW-A2	2	4-14.5	17	7/12/1989	Inactive			sheen	NA
	MW-A3	2	5-15	15	7/13/1989	Active	1	6/26/2003	yes	yes
	MW-A17	2	4.5-14.5	15	8/4/1989	Active	1	6/26/2003	no	no
Hush House	MW-A21	2	1.5-11.5	15	8/8/1989	Inactive			sheen	NA
	B45CMW-3A	4	NA	14.4*	1995	Active			yes	yes
	B45CMW-3B	4	NA	14.5*	1995	Active			yes	yes
	MW-A18	2	4.5-14.5	15	8/4/1989	Active	2	7/29/2003	sheen	no

Notes:

no: No free product observed historically yes: Free product observed historically sheen: Sheen observed historically NA: No information available ft bgs: Feet below ground surface

ft: Feet

* Assumed total depth is equal to known depth to bottom of screened interval

The thickness of free product is tabulated in Table 2-3(a)

TABLE 2-3(a) HISTORIC FREE PRODUCT THICKNESSES FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

	B45C	MW-3A		B45CMW-3B								
Date	Product Thickness	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness	Depth to GW (ft)	Screened Interval (ft)					
1/14/1998	(ft) Sheen	5.79	Unk	1/14/1998	(ft) Sheen	4.35	Unk					
1/28/1998	Sheen	6.18	Unk	1/28/1998	Sheen	4.92	Unk					
2/13/1998	Sheen	5.83	Unk	2/13/1998	Sheen	4.98	Unk					
2/27/1998	Sheen	5.80	Unk	2/27/1998	Sheen	4.70	Unk					
3/13/1998	0.01	5.01	Unk	3/13/1998	Sheen	5.00	Unk					
3/25/1998	Sheen	5.68	Unk	3/25/1998	Sheen	4.67	Unk					
4/9/1998	0.03	5.80	Unk	4/9/1998	Sheen	5.00	Unk					
4/22/1998	Sheen	5.84	Unk	4/22/1998	Sheen	5.12 4.86	Unk Unk					
5/7/1998	Sheen	5.77 5.76	Unk Unk	5/7/1998 5/21/1998	Sheen Sheen	5.00	Unk					
5/21/1998 6/5/1998	Sheen Sheen	5.82	Unk	6/5/1998	Sheen	4.87	Unk					
6/24/1998	Sheen	5.77	Unk	6/24/1998	Sheen	4.95	Unk					
7/13/1998	Sheen	5.83	Unk	7/13/1998	Sheen	5.05	Unk					
7/22/1998	Sheen	6.10	Unk	7/22/1998	Sheen	5.19	Unk					
8/26/1998	Sheen	6.09	Unk	8/26/1998	Sheen	5.34	Unk					
9/14/1998	0.08	6.22	Unk	9/14/1998	Sheen	5.37	Unk Unk					
9/28/1998	0.05	6.14	Unk	9/28/1998	Sheen	5.29 5.31	Unk					
10/12/1998	0.08	6.18	Unk	10/12/1998	Sheen Sheen	5.23	Unk					
10/22/1998	Sheen Sheen	6.01 5.78	Unk Unk	11/5/1998	Sheen	5.10	Unk					
11/18/1998	Sheen	6.12	Unk	11/18/1998	Sheen	5.34	Unk					
2/26/1999	0.06	0.12	Unk	1	T							
3/8/1999	0.59	 	Unk									
3/24/1999	0.13		Unk									
4/12/1999	0.13		Unk			<u> </u>						
4/27/1999	0.07		Unk		ļ	<u> </u>						
5/6/1999	0.05	<u> </u>	Unk			 	 					
5/20/1999	0.08	 	Unk Unk	 	 		 					
6/11/1999 7/14/1999	0.04		Unk	 	 		<u> </u>					
7/29/1999	0.03	 	Unk	 		 						
8/6/1999	0.01		Unk		1	† · · · · · · · · · · · · · · · · · · ·						
8/20/1999	0.01		Unk									
2/26/2001	0.02	7.50	Unk									
3/22/2001	0.00	6.67	Unk		ļ <u> </u>	ļ	<u> </u>					
4/30/2001	0.02	6.19	Unk			 -	 					
5/25/2001	0.02	6.23 5.58	Unk Unk	 	 							
6/19/2001 7/19/2001	0.02	5.67	Unk		 							
8/23/2001	0.04	6.25	Unk	1	 							
9/17/2001	0.02	6.31	Unk	∤	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
10/23/2001	0.04	5.75	Unk		T							
11/13/2001	0.02	6.25	Unk									
12/4/2001	0.02	5.75	Unk									
1/16/2002	0.02	6.42	Unk	ļ	 	-	 					
2/14/2002	0.00	6.19	Unk Unk	1	 	 	 					
4/9/2003 4/23/2003	0.25	6.02	Unk	1	 	 	 					
5/12/2003	Sheen	0.00	Unk		 	1						
5/23/2003	Sheen	 	Unk	· · · · · · · · · · · · · · · · · · ·	 	1						
5./30/2003	Sheen	6.38	Unk									
6/23/2003	0.02		Unk									
6/23/2003	Sheen		Unk	<u> </u>			ļ					
7/18/2003	Sheen	5.63	Unk		 	 	 					
8/26/2003	Sheen	5.54	Unk	 		 	 					
9/2003	Sheen Sheen	5.40	Unk Unk	\	 	 	 					
10/3/2003	Sheen	3,40	Unk	 		 	 					
10/10/2003		5.69	Unk	1	 	<u> </u>	 					
10/22/2003		5.50	Unk			<u> </u>						
12/11/2003		5.63	Unk									
1/21/2004	Sheen	5.77	Unk			1	<u> </u>					
2/17/2004	0.00	6.00	Unk	#	 	 						
2/17/2004	Sheen	6.00	Unk	1	-		-					
3/12/2004	Sheen	5.67	Unk	1								

TABLE 2-3(a) HISTORIC FREE PRODUCT THICKNESSES FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

		W-A1		MW-A3							
Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)				
1/14/1998	Sheen	6.80	5-15	1/14/1998	0.10	5.55	5-15				
1/28/1998	Sheen	7.05	5-15	1/28/1998	0.15	5.70	5-15				
2/13/1998	Sheen	6.14	5-15	2/13/1998	0.06	4.75	5-15				
2/27/1998	Sheen	6.22	5-15	2/27/1998	Sheen	4.38	5-15				
3/13/1998	Sheen	6.02	5-15	3/13/1998	Sheen	4.32	5-15				
3/25/1998	0.03	5.46	5-15	3/25/1998	Sheen	3.80	5-15				
4/9/1998	Sheen	5.44	5-15	4/9/1998	Sheen	3.84	5-15				
4/22/1998	Sheen	5.65	5-15	4/22/1998	Sheen	6.95	5-15				
5/7/1998	0.02	5.62	5-15	5/7/1998	Sheen	3.84	5-15				
5/21/1998	0.01	5.56	5-15	5/21/1998	Sheen	3.89	5-15				
6/5/1998	0.01	5.69	5-15	6/5/1998	Sheen	4.25	5-15				
6/24/1998	0.04	5.75	5-15	6/24/1998	Sheen	4.63	5-15				
7/13/1998	0.05	6.06	5-15	7/13/1998	Sheen	4.73	5-15				
7/22/1998	0.09	6.42	5-15	7/22/1998	0.01	5.75	5-15				
8/26/1998	0.09	6.45	5-15	8/26/1998	Sheen	4.91	5-15				
9/14/1998	0.05	6.49	5-15	9/14/1998	Sheen	4.69	5-15 5-15				
9/28/1998	0.12	6.67	5-15 5-15	9/28/1998 10/12/1998	Sheen 0,06	5.09 5.55	5-15 5-15				
10/12/1998	0.09	6.85	5-15	10/12/1998	0.08	5.46	5-15				
11/5/1998	Sheen	6.30	5-15	11/5/1998	Sheen	4.46	5-15				
11/18/1998	Sheen	6.29	5-15	11/18/1998	Sheen	4.11	5-15				
9/24/1999	0.02	0.29	5-15	4/27/1999	0.03	7.11	5-15				
10/15/1999	0.02		5-15	5/20/1999	0.02		5-15				
11/12/1999	0.05		5-15	10/15/1999	0.06		5-15				
1/21/2000	0.12		5-15	11/12/1999	0.01		5-15				
2/28/2000	0.06		5-15	1/21/2000	0.07		5-15				
3/31/2000	0.07		5-15	3/31/2000	0.01		5-15				
2/26/2001	0.04	7.04	5-15	2/26/2001	0.02	6.60	5-15				
3/22/2001	0.04	4.58	5-15	3/22/2001	0.00	4.42	5-15				
4/30/2001	0.04	6.46	5-15	4/30/2001	0.00	5.08	5-15				
5/25/2001	0.06	5.06	5-15	5/25/2001	0.02	4.60	5-15				
6/19/2001	0.04	6.21	5-15	6/19/2001	0.02	5,35	5-15				
7/19/2001	0.04	5.25	5-15	7/19/2001	0.04	6.40	5-15				
8/23/2001	0.06	6.06	5-15	8/23/2001	0.06	5.21	5-15				
9/17/2001	0.04	6.08	5-15	9/17/2001	0.02	5.27	5-15				
10/23/2001	0.04	5.67	5-15	10/23/2001	0.04	4.38	5-15				
11/13/2001	0.04	5.06	5-15	11/13/2001	0.04	4.75	5-15				
12/4/2001	0.04	5.38	5-15	12/4/2001	0,04	4.33	5-15				
1/16/2002	0.04	5.02	5-15	1/16/2002	0.02	4.79	5-15				
2/14/2002	0.02	5.33	5-15	2/14/2002	0.00	4.58	5-15				
4/9/2003	1.00	5.25	5-15	4/9/2003	0.00	5.60	5-15				
4/28/2000 4/23/2003	0.08	5 20	5-15								
	0.33	5.38	5-15								
5/12/2003 5/23/2003	0.25		5-15 5-15	5/23/2003	Sheen		5-15				
5/23/2003	0.33	6.42	5-15	314314003	Sheen	-	J*13				
6/23/2003	0.17	0.42	5-15	6/2003	Sheen	 	5-15				
6/23/2003	0.10	 	5-15	012003	SHOCH	-	J-1J				
7/18/2203	0.10	5.50	5-15								
8/26/2003	Sheen	5.25	5-15								
9/1/2003	Sheen	5.25	5-15	9/2003	Sheen		5-15				
9/10/2003	Sheen	5.10	5-15	512005	Dilovii		0.10				
10/3/2003	Sheen	3.10	5-15	10/3/2003	0.00		5-15				
10/10/2003	0.01	5.33	5-15								
10/22/2003	Sheen	5.58	5-15								
11/3/2003	Sheen	5.50	5-15								
11/3/2003	Sheen	5.04	5-15	11/3/2003	Sheen	5.25	5-15				
11/17/2003	0.02	5.33	5-15	11/17/2003	Sheen	5.54	5-15				
12/1/2003	0.02		5-15	12/1/2003	Sheen		5-15				
12/11/2003	0.02	5.58	5-15	12/11/2003	Sheen	5.83	5-15				
1/21/2004	0.02	6.08	5-15	1/21/2004	Sheen	5.83	5-15				
2/17/2004	0.02	5.58	5-15	2/17/2004	Sheen	5.56	5-15				
2/17/2004	0.04	5.67	5-15	2/17/2004	Sheen	5.42	5-15				
3/12/2004	0.04	5.50	5-15	3/12/2004	Sheen	5.54	5-15				

Notes:

ft: Feet

Unk: Unknown

Highlighted depths to GW above top of screened interval

TABLE 2-4(R) SOIL DATA FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

Sample ID	Date	Depth (ft bgs)	Acetone	Benzene	Ethylbenzene	Toluene	Xylenes, Total	Diesel #1	Diesel #2	Gasoline (C6-C14)	Kerosene	Motor Oil (C16-C33)	Stoddard Solvent	High	TPH (GC/FID) Low Fraction	(ORO)	Arsenic	Barinm	Chromium
PFT#3 - M	8/1/92	16		139000	<5000	20000	<15000									117000		<u></u> '	
PIT#3-E	8/1/92	16		150000	<5000	75000	<15000			<u> </u>	L					49000			
PIT#3-D	8/1/92	15		128000	<5000	26000	<15000									61000			
PIT#4-D	8/1/92	15		258000	663000	3980000	2970000									13000	43300	212000	19500
40-10012	11/1/94	0-1	<19	<10	<10	<10	<10									ND	43000	245000	18500
40-11224	11/1/94	1-2	<27	<13	<13	<13	<13	<u> </u>							 	ND ND	35600	303000	15100
40-20012	11/1/94	0-1	<48	<10	<10	<10	<10						ļ			ND	44800	201000	19200
40-21224	11/1/94	1-2	<25	<10	<10	<10	<10	ļ	ļ						ļ	ND_	44800	201000	19200
B40E1-6	11/14/02	6		< 1	< l	< l		< 5000	< 5000		< 5000	< 5000	< 5000			ļ		 	
B40E2-6	11/14/02	6		< 1	< 1	< l		< 5000	< 5000		< 5000	< 5000	< 5000	<u> </u>	ļ	 			
B40S1-6	11/14/02	6		< 1	< l	< 1	1	< 5000	< 5000		< 5000	< 5000	< 5000		 	 		ļ	·
B40S2-6	11/14/02	6		< 1	< 1	< 1	<u> </u>	< 5000	< 5000	<u> </u>	< 5000	< 5000	< 5000		<u> </u>				
B40W1-6	11/14/02	6		< 1	< 1	< 1	ļ	< 5000	< 5000		< 5000	< 5000	< 5000		 			 	
B45CS2-6	11/14/02	6		< 50	< 50	< 50	< 50	< 5000	< 5000	< 5000	< 5000	< 5000	< 5000			 		ļ <u> </u>	
B45CS3D-6	11/20/02	6		< 2.5	< 2.5	< 25	< 7.5					 		< 4000	< 500	<u> </u>	<u> </u>	 -	
B45S2-7	11/18/02	7		601	< 5000	3200	360	< 5000	< 5000	186000	< 5000	< 5000	< 5000	ļ	ļ	 	ļ	 	! ₽
B45S2-7 DUP	11/18/02	7		549	< 50	2930	263	< 5000	< 5000	163000	< 5000	< 5000	< 5000			 		 	
B45S3-7	11/18/02	7	·	242	< 50	1550	328	< 5000	< 5000	206000	< 5000	< 5000	< 5000	ļ	ļ		ļ	 	
B45S4-7	11/18/02	7		< 50	< 50	< 50	< 50	< 5000	< 5000	12000	< 5000	< 5000	< 5000	ļ	ļ	 	<u> </u>	 	
B45S6-6	11/18/02	6		< 50	< 50	< 50	< 50	< 5000	< 5000	< 5000	< 5000	< 5000	< 5000	 	 	├			1
B45S7-7	11/18/02	7	1	< 50	< 50	67	113	< 5000	< 5000	68000	< 5000	< 5000	< 5000	ļ		 	. (100	89000	15000
S26B1 10-11	2/3/98	10-11	34				< 6.5	<u> </u>	<u> </u>		ļ	ļ	ļ		├ ─	 	< 6400 < 6200	210000	22000
S26B1 2-3	2/3/98	2-3	39			<u> </u>	< 6.4	1	<u>. </u>	<u> </u>	<u> </u>	<u> </u>		ļ			7600	120000	18000
S26B1 7-9	2/3/98	7-9	< 13				< 6.4				<u> </u>	ļ	ļ	ļ		↓ —	8600	170000	
S26B2 3-4	2/5/98	3-4	73		1		< 6.3		<u> </u>	<u> </u>	<u> </u>	 	 	<u> </u>	 	⊹ -	< 6400	83000	16000
S26B2 7-8	2/5/98	7-8	17				< 6.5	<u> </u>	<u> </u>	ļ	<u> </u>	<u> </u>	<u> </u>		┿		8100	220000	22000
S26B3 2-3	2/3/98	2-3	24		<u> </u>		< 6.4	<u> </u>		ļ		ļ			-	┥	8700	110000	
S26B3 9-11	2/3/98	9-11	17				< 6.4		J	1		1	1		1	<u> </u>	8700	1110000	.2000

Notes:

All concentrations in ug/kg (micrograms per kilogram)

< Less than detection limit shown

Blanks: Not analyzed

ND: Not detected

VOC: Volatile organic compound

TPH: Total petroleum hydrocarbon

GC/FID: Gas chromatograph/flame ionization detector

ORO: Oil range organic

ft bags: Feet below ground surface

Lab qualifiers in Section 1.0

TABLE 2-4(R) SOIL DATA FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

Sample ID	Date	Depth (ft bgs)	Lead	Mercury	Selenium	Aluminum	Antimony	Beryllium	Calcium	Cobalt	Copper	Iron	Magnesium	Manganese	Nickel	Potassium	Sodium	Vanadium	Zinc
РГТ#3 - M	8/1/92	16																	
РГТ#3-Е	8/1/92	16												ļ					
РГГ#3-D	8/1/92	15												<u> </u>					
РГГ#4-D	8/1/92	15						ļ <u>.</u>				0.4500000	0070000	040000	23600	858000	519000	41000	42000
40-10012	11/1/94	0-1	34100	26	<3090	17300000	4350	1340	5420000		15500	24700000	2970000	949000	28700	742000	497000	40700	46500
40-11224	11/1/94	1-2	30500	490	<3090	18000000	4210	1370	3370000		16100	23600000	3140000	1280000			431000	32500	36600
40-20012	11/1/94	0-1	27700	243	<3090	17200000	3540	<1200	3970000		12800	23700000	2750000	2580000	21400	657000 929000	453000	40100	44100
40-21224	11/1/94	1-2	27400	404	<3090	21900000	3920	1310	3540000	6540	14000	25300000	3240000	546000	18600	929000	433000	40100	77.00
B40E1-6	11/14/02	6						l					ļ <u>.</u>			ļ			
B40E2-6	11/14/02	6.					l	<u> </u>					ļ	<u> </u>		 	 	_	
B40S1-6	11/14/02	6						<u> </u>					<u> </u>		<u> </u>	 		 	
B40S2-6	11/14/02	6				1	i	l						<u> </u>	<u> </u>	 			
B40W1-6	11/14/02	6					<u> </u>	<u> </u>		<u> </u>			<u> </u>		 	<u> </u>		<u> </u>	
B45CS2-6	11/14/02	6													ļ			 	
B45CS3D-6	11/20/02	6						†		<u> </u>			ļ	<u> </u>	ļ		ļ	 	
B45S2-7	11/18/02	7	1				<u> </u>	<u></u>			<u> </u>			ļ <u>.</u>		ļ ——	ļ	 	
B45S2-7 DUP	11/18/02	7					<u> </u>	<u> </u>		L	<u> </u>			<u> </u>			 	 	┼──
B45S3-7	11/18/02	7	1						<u> </u>			1	·				ļ	 	├─
B45S4-7	11/18/02	7			I										<u> </u>	 		 	
B45S6-6	11/18/02	6			l					<u> </u>		ļ		ļ	 			ļ	₩
B45S7-7	11/18/02	7	1		1			<u> </u>	<u> </u>	<u> </u>		<u> </u>	1		<u> </u>	 	 		
S26B1 10-11	2/3/98	10-11	8100	< 30	2500				1	<u> </u>			<u> </u>		 			 	
S26B1 2-3	2/3/98	2-3	7400	40	1200		<u> </u>	<u> </u>					ļ			 	 		┼──
S26B1 7-9	2/3/98	7-9	11000	< 30	1800	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>		_	<u> </u>	 	 		 	+
S26B2 3-4	2/5/98	3-4	10000	40	1600				<u> </u>	<u> </u>	<u> </u>	 	 		↓ —	 	 	 	+
S26B2 7-8	2/5/98	7-8	7400	< 30	< 640				1	<u> </u>	<u> </u>	ļ		 	ļ	 		 	+
S26B3 2-3	2/3/98	2-3	15000	30	1700		<u> </u>	L	<u> </u>		<u> </u>		<u> </u>	 	ļ	 	 		
S26B3 9-11	2/3/98	9-11	10000	< 30	1400			L		<u> </u>			1	1	1		<u></u>		

Notes:

All concentrations in ug/kg (micrograms per kilogram)

< Less than detection limit shown

Blanks: Not analyzed

ND: Not detected

VOC: Volatile organic compound

TPH: Total petroleum hydrocarbon GC/FID: Gas chromatograph/flame ionization detector

ORO: Oil range organic ft bags: Feet below ground surface

Lab qualifiers in Section 1.0

TABLE 2-S(a)

COMPARISON OF AVERAGE AND MAXIMUM SOIL CONCENTRATIONS IN AREA 1: RUNWAY PROTECTION ZONE TO BACKGROUND LEVELS
BOEING TRACT 1, ST. LOUIS, MISSOURI

		1		Concentration		Comparison to Ba	ckground Level
COCs*	# of	# of Detects	Average	Maximum	Background	Average	Marinum
COCS	Samples	Tu Diana	(ug/kg)	(ug//kg)	(ug//kg)	Average	
)rganics							374
Acetone	- 11	6	25	73	NA	NA NA	NA NA
Benzene	21	7	32,196	258,000	NA NA	NA_	
Ethylbenzene	21	1	32,056	663,000	NA	NA NA	NA
Toluene	21	8	195,660	3,980,000	NA	NA NA	NA
Kylenes, Total	23	5	130,160	2,970,000	NA	NA NA	NA
ГРН							<u>.</u>
Diesel # I - DRO	12	0	2,500	2,500	NA NA	NA NA	NA
Diesel # 2 - DRO	12	0	2,500	2,500	NA	NA NA	NA NA
Gasoline (C6-C14) - GRO	12	5	91,429	206,000	NA	NA	NA
Kerosene - DRO	12	0	2,500	2,500	NA	NA NA	NA
Motor Oil (C16-C33) - ORO	12	0	2,500	2,500	NA NA	NA NA	NA_
Stoddard solvent - DRO	1	0	2,500	2,500	NA .	NA NA	NA NA
TPH (GC/FID) High Fraction - DRO	1	0	2,000	2,000	NA	NA NA	NA
TPH (GC/FID) Low Fraction - GRO	7	0	250	250	NA	NA NA	NA NA
TPH (ORO) - ORO	4	4	60,000	117,000	NA NA	NA	NA
Summary of TPH Measurements							
TPH-GRO	19	5	57,836	206,000	NA	NA	NA NA
TPH-DRO	38	0	2,487	2,500	NA	NA	NA
IPH-ORO	16	4	16,875	117,000	NA	NA	NA_
Metals							
Aluminum	4	4	18,600,000	21,900,000	41,000,000	Not Exceed	Not Exceed
Antimony	4	4	4,005	4,350	520	Exceed	Exceed
Arsenic	11	8	19,018	44,800	9,200	Exceed	Exceed
Barium	11	ii	240,250	303,000	725,000	Not Exceed	Not Exceed
Beryllium	4	3	1.155	1,370	800	Exceed	Exceed
Calcium	4	4	4,075,000	5,420,000	3,300,000	Exceed	Exceed
Chromium	11	111	17,936	22,000	58,000	Not Exceed	Not Exceed
Cobalt	4	4 4	9,885	11,600	10,000	Not Exceed	Exceed
Copper	4	4	14,600	16,100	13,000	Exceed	Exceed
(ron	4	4	24,325,000	25,300,000	21,000,000	Exceed	Exceed
Lead	11	1 11	17,145	34,100	21,800	Not Exceed	Exceed
Magnesium	4	4	3,025,000	3,240,000	2,600,000	Exceed	Exceed
Manganese	4	1 4	1,338,750	2,580,000	740,000	Exceed	Exceed
Mercury	11	7	121	490	39	Exceed	Exceed
Nickel	4	4	23,075	28,700	14,000	Exceed	Exceed
	4	-4	796,500	929,000	14,000,000	Not Exceed	Not Exceed
Potassium	11	6	1,518	2,500	260	Exceed	Exceed
Selenium	4	4	475,000	519,000	5,300,000	Not Exceed	Not Exceed
Sodium		4	38,575	38,575	69,000	Not Exceed	Not Exceed
Vanadium	4	4 4	42,300	46,500	49,000	Not Exceed	Not Exceed
Zinc Notes:	1 4	1 4	44,300	1 40,,000	42,000		

ug/kg: micrograms per kilogram TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

NA: Not available

GC/FID: Gas chromatograph/flame ionization detector

TABLE 2-5(b) SUMMARY INFORMATION FOR CONSTITUENTS OF CONCERN (COCs) IN SOILS FOR AREA 1: RUNWAY PROTECTION ZONE **BOEING TRACT 1, ST. LOUIS, MISSOURI**

		T T	Ratio Max.		Concen	tration	
COCs	# of	# of Detects	Detected to	Max. Detected	Average	Maximum	Background
cocs	Samples	" or Demon	Average Conc.	(ug/kg)	(ug/kg)	(ug//kg)	(ug//kg)
Organics	L	<u> </u>	Triciage Come	<u></u>			
Acetone	11	6	3.0	73	25	73	NA
Benzene	21	7	8.0	258,000	32,196	258,000	NA
Ethylbenzene	21	 	20.7	663,000	32,056	663,000	NA
Foluene	21	8	20.3	3,980,000	195,660	3,980,000	· NA
Xylenes, Total	23	5	22.8	2,970,000	130,160	2,970,000	NA
TPH		<u></u>					
Diesel # 1 - DRO	12	0	N/A	ND	2,500	2,500	NA
Diesel # 2 - DRO	12	0	N/A	ND .	2,500	2,500	NA
Gasoline (C6-C14) - GRO	12	5	2.3	206,000	91,429	206,000	NA
Kerosene - DRO	12	0	N/A	ND	2,500	2,500	NA
Motor Oil (C16-C33) - ORO	12	0	N/A	ND	2,500	2,500	NA
Stoddard solvent - DRO	1	0	N/A	ND	2,500	2,500	NA
TPH (GC/FID) High Fraction - DRO	- i -	1 0	N/A	ND	2,000	2,000	NA
TPH (GC/FID) Low Fraction - DRO	7	ō	N/A	ND	250	250	NA
TPH (ORO) - ORO	4	4	2.0	117,000	60,000	117,000	NA
Summary of TPH Measurements	L						
TPH-GRO	19	5	3.6	206,000	57,836	206,000	NA
TPH-DRO	38	0	N/A	ND	2,487	2,500	NA
TPH-ORO	16	4	6.9	117,000	16,875	117,000	· NA
Metals							
Antimony	4	4	1.1	4,350	4,005	4,350	520
Arsenic	11.	8	2.4	44,800	19,018	44,800	9,200
Beryllium	4	3	1.2	1,370	1,155	1,370	800
Cobalt	4	4	1.2	11,600	9,885	11,600	10,000
Copper	4	4	1.1	16,100	14,600	16,100	13,000
Manganese	4	4	1.9	2,580,000	1,338,750	2,580,000	740,000
Mercury	11	7	4.0	490	121	490	39
Nickel	4	4	1.2	28,700	23,075	28,700	14,000
Selenium	11	6	1.6	2,500	1,518	2,500	260

Notes:

ug/kg: micrograms per kilogram

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

NA: Not available

ND: Not detected

N/A: Not applicable

GC/FID: Gas chromatograph/flame ionization detector

Max. Detected: Maximum of only detected concentratons

Maximum: Maximum of detected concentratons and 1/2 detection limits for non-detected constituents

Sample ID	Date	Group	#6 Fuel Oil (C10-C32)	1,2,3-Trimethyl benzene	1,2,4-Trimethyl beszene	Acetone	Arsenic	Arsenic, Dissolved	Bartum	Barium, Dissolved	Benzene
B40E1W	14-Nov-02	ТРН	<u> </u>								
B40EIW	14-Nov-02	VOCs			< l						< 1
B40E2W	14-Nov-02	TPH									
B40E2W	14-Nov-02	VOCs		<u> </u>	< 1						< 1
B40SIW	14-Nov-02	TPH									
B40S1W	14-Nov-02	VOCs			< 1						< 1
B40S2W	14-Nov-02	TPH	i						Ī		
B40S2W	14-Nov-02	VOCs	l		< 1		•				< 1
B40W1W	14-Nov-02	TPH	· · · · · ·								
B40W1W	14-Nov-02	VOCs			< 1						< 1
B45CMW-3AW	02-Jul-03	TPH	< 100								
B45CMW-3AW	02-Jul-03.	VOCs		3.4	1.7	< 50					< 1
845CMW-3BW	26-Jun-03	TPH	< 100		 						
B45CMW-3BW	26-Jun-03	VOCs		< 1	< 1	< 50					< 1
B45CS1DW	15-Nov-02	TPH			 						
B45CS1DW	15-Nov-02	VOCs	 	***************************************					1		< 5
B45CS2W	14-Nov-02	TPH					1			1	
B45CS2W	14-Nov-02	VOCs	<u> </u>		1						< 5
B45CS3DW	20-Nov-02	TPH	<u> </u>		1						
B45CS3DW	20-Nov-02	VOCs	1	 	1						< 0.5
B45SIDW	18-Nov-02	ТРН	1	 	 					1	
B45SIDW	18-Nov-02	VOCs	 	 	<u> </u>	1	T		T		< 5
B45S2W	18-Nov-02	TPH	1	· · · · · ·	<u> </u>						
B45S2W	18-Nov-02	VOCs	1		<u> </u>						29.4
B45S3W	18-Nov-02	TPH		 					1		
B45S3W	18-Nov-02	VOCs	ļ								23.5
B45S4W	18-Nov-02	TPH	<u> </u>	i				1			1
B45S4W	18-Nov-02	VOCs	-			1					< 5
B45S4W DUP	18-Nov-02	TPH	··	<u> </u>			1				
B45S4W DUP.	18-Nov-02	VOCs		1							< 5
B45S5DW	19-Nov-02	TPH				T :					
B45S5DW	19-Nov-02	VOCs			<u> </u>		1				< 5
B45S6W	18-Nov-02	TPH	 	†		†	i				
B45S6W	18-Nov-02	VOCs	1	 	1	T	T				< 5
B45S7W	19-Nov-02	TPH		<u> </u>	1						
B45S7W	19-Nov-02	VOCs	 	 		i	1		1		6.7
MW-A15W	02-Jul-03	TPH	< 100	 		-	 	 	1	1	1
MW-A15W	02-Jul-03	VOCs	 ```	< 10	< 10	< 500	 	 	1	1	34
MW-A17W	26-Jun-03	TPH	< 100	 	 	1	 	1	 	1	1
MW-A17W	26-Jun-03	VOCs	1	< 1	< 1	60	1	 	1	1	< 1
MW-A18W	26-Jun-03	TPH	< 100	+	 	 	 	 	 	1	1
MW-A18W	26-Jun-03	VOCs	1- 100	< 1	< 1	< 50	 	 	-		< 1
MW-A18W	29-Jul-03	VOCs	 	 ` ` ' 	 	< 20	 	+	1	-	< 5

TABL

GROUNDWATER DATA FOR AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST.LOUIS, MISSOURI

	~										
Sample ID	Date	Group	#6 Fuel Oil (C10-C32)	1,2,3-Trimethyl benzene	1,2,4-Trimethyl benzene	Acetone	Arsenic	Arsenic, Dissolved	Barium	Barium, Dissolved	Benzene
MW-AIW	07-May-01	Metals					44		680		
MW-AIW	07-May-01	Metals, Dissolved						20		470	<u> </u>
MW-AIW	26-Jul-01	Metals					51		740		<u> </u>
MW-AIW	26-Jul-01	Metals, Dissolved						27		490	
MW-AIW	02-Јш-03	TPH	< 500								- 05
MW-AIW	02-Jul-03	VOCs									< 0.5
MW-A22W	01-Nov-02	TPH	< 100						<u> </u>		2
MW-A22W	01-Nov-02	VOCs							<u> </u>		 -
MW-A22W	20-Mar-03	TPH						<u> </u>		ļ	1.4
MW-A22W	20-Mar-03	VOCs							ļ		1.4
MW-A23W	02-Jաl-03	TPH	< 100						ļ		28
MW-A23W	02-Jul-03	VOCs		l	<u> </u>		ļ	 	<u> </u>		29
MW-A23W	29-Jul-03	* VOCs			< 5	< 20	<u> </u>				29
MW-A27W	01-Nov-02	TPH	< 100				<u> </u>	1	<u> </u>		- 05
MW-A27W	01-Nov-02	VOCs			<u> </u>		<u> </u>		 	ļ	< 0.5
MW-A27W	29-Jul-03	VOCs			< 5	< 20	<u> </u>	1			< 5
MW-A3W	26-Jun-03	TPH	< 100		<u>]</u>		ļ	<u> </u>	<u> </u>	ļ	< 1
MW-A3W	26-Jun-03	VOCs		< 1	<u> </u>	< 50	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>

Notes:

All concentrations in ug/L (micrograms per liter)

< Less than detection limit shown

ND: Non-detect

Blank: Not analyzed

VOC: Volatile organic compound

TPH: Total petroleum hydrocarbon

GC/FID: Gas chromatograph/flame ionization detector

Lab qualifiers in Section 1.0

Sample ID	Date	Group	Chromium	Chromium, Dissolved	Diesel #1	Diesel #2	Diesel (C7- C26)	Ethylbenzene	Gasoline (C6- C14)	Hydraulic Fluid (C12-C33)	Isopropyi benzene
B40E1W	14-Nov-02	TPH			< 1000	< 1000					
B40EIW	14-Nov-02	VOCs						< 1			< 1
B40E2W	14-Nov-02	TPH			< 1000	< 1000					
B40E2W	14-Nov-02	VOCs						< 1			< 1
B40S1W	14-Nov-02	TPH			< 1000	< 1000					
B40SIW	14-Nov-02	VOCs	·					< 1			< 1
B40S2W	14-Nov-02	TPH	1		< 1000	< 1000			<u> </u>		
B40S2W	14-Nov-02	VOCs						< l			< 1
B40W1W	14-Nov-02	TPH			< 1000	. < 1000		·]		
B40W1W	14-Nov-02	VOCs						< 1			< 1
B45CMW-3AW	02-Jul-03	TPH					< 100			< 100	
B45CMW-3AW	02-Jul-03	VOCs						< 1			< 1
B45CMW-3BW	26-Jun-03	TPH					< 100		1	< 100	
B45CMW-3BW	26-Jun-03	VOCs						< 1			< 1
B45CS1DW	15-Nov-02	TPH	-	·	< 1000	< 1000			< 1000		
B45CSIDW	15-Nov-02	VOCs						< 5			
B45CS2W	14-Nov-02	TPH			< 1000	< 1000			< 1000		
B45CS2W	14-Nov-02	VOCs	<u> </u>				·	< 5			
B45CS3DW	20-Nov-02	TPH	<u> </u>	l							
B45CS3DW	20-Nov-02	VOCs	 	 				< 0.5			
B45SIDW	18-Nov-02	TPH			< 1000	< 1000			< 1000		
B45S1DW	18-Nov-02	VOCs			· · · · · · · · · · · · · · · · · · ·			< 5			
B45S2W	18-Nov-02	TPH			< 1000	< 1000			15310		
B45S2W	18-Nov-02	VOCs						< 5			
B45S3W	18-Nov-02	TPH			< 1000	< 1000	·		2760		
B45S3W	18-Nov-02	VOCs		·	· · · · · · · · · · · · · · · · · · ·	l	†	< 5			
B45S4W	18-Nov-02	TPH			< 1000	< 1000	†		< 1000		
B45S4W	18-Nov-02	VOCs				 		< 5	T		
B45S4W DUP	18-Nov-02	TPH			< 1000	< 1000	 		< 1000		
B45S4W DUP	18-Nov-02	VOCs						< 5			
B45S5DW	19-Nov-02	TPH	-		< 1000	< 1000	·		< 1000	1	
B45S5DW	19-Nov-02	VOCs	l		1	- · · · · · · ·	1	< 5	1	1	
B45S6W	18-Nov-02	TPH	!	 	< 1000	< 1000	 	 	< 1000	1	
B45S6W	18-Nov-02	VOCs	 		1	 	 	< 5	1	1	
B45S7W	19-Nov-02	TPH	 	 	< 1000	< 1000	1	 	41410	1	
B45S7W	19-Nov-02	VOCs		 	1	1		< 5	1		
MW-A15W	02-Jul-03	TPH		l	 	-	< 100	 	+	< 100	
MW-AISW	02-Jul-03	VOCs			 	<u> </u>	1	< 10	 	1	14
MW-A17W	26-Jun-03	TPH	 	 	 	ļ	< 100	 ``	 	< 100	
MW-A17W	26-Jun-03	VOCs	 	-	1		1 100	< 1	 	1	< 1
MW-A18W	26-Jun-03	TPH	 		 	 	< 100	 	+	< 100	- ` · -
MW-A18W	26-Jun-03	VOCs	 	ļ	 		1 100	< 1	+	1	< 1
MW-A18W	29-Jul-03	VOCs VOCs	 	ļ	 	 	 	< 5	 	 	< 5

Sample ID	Date	Group	Chromium	Chromium, Dissolved	Diesel #1	Diesel #2	Diesel (C7- C24)	Ethylbenzene	Gasoline (C6- C14)	Hydraulic Fluid (C12-C33)	Isopropyl benzene
MW-AIW	07-May-01	Metals	16								
MW-AIW	07-May-01	Metals, Dissolved		2.6					<u> </u>		
MW-AIW	26-Jul-01	Metals	21			l			L		
MW-AIW	26-Jul-01	Metals, Dissolved		2.4	Ī				<u></u>		
MW-AIW	02-Jul-03	TPH					< 500			< 500	
MW-AIW	02-Jul-03	VOCs								<u> </u>	
MW-A22W	01-Nov-02	TPH					< 100		<u> </u>	< 100	
MW-A22W	01-Nov-02	VOCs			•			2.8			
MW-A22W	20-Mar-03	TPH			T				l	<u> </u>	
MW-A22W	20-Mar-03	VOCs						< 0.5			
MW-A23W	02-Jul-03	TPH					< 100		<u> </u>	< 100	
MW-A23W	02-Jul-03	VOCs						0.64	<u> </u>		
MW-A23W	29-Jul-03	VOCs						< 5			26
MW-A27W	01-Nov-02	TPH				!	< 100			< 100	
MW-A27W	01-Nov-02	VOCs		<u> </u>				< 0.5			
MW-A27W	29-Jul-03	VOCs		l				< 5			< 5
MW-A3W	26-Jun-03	ТРН					< 100			< 100	
MW-A3W	26-Jun-03	VOCs		<u> </u>	<u> </u>			< 1	1		5.5

Notes:

All concentrations in ug/L (micrograms per liter)

< Less than detection limit shown

ND: Non-detect

Blank: Not analyzed

VOC: Volatile organic compound

TPH: Total petroleum hydrocarbon

GC/FID: Gas chromatograph/flame ionization detector

Lab qualifiers in Section 1.0

Sample ID	Date	Group	Kerosene	Kerasene (C9- C16)	Lead	Lead, Dissolved	Methyl tert-butyl ether	Mineral Spirits (C7-C14)	Mise_TPH (C10-C40)	Motor Oil (C16-C33)	Naphthalene	n-Butyl benzene
B40EIW	14-Nov-02	ТРН	< 1000							< 1000		
B40E1W	14-Nov-02	VOCs									< 1	< 1
B40E2W	14-Nov-02	TPH	< 1000							< 1000		
B40E2W	14-Nov-02	VOCs									< 1	< 1
B40SIW	14-Nov-02	TPH	< 1000	i						< 1000		
B40S1W	14-Nov-02	VOCs									< 1	1 >
B40S2W	14-Nov-02	TPH	< 1000							< 1000		
B40S2W	14-Nov-02	VOCs									< 1	< 1
B40WIW	14-Nov-02	TPH	< 1000							< 1000		
B40W1W	14-Nov-02	VOCs									< 1	< 1
B45CMW-3AW	02-Jul-03	TPH		< 100				< 100	9500	< 100		ļ
B45CMW-3AW	02-Jul-03	VOCs					< 5				< 5	< 1
B45CMW-3BW	26-Jun-03	TPH		< 100				< 100	1400	< 100		ļ <u>.</u>
B45CMW-3BW	26-Jun-03	VOCs					< 1				5.3	< 1
B45CSIDW	15-Nov-02	TPH	< 1000						,	< 1000		ļ
B45CS1DW	15-Nov-02	VOCs					< 5					
B45CS2W	14-Nov-02	TPH	< 1000							< 1000	<u> </u>	ļ
B45CS2W	14-Nov-02	VOCs					< 5					
B45CS3DW	20-Nov-02	TPH										
B45CS3DW	20-Nov-02	VOCs					< 5					
B45S1DW	18-Nov-02	ТРН	< 1000							< 1000		ļ
B45SIDW	18-Nov-02	VOCs				•	< 5					
B45S2W	18-Nov-02	TPH	< 1000							< 1000		
B45S2W	18-Nov-02	VOCs	·				< 5					
B45S3W	18-Nov-02	TPH	< 1000							< 1000		ļ
B45S3W	18-Nov-02	VOCs					< 5					ļ
B45S4W	18-Nov-02	TPH	< 1000							< 1000	ļ	
B45S4W	18-Nov-02	VOCs					< 5				<u> </u>	
B45S4W DUP	18-Nov-02	TPH	< 1000							< 1000		
B45S4W DUP	18-Nov-02	VOCs					< 5					ļ
B45S5DW	19-Nov-02	TPH	< 1000							< 1000		
B45S5DW	19-Nov-02	VOCs					< 5					
B45S6W	18-Nov-02	TPH	< 1000							< 1000		<u> </u>
B45S6W	18-Nov-02	VOCs					< 5					<u> </u>
B45S7W	19-Nov-02	TPH	< 1000							< 1000		<u> </u>
B45S7W	19-Nov-02	VOCs					< 5					
MW-A15W	02-Jul-03	TPH		< 100				< 100	810	< 100		
MW-A15W	02-Jul-03	VOCs			· · · ·		<10				< 50	< 10
MW-A17W	26-Jun-03	ТРН		< 100			·	< 100	160	< 100		
MW-A17W	26-Jun-03	VOCs					< 1		1		< 5	< i
MW-A18W	·26-Jun-03	TPH		< 100	T		1	< 100	J3J4 210	< 100	1	
MW-A18W	26-Jun-03	VOCs					< 1				< 5	< l
MW-A18W	29-Jul-03	VOCs					< 10				< 10	< 5

Sample ID	Date	Group	Kerosene	Kerusene (C9- C16)		Lead, Dissolved	Methyl tert-butyl ether		Misc_TPH (C10-C40)	Motor Oil (C16-C33)	Naphthalene	n-Butyl benzene
MW-AIW	07-May-01	Metals			15							
MW-AIW	07-May-01	Metals, Dissolved				< 5						
MW-AIW	26-Jul-01	Metals			14							
MW-AIW	26-Jul-01	Metals, Dissolved				9.4						}
MW-AIW	02-Jน1-03	TPH		< 500				< 500	19000	< 500		
MW-A1W	02-Jul-03	VOCs		1			11				<u> </u>	ļ
MW-A22W	01-Nov-02	TPH		< 100				< 100	840	< 100		
MW-A22W	01-Nov-02	, VOCs					< 5					
MW-A22W	20-Mar-03	TPH										
MW-A22W	20-Mar-03	VOCs		1			< 5					.
MW-A23W	02-Jul-03	TPH		< 100				< 100	3900	< 100	ļ	ļ
MW-A23W	02-Jul-03	VOCs					< 5					
MW-A23W	29-Jul-03	VOCs			1		< 10				< 10	8.1
MW-A27W	01-Nov-02	TPH		< 100				< 100	1300	< 100		<u> </u>
MW-A27W	01-Nov-02	VOCs	1	1			< 5			<u> </u>		<u> </u>
MW-A27W	29-Jul-03	VOCs					< 10		l	<u> </u>	< 10	< 5
MW-A3W	26-Jun-03	TPH		< 100				< 100	9500	< 100		ļ
MW-A3W	26-Jun-03	VOCs		1			5.1			<u> </u>	< 5	< 1

Notes:

All concentrations in ug/L (micrograms per liter)

< Less than detection limit shown

ND: Non-detect Blank: Not analyzed

VOC: Volatile organic compound TPH: Total petroleum hydrocarbon

GC/FID: Gas chromatograph/flame ionization detector

Lab qualifiers in Section 1.0

Sample ID	Date	Group	a-Propyl beazene	p-Isopropyl toluene	sec-Butyl benzene	Stoddard Solvent	tert-Butyl beszene	Toluene	TPH (GC/FID) High Fraction	TPH (GC/FID) Low Fraction	Trichloro-ethene	Xylenes, Total
B40EIW	14-Nov-02	TPH				< 1000						
B40EIW	14-Nov-02	VOCs	< l	< 1	< 1		< l	< 1			1.1	
B40E2W	14-Nov-02	TPH				< 1000						
B40E2W	14-Nov-02	VOCs	< 1	< 1	< 1		< 1	< 1			< I	
B40S1W	14-Nov-02	TPH				< 1000						
B40S1W	14-Nov-02	VOCs	< 1	< l	< 1		< 1	< 1			< 1	
B40S2W	14-Nov-02	TPH				< 1000						
B40S2W	14-Nov-02	VOCs	< 1	< 1	< I		< l	< 1			< 1	
B40W1W	14-Nov-02	TPH				< 1000						
B40W1W	14-Nov-02	VOCs	< 1	< 1	< 1		< 1	< 1			< 1	
B45CMW-3AW	02-Jน1-03	TPH								220	<u> </u>	
B45CMW-3AW	02-Jul-03	VOCs	< 1	1	1.1		< 1	< 5			< 1	<1.5
B45CMW-3BW	26-Jun-03	TPH								160		
B45CMW-3BW	26-Jun-03	VOCs	< 1	< I	< 1		< 1	< 5			< 1	< 3
B45CS1DW	15-Nov-02	TPH				< 1000						
B45CS1DW	15-Nov-02	, VOCs						< 5				< 5
B45CS2W	14-Nov-02	ТРН				< 1000						
B45CS2W	14-Nov-02	VOCs						< 5				< 5
B45CS3DW	20-Nov-02	TPH							< 100	< 100		
B45CS3DW	20-Nov-02	VOCs						< 5				< 1.5
B45SIDW	18-Nov-02	TPH				< 1000						
B45SIDW	18-Nov-02	VOCs						< 5				< 5
B45S2W	18-Nov-02	ТРН				< 1000						
B45S2W	18-Nov-02	VOCs			-			54.8				< 5
B45S3W	18-Nov-02	ТРН				< 1000						
B45S3W	18-Nov-02	VOCs						18.6				< 5
B45S4W	18-Nov-02	TPH				< 1000						
B45S4W	18-Nov-02	VOCs						< 5		1		< 5
B45S4W DUP	18-Nov-02	ТРН	i	i		< 1000						
B45S4W DUP	18-Nov-02	VOCs						< 5				< 5
B45S5DW	19-Nov-02	TPH		i		< 1000		i				
B45S5DW	19-Nov-02	VOCs						< 5	1	1		< 5
B45S6W	18-Nov-02	TPH				< 1000						
B45S6W	18-Nov-02	VOCs						< 5	1			< 5
B45S7W	19-Nov-02	TPH				< 1000			1			
B45S7W	19-Nov-02	VOCs						10.1	T			8.4
MW-A15W	02-Jul-03	TPH		<u> </u>			l			610	1	
MW-A15W	02-Jul-03	VOCs	12	< 10	< 10		< 10	< 50			< 10	< 30
MW-A17W	26-Jun-03	TPH					 			< 100	T	
MW-A17W	26-Jun-03	VOCs	< 1	< 1	< 1	1	< 1	< 5	1	····	< 1	< 3
MW-A18W	26-Jun-03	TPH		 		—	l	l	T	< 100		
MW-A18W	26-Jun-03	VOCs	< 1	< 1	< 1	 	< 1	< 5			< 1	< 3
MW-A18W	29-Jul-03	VOCs	< 5	< 5	< 5	l	ব	< 5	1	 	< 5	

Sample ID	Date	Group	n-Propyi benzene	p-Isopropyl toluene	sec-Butyl benzene	Stoddard Solvent	tert-Butyl beszene	Toluene	TPH (GC/FID) High Fraction	,	Trichloro-ethene	Xylenes, Total
MW-AIW	07-May-01	Metals										
MW-AIW	07-May-01	Metals, Dissolved							l			
MW-AIW	26-Jul-01	Metals							L			L
MW-AIW	26-Jul-01	Metals, Dissolved										
MW-AIW	02-Jul-03	TPH								1900		
MW-AIW	02-Jul-03	VOCs						< 5				2.1
MW-A22W	01-Nov-02	TPH								1700		
MW-A22W	01-Nov-02	VOCs						< 5				- 11
MW-A22W	20-Mar-03	TPH		,						190		
MW-A22W	20-Mar-03	VOCs						< 5	1			< 1.5
MW-A23W	02-Jul-03	TPH							1	3400		
MW-A23W	02-Jul-03	VOCs						< 5				2.6
MW-A23W	29-Jul-03	. VOCs	31	< 5	12		ব	< 5			< 5	
MW-A27W	01-Nov-02	TPH			•					< 100		<u> </u>
MW-A27W	01-Nov-02	VOCs						< 5	1			< 1.5
MW-A27W	29-Jul-03	VOCs	< 5	< 5	< 5		ঠ	< 5			< 5	
MW-A3W	26-Jun-03	TPH								3800	,	
MW-A3W	26-Jun-03	VOCs	7.8	5.4	5.1		2.3	< 5			< 1	< 3

Notes:

All concentrations in ug/L (micrograms per liter)

< Less than detection limit shown

ND: Non-detect

Blank: Not analyzed

VOC: Volatile organic compound

TPH: Total petroleum hydrocarbon

GC/FID: Gas chromatograph/flame ionization detector

Lab qualifiers in Section 1.0

TABLE 2-7(a) COMPARISON OF AVERAGE AND MAXIMUM GROUNDWATER CONCENTRATIONS IN AREA 1: RUNWAY PROTECTION ZONE TO MAXIMUM CONTAMINANT LEVEL (MCL) OR EQUIVALENT BOEING TRACT 1, ST. LOUIS, MISSOURI

	T			Concentration		Comparison to M	CL or Equivalent
COCs	# of Samples	# of Detects	Average	Maximum	MCL or Equivalent	Average	Maximum
			(ug/L)	(ug/L)	(ug/L)	Arterage	
Organics							
1,2,3-Trimethylbenzene	6	1	1.7	5	NA	NA	NA
1,2,4-Trimethylbenzene	14	1	1.2	5	2.59	Not Exceed	Exceed
Acetone	9	1	48.9	250	121	Not Exceed	Exceed
Benzene	30	8	6.1	34	5	Exceed	Exceed
Ethylbenzene	30	3	1.6	5	700	Not Exceed	Not Exceed
Isopropylbenzene	14	3	3.9	26	4,000	Not Exceed	Not Exceed
Methyl tert-butyl ether	25	2	3.1	11	146	Not Exceed	Not Exceed
Naphthalene	14	1	4.1	25	100	Not Exceed	Not Exceed
n-Butylbenzene	14	1	1.7	8.1	48.6	Not Exceed	Not Exceed
n-Propylbenzene	14	2	4.3	31	5.3	Not Exceed	Exceed
p-lsopropyltoluene	14	2	1.6	5.4	107	Not Exceed	Not Exceed
sec-Butylbenzene	14	3	2.3	12	48.6	Not Exceed	Not Exceed
Toluene	30	3	5.5	54.8	1,000	Not Exceed	Not Exceed
tert-Butylbenzene	14	1	1.4	5	48.6	Not Exceed	Not Exceed
Trichloroethene	14	1	1.3	5	5	Not Exceed	Not Exceed
Xylenes, Total	22	4	3.2	15	10,000	Not Exceed	Not Exceed
TPH							
#6 Fuel Oil (C10-C32) - ORO	10	0 1	70	250	NA	NA	NA
Diesel #1 - DRO	15	0	500	500	NA	NA	NA
Diesel #2 - DRO	15	0	500	500	NA	NA	NA
Diesel (C7-C26) - DRO	10	0	70	250	NA	NA	NA
Gasoline (C6-C14) - GRO	10	3	6,298	41,410	NA	NA	NA
Hydraulic Fluid (C12-C33) - ORO	10	0	70	250	NA	NA	NA
Kerosene - DRO	15	0	500	500	NA	NA	NA
Kerosene (C9-C16) - DRO	10	0	70	250	NA	NA	NA
Mineral Spirits (C7-C14) - DRO	10	0	70	250	NA	NA	NA
Misc_TPH (C10-C40) - ORO	10	9	4,652	19,000	NA	NA	NA
Motor Oil (C16-C33) - ORO	25	0	328	500	NA	NA	NA
Stoddard Solvent - DRO	15	0	500	500	NA	NA	NA
TPH (GC/FID) High Fraction - DRO	1	0	50	50	NA	NA	NA
TPH (GC/FID) Low Fraction - GRO	12	8	1,015	3,800	NA	NA	NA
Summary of TPH Measurements							
TPH-GRO	22	11	3,416	41,410	NA NA	NA	NA
TPH-DRO	91	0	353	500	NA	NA	NA
TPH-ORO	55	9	1.020	19,000	NA	NA	NA
Total Metals			-,,				
Arsenic	2	2	47.5	51	10	Exceed	Exceed
Barium	2	2	710	740	2,000	Not Exceed	Not Exceed
Chromium	2	2	18.5	21	100	Not Exceed	Not Exceed
Lead	2	2	14.5	15	15	Not Exceed	Not Exceed

ug/L: micrograms per liter

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

NA: Not available

GC/FID: Gas chromatograph/flame ionization detector

TABLE 2-7(b)
SUMMARY INFORMATION FOR CONSTITUENTS OF CONCERN (COCs) IN GROUNDWATER FOR AREA 1: RUNWAY PROTECTION ZONE
BOEING TRACT 1, ST. LOUIS, MISSOURI

	T	T	Ratio Max.	Concentration						
COCs	# of	# of Detects	Detected to	Max. Detected	Average	Maximum	MCL or Equivalent			
COCS	Samples	" of Detects	Average Conc.	(ug/L)	(ug/L)	(ug/L)	(ug/L)			
Organics										
1,2,3-Trimethylbenzene	6	1 1	2.0	3.4	1.7	5	NA			
1,2,4-Trimethylbenzene	14	1	1.4	1.7	1.2	5	2.59			
Acetone	9	1	1.2	60	48.9	250	121			
Benzene	30	8	5.6	34	6.1	34	5			
n-Propylbenzene	14	2	7.2	31	4.3	31	5.27			
ТРН										
#6 Fuel Oil (C10-C32) - ORO	10	0	N/A	ND	70	250	NA			
Diesel #1 - DRO	15	0	N/A	ND	500	500	NA			
Diesel #2 - DRO	15	0	N/A	ND	500	500	NA			
Diesel (C7-C26) - DRO	10	0	N/A	ND	70	250	NA			
Gasoline (C6-C14) - GRO	10	3	6.6	41,410	6,298	41,410	NA			
Hydraulic Fluid (C12-C33) - ORO	10	0	N/A	ND	70	250	NA			
Kerosene - DRO	15	0	N/A	ND	500	500	NA			
Kerosene (C9-C16) - DRO	10	0	N/A	ND	70	250	NA			
Mineral Spirits (C7-C14) - DRO	10	0	N/A	ND	70	250	NA			
Misc TPH (C10-C40) - ORO	10	9	4.1	19,000	4,652	19,000	NA			
Motor Oil (C16-C33) - ORO	25	0	N/A	ND	328	500	NA			
Stoddard Solvent - DRO	15	0	N/A	ND	500	500	NA			
TPH (GC/FID) High Fraction - DRO	1	. 0	N/A	ND	50	50	NA			
TPH (GC/FID) Low Fraction - GRO	12	8	3.7	3,800	1,015	3,800	NA			
Summary of TPH Measurements										
TPH-GRO	22	11	12.1	41,410	3,416	41,410	NA			
TPH-DRO	91	0	N/A	ND	353	500	NA			
TPH-ORO	55	0	N/A	ND	1,020	500	NA NA			
Metals										
Arsenic	2	2	1.1	51	47.5	51	10			

Notes:

ug/L: micrograms per liter

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

NA: Not available

ND: Not detected

N/A: Not applicable

GC/FID: Gas chromatograph/flame ionization detector

Max. Detected: Maximum of only detected concentratons

Maximum: Maximum of detected concentratons and 1/2 detection limits for non-detected constituents

TABLE 2-8(R)
HISTORICAL GROUNDWATER DATA, AREA 1: RUNWAY PROTECTION ZONE
BOEING TRACT 1, ST. LOUIS, MISSOURI

Well	Sampling Date	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Xylenes (ug/L)
MW-A1	1/20/1990	630	্ব ব	<15	26
1111-762	6/5/1990	260	ح ح	<5	<15
	1/10/1991	180	ব	10	10
	6/20/1991	<u>نان .</u> خ	ত	3	<15
	7/6/1993	- 3	ঠ	4 45	<15
	4/26/1994	ব্	ত	3	<15
	1/13/1995	<u>্</u>	ব	3	<15
	12/27/1996	7	ত্ত	1 3 1	3
	7/14/1997	ح5 -	- 5	1 3	<15
	1/29/1998	3	ব্য	ব্য	<15
	1/5/1999	ن خ	ব	ত	<15
	10/22/2001	ح	ح ح	- 3	<15
	7/2/2003	<0.5	ঠ	1 	2.1
MW-A2	1/20/1990	200	0	100	100
173 17 - 17.2	6/5/1990	670	23	95	145
	1/10/1991	450	10	90	210
	6/20/1991	40	<5	3	<15
	7/6/1993	<u>ජ</u>	3	उ	2
MW-A3	1/20/1990	11	ঠ	27	<15
111111111111111111111111111111111111111	6/5/1990	<5	3	45	<15
	6/20/1991	্ ধ	3	3	<15
	7/6/1993	<u>- చ</u>	45	3	3
·	4/26/1994	7	3	ব	36
	1/13/1995	16	2	1 3	24
	12/27/1996	2	5	3	21
	7/14/1997	্ব	ব	3	<15
	1/29/1998	20	34	4 3	80
·	1/5/1999	<5	- 3 7	ত	27
	10/22/2001	ত্ত	ঠ	3	<15
	6/26/2003	<1	3	 	<3
MW-A18	1/20/1990	570	ঠ	1500	330
1111-1110	6/5/1990	9	ঠ	- 1500 - 25	130
	6/20/1991	75	ঠ	1 8	<40
	7/6/1993	 হ	उ	1 i - 1	<15
	4/26/1994	<u>-</u> ত	ঠ	45	<15
	1/13/1995		ঠ	ত	<15
	12/27/1996	ব	ত	3	<15
***************************************	7/14/1997	ব	3	1 3	<15
	1/29/1998	্ত	3	1 3	<15
	1/5/1999	্	3	3	<15
	6/26/2003	<u> </u>	3	1 (1	<3
	7/29/2003	<u> </u>	ঠ	ব	NA NA
MW-A21	6/5/1990	17	ত	3	32
B45CMW-3A	6/20/1991	<u>্</u>	उ	3	<15
	7/6/1993	ব	ত্ত	3	<15
	4/26/1994	ব	ঠ	5	<15
	1/13/1995	্	ঠ	3	<15
	12/27/1996	<5	उ	3	79
	7/14/1997	ঠ	19	13	195
	1/29/1998	ব	10	- 13	110
	1/5/1999	ধ	<5	3	54
	10/22/2001	ধ			
	7/2/2003	<1	্ <u></u> ্	6.3	<15 <1.5

TABLE 2-8(R) HISTORICAL GROUNDWATER DATA, AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

B45CMW-3B	6/20/1991	ర	్	ර	<15
3400	7/6/1993	ح5	<5	<5	<15
	4/26/1994	భ	<5	ర	<15
	1/13/1995	<5	ح ح	ৰ্ব	<15
	12/27/1996	ব	5	- ব	.44
	7/14/1997	<u> </u>	ব	ঠ	25
	1/29/1998	ব	9	<5	24
	1/5/1999	- 3	6		<15
	6/26/2003	- 3	خ خ	<1	ح ا
MW-A5	6/5/1990	36000	140	19000	3500
174 17 -745	1/10/1991	7000	10	950	900
	7/6/1993	23000	<5	4	11000
MW-A14	6/5/1990	28000	7500`	14000	75000
1211-222-4	1/10/1991	8000	900	2300	1500
MW-A15	6/5/1990	18000	600	19000	8000
MIN-ALS	1/10/1991	8700	400	2400	1000
	6/20/1991	180	<5	<u>্</u>	45
	7/6/1993	5800	ব	16	315
	4/26/1994	1520	<25	<25	267
	1/13/1995	756	106	14	26
	12/27/1996	142	15	ধ্	20
	7/14/1997	129	6	ঠ	<15
	1/29/1998	240	15	ত ত	<15
	1/5/1999	54	্ হ	ঠ	<15
	6/13/2000	173	ঠ	ঠ	<15
	4/30/2002	42.2) 'S	ঠ	· 45
	7/2/2003	34	. <30	<10	3 0
MW-A22	6/5/1990	2000	15	3000	3300
VI VI -PLEE	1/10/1991	500	250	300	200
	6/20/1991	<u>্</u>	<u> </u>	ব্য	40
	7/6/1993	2	ধ	1	<15
	4/26/1994	্	ঠ	ধ	<15
	1/13/1995	14	18	ত	19
	12/27/1996	2	3	ত ত	<15
	7/14/1997	23	5	ত	<15
	1/29/1998	<u>دح</u> ح	ঠ	হ	<15
	11/1/2002	2	<u>্</u> য	2.8	11
	3/20/2003	1.4	ত	<0.5	<1.5
MW-A23	6/5/1990	25000	700	900	1000
147 44 - 1472	1/10/1991	20000	1100	100	400
	6/20/1991	150	<5		<15
	7/6/1993	14500	্ ত	2	960
	4/26/1994	3755	<25		-
	1/13/1995	1900	327	<25	267
	12/27/1996	617	22	<10	209
	7/14/1997			<u> </u>	7
	1/29/1998	<u>ರ</u> ರ	্ ধ	<5 <25	<15
	1/5/1999	25	ত্		<15
	6/13/2000	. భ	্ হ	্ <u> </u>	<15
	4/30/2002	15.2	<i>য</i>		<15
· · · · · · · · · · · · · · · · · · ·	7/2/2003	28	<i>ত</i>	<5 0.64	<u>ধ</u>
	7/29/2003	29	্ থ	0.04 <5	2.6 NA
MW-A24	6/5/1990	10500	হ	900	
ore 11 -4 ba/4	1/10/1991	9000	40	900	1300 150
	6/20/1991	9000 <5	<5	90 <5	
	7/6/1993	128	ত ত	<u>০</u>	<15 128
	4/26/1994	<5	থ	হ	
	1/13/1995		ত ত	হ	<15 24
	12/27/1996	3	5	৩	24 <15
	7/14/1997		13	হ	<15 <15
	1/29/1998	<u>্</u>	<5	ত	<15 <15
	1,27,1770	~	~	,)	<15

TABLE 2-8(R) HISTORICAL GROUNDWATER DATA, AREA 1: RUNWAY PROTECTION ZONE BOEING TRACT 1, ST. LOUIS, MISSOURI

MW-A25	6/5/1990	ර	<5	<5	<15
VI VV -A 25	6/20/1991	- 3	ধ	4 5	<15
<u> </u>		4	ব	ব	<15
	7/6/1993	্		ঠ	<15
	4/26/1994		<u>্</u>	১ খ	<15
	1/13/1995	<u> </u>	্	ঠ	<15
	12/27/1996	ব্			<15
	7/14/1997	ర	<u>ئ</u>	<u>ধ</u>	<15
	1/29/1998	ح5	<u> </u>		<15
MW-A26	1/24/1990	<5	<u>ජ</u>	<u> </u>	<15
	6/5/1990	<u>ব</u>	্ ধ		<15
	6/20/1991	< ব	্ ধ্	< <u><</u>	<15
	7/6/1993	<5	্ব	<5	<15
	4/26/1994	<5	্ ধ	ধ	3
	1/13/1995	14	5	1	
•	12/27/1996	15	3	- ব	3
	7/14/1997	- ర	<u> </u>	- ব্	<15
	1/29/1998	9	্ ধ	<5	<15
	1/5/1999	<5	ح5	<5	<15
MW-A27	1/24/1990	79	ර	20	145
	6/5/1990	< 5	త	ধ	<15
	6/20/1991	- భ	< ব	ব	<15
	7/6/1993	- చ	<	্ ব	2
	4/26/1994	<	< 5	- ব	<15
	1/13/1995	భ	< ব	ধ	<15
	12/27/1996	<u> </u>	ধ	ব	<15
	7/14/1997	భ	্ ব	<5	<15
	11/1/2002	<0.5	<	<0.50	<1.5
	7/29/2003	త	<5	<5	NA
MW-A28	6/5/1990	23000	10	25	6000
	6/20/1991	2700	ধ	ర	30
	7/6/1993	7400	<5	ধ	11
	4/26/1994	2380	<25	<25	<75
	1/13/1995	2950	19	<5	4
	12/27/1996	670	<	3	7
	7/14/1997	630	39	ধ	<15
	1/29/1998	367	13	భ	<15
	1/5/1999	194	< 5	భ	<15
	6/13/2000	64	ব	<5	<15
	4/30/2002	<2	2.8	ব	ধ
MW-A29	6/5/1990	<5	ৰ্ব	ব	<15
	6/20/1991	ঠ	<5	ব	<15
	7/6/1993	68	45	حة ح	<15
	4/26/1994	45	ح ح	<5	<15
	1/13/1995	4	<5	ব	<15
	12/27/1996	45	ح ح	ব	<15
	7/14/1997	- ব্	- 5	45	<15
	1/29/1998	45	<5	ব	<15
	1/5/1999	5	ব	ব	<15
Note:	113/1777		<u> </u>		

< Less than detection limit shown ug/L: micrograms per liter NA: Not available

TABLE 2-9(R) CALCULATION OF INDIVIDUAL EXCESS LIFETIME CANCER RISK (IELCR) AND HAZARDARD QUOTIENT (HQ) FOR A FUTURE CONSTRUCTION WORKER AREA 1: RUNWAY PROTECTION ZONE, BOEING TRACT 1, ST. LOUIS, MISSOURI

COCs	Average Soil Conc.	Dermal Con	Permal Contact with Soil		Accidental Ingestion of Soil		Outdoor Inhalation of Vapors and Particulates from Soil		Dermal Contact with Groundwater		Outdoor Inhalation of Vapors from Groundwater		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ	(ug/L)	IELCR	HQ	IELCR	HQ		
1,2,3-Trimethylbenzene							***	1.7	NA	NA	NA	3.33E-07	NA	3.33E-07
1,2,4-Trimethylbenzene								1.2	NA	NA	NA .	3.50E-07	NA	3.50E-07
Acetone	25	NA	8.72E-08	NA	9.20E-08	NA '	2.06E-07	48.9	NA	NA	NA	9.93E-08	NA	4.85E-07
Benzene	32,196	4.65E-09	3.74E-03	5.17E-09	4.16E-03	2.43E-08	3.45E-02	6.1	1.17E-09	9.45E-04	1.47E-12	2.09E-06	3.53E-08	4.33E-02
Ethylbenzene	32,056	NA	1.12E-04	NA	1.14E-04	· NA	9.20E-05						NA	3.18E-04
n-Propylbenzene				_				4.3	NA	NA	NA	7.93E-08	NA	7.93E-08
Toluene	195,660	NA	3.41E-05	NA	3.79E-04	NA	1.98E-03		1				NA	2.39E-03
Xylenes, Total	130,160	NA	2.27E-05	NA	2.32E-05	NA	4.77E-04	1					NA	5.23E-04
Organics Total Risk		4.65E-09	3.91E-03	5.17E-09	4.68E-03	2.43E-08	3.70E-02		1.17E-09	9.45E-04	1.47E-12	2.95E-06	3.53E-08	4.66E-02
TPH-GRO	57,836	NA	9.57E-05	NA	2.63E-04	NA	3.13E-04	3,416	NA	NA	NA	5.75E-04	NA	1.25E-03
TPH-DRO	2,500	NA	6.24E-06	NA	1.68E-05	NA	4.42E-06	353	NA	NA	NA	1.92E-03	NA	1.95E-03
TPH-ORO	16,875	NA	8.50E-05	NA	2.18E-04	NA	1.15E-06	1,020	NA	NA	NA	2.69E-06	NA	3.07E-04
TPH Total Risk		NA	1.87E-04	NA	4.98E-04	NA	· 3.19E-04		NA	NA	NA ·	2.50E-03	NA	3.50E-03
Antimony	4,005	NA	1.16E-05	NA	3.88E-04	. NA	4.65E-07						NA	4.00E-04
Arsenic	19,018	4.74E-10	7.37E-05	1.50E-07	2.33E-02	2.69E-11	4.19E-07	47.5	NA	NA	NA	NA	1.51E-07	2.34E-02
Beryllium	1,155	8.25E-10	6.71E-06	2.75E-10	2.24E-06	9.16E-13	1.34E-09						1.10E-09	8.95E-06
Cobalt	9,885	NA	5.75E-04	NA	1.92E-04	9.15E-12	1.15E-05			-			9.15E-12	7.78E-04
Copper	14,600	NA	4.24E-06	NA	1.41E-04	NA	3.38E-07			***			NA	1.46E-04
Manganese	1,338,750	NA	3.33E-03	NA	3.70E-03	NA	6.32E-04						NA	7.67E-03
Mercury	121	NA	4.69E-07	NA	2.34E-05	NA	1.85E-04				-		NA	2.09E-04
Nickel	23,075	NA	6.71E-07	NA	4.47E-05	1.83E-12	2.67E-06						1.83E-12	4.80E-05
Selenium	1,518	NA	3.53E-05	NA	9.41E-05	NA	3.51E-06				1		NA	1.33E-04
Metals Total Risk		1.30E-09	4.04E-03	1.50E-07	2.79E-02	3.88E-11	8.36E-04		NA	NA	NA	NA	1.52E-07	3.28E-02
CUMULATIVE RISK		5.95E-09	8.14E-03	1.55E-07	3.31E-02	2.43E-08	3.82E-02		1.17E-09	9.45E-04	1.47E-12	2.50E-03	1.87E-07	8.29E-02
lotes:														

Notes:

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total Petroleum Carbon

GRO: Gasoline Range Organic

DRO: Diesel Range Organic

ORO: Oil Range Organic

ug/kg: microgram per kilogram

ug/L: microgram per liter

TABLE 2-10(R)

COMPARISON OF RISK USING MAX DETECTED CONCENTRATION VS. AVERAGE CONCENTRATION FOR AREA 1: RUNWAY PROTECTION ZONE

BOEING, ST. LOUIS, MISSOURI

	S	oil	Groun	dwater	SUM OF	IELCR*	SUM OF HQ*	
COCs	Average Conc. (ug/kg)	Maximum Detected Conc. (ug/kg)	Average Conc. (ug/L)	Maximum Detected Conc. (ug/L)	Average	Maximum	Average	Maximum
1,2,3-Trimethylbenzene			1.7	3.4	NA	NA	3.33E-07	6.67E-07
1,2,4-Trimethylbenzene			· 1.2	1.7	. NA	NA	3.50E-07	4.96E-07
Acetone	24.5	73	48.9	60.0	NA	NA	4.85E-07	1.27E-06
Benzene	32,196	258,000	6.1	34.0	3.53E-08	2.80E-07	4.33E-02	3.45E-01
Ethylbenzene	32,056	663,000			NA	NA	3.18E-04	6.58E-03
n-Propylbenzene			4.3	31.0	NA	NA	7.93E-08	5.72E-07
Toluene	195,660	3,980,000			NA	NA	2.39E-03	4.86E-02
Xylenes, Total	130,160	2,970,000			NA	NA.	5.23E-04	1.19E-02
Organics Total Risk					· 3.53E-08	2.80E-07	4.66E-02	4.12E-01
TPH-GRO	57,836	206,000	3,416	41,410	NA	NA	1.25E-03	9.37E-03
TPH-DRO	2,487		353		NA	NA	1.95E-03	NA
TPH-ORO	16,875	117,000	1,020	19,000	NA	NA	3.07E-04	2.16E-03
TPH Total Risk					NA	NA	3.50E-03	1.15E-02
Antimony	4,005	4,350		-	NA	NA	4.00E-04	4.35E-04
Arsenic	19,018	44,800	47.5	51.0	1.51E-07	3.53E-07	2.34E-02	5.51E-02
Beryllium	1,155	1,370		_	1.10E-09	3.27E-10	8.95E-06	1.06E-05
Cobalt	9,885	11,600		_	9.15E-12	1.07E-11	7.78E-04	9.12E-04
Соррег	14,600	16,100	-		NA	NA	1.46E-04	1.61E-04
Manganese	1,338,750	2,580,000	_		NA	NA	7.67E-03	1.48E-02
Mercury	121	490			NA	NA	2.09E-04	8.45E-04
Nickel	23,075	28,700	_		1.83E-12	2.28E-12	4.80E-05	5.98E-05
Selenium	1,518	2,500			NA	NA	1.33E-04	2.19E-04
Metals Total Risk					1.52E-07	3.54E-07	3.28E-02	7.26E-02
CUMULATIVE RISK					1.87E-07	6.34E-07	8.29E-02	4.96E-01

Notes:

* Includes all media, all complete pathways.

NA: Not available

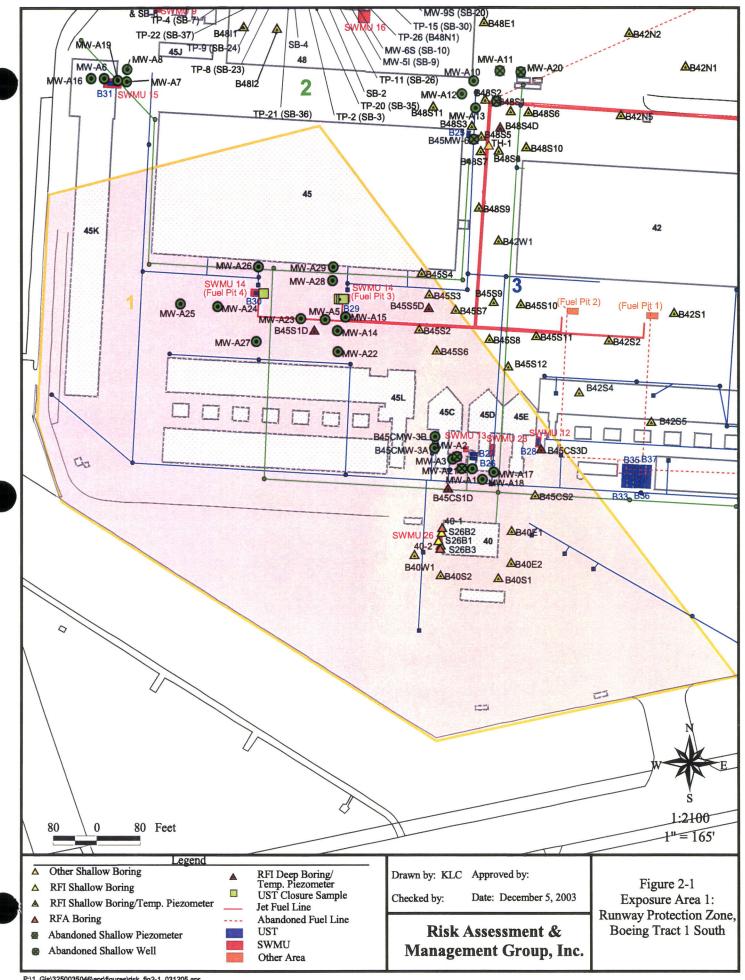
-: Ratio cannot be calculated.

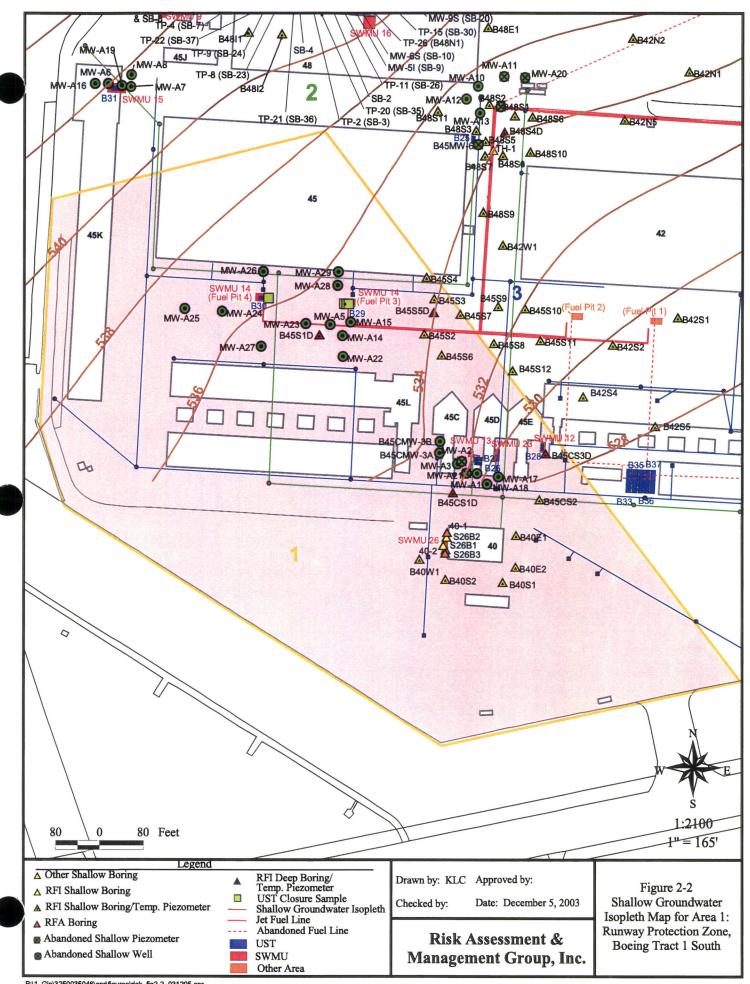
--: Risk evaluation was not performed since no detect was observed in the media.

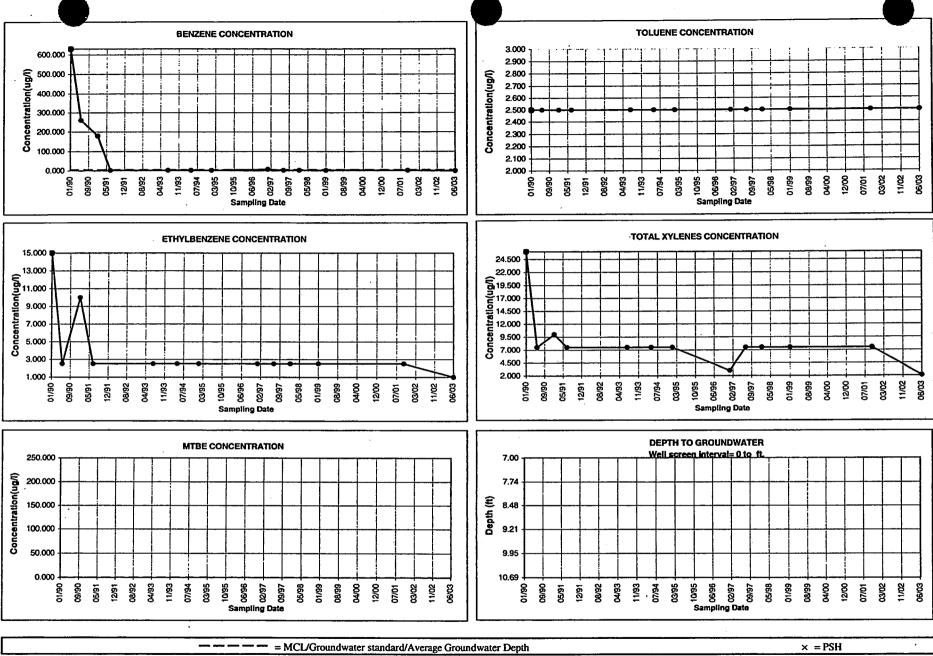
TPH: Total Petroleum Hydrocarbon

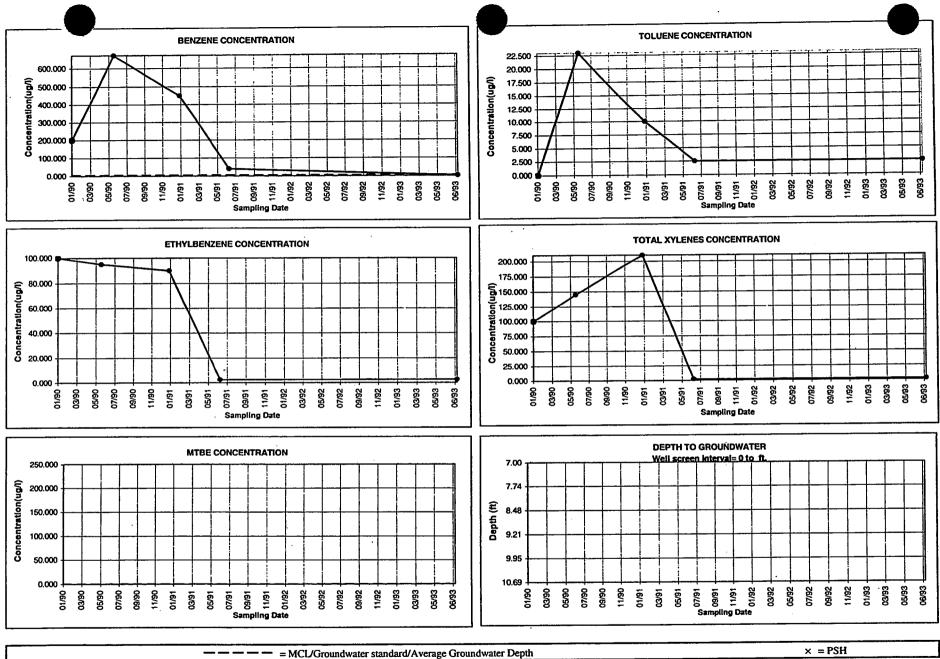
GRO: Gasoline Range Organic

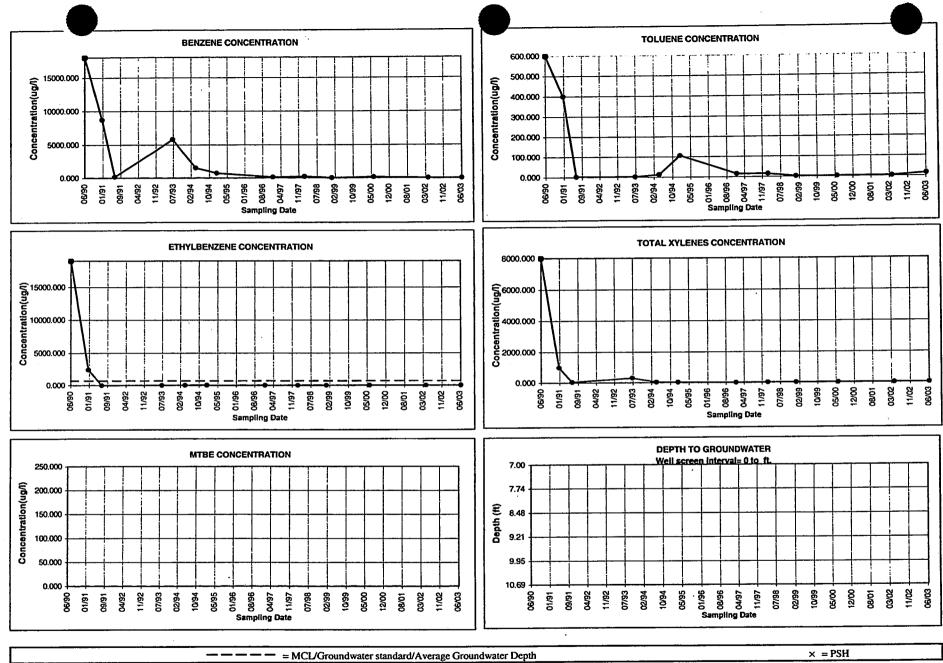
DRO: Diesel Range Organic

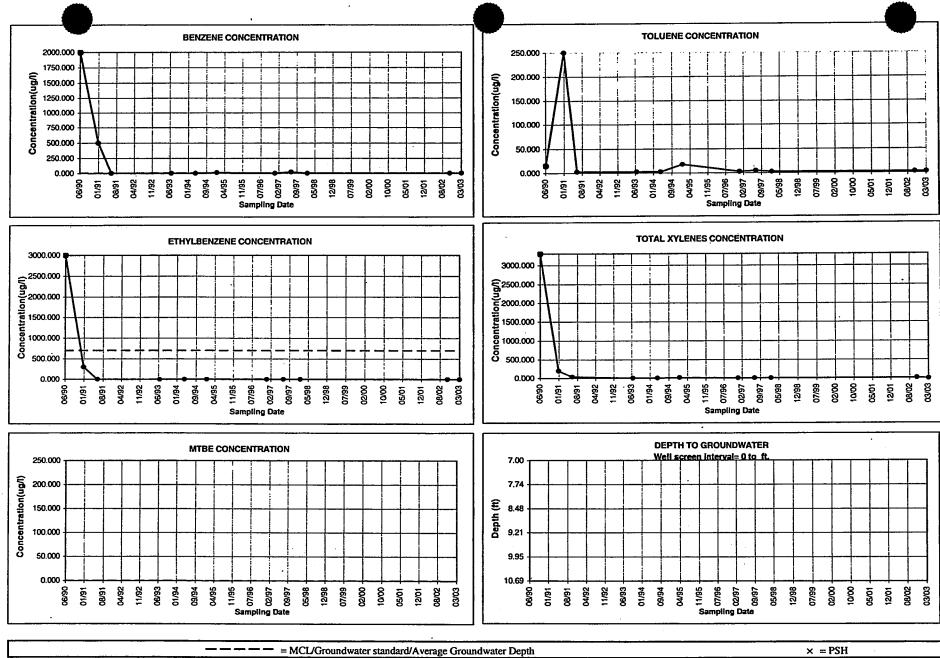

ORO: Oil Range Organic

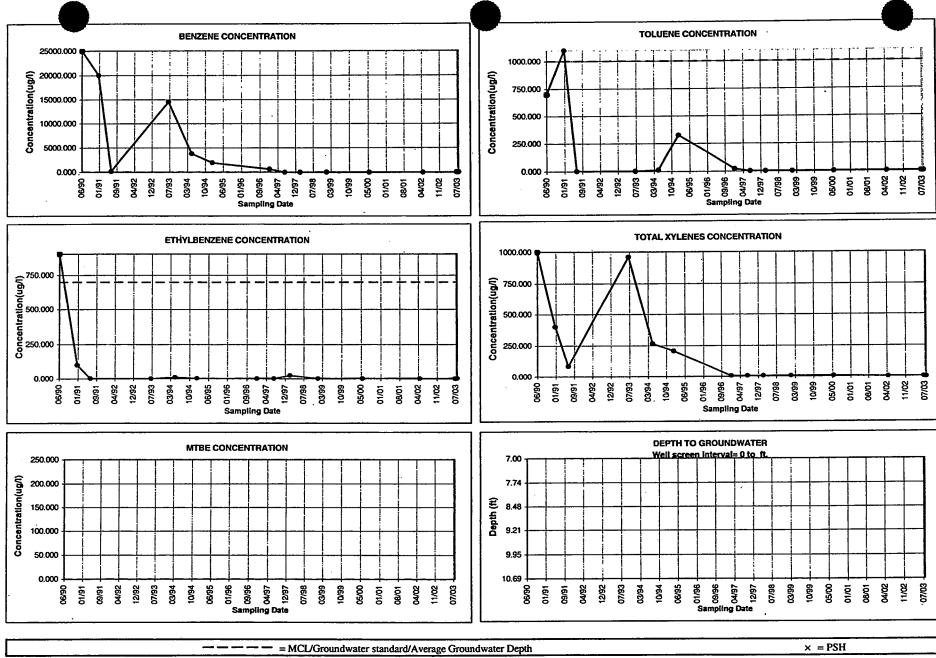

ug/kg: microgram per kilogram


ug/L: microgram per liter


IELCR: Individual Excess Lifetime Cancer Risk


HQ: Hazard Quotient





Note: PSH readings are plotted as the maximum value ever detected in the range. The point is plotted as "X" but not connected to adjacent points.

ND is assumed as zero concentration. The point is connected to the preceding and the following point by dotted line

FIGURE 2-3(f)(R) GROUNDWATER DATA COLLECTED AT MW-A28 AREA 1: RUNWAY PROTECTION ZONE, BOEING TRACT 1, ST.LOUIS, MISSOURI

ATTACHMENT 2-A(R)

ECOLOGICAL RISK ASSESSMENT – AREA 1 RUNWAY PROTECTION ZONE TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

	Area 1 (at its closest point) is about 2,700 ft from Coldwater Creek, therefore it is no within ½ mile of a surface water resource.
2.	Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?
	No.
3.	Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?
	No, the area is entirely paved.
4.	Has a process (operational) discharge or storm water permit not been issued for the site?
	Yes, site-wide, there is a storm water permit.
5.	Is the site located in a known Karst environment (see Reference map)?
	No.
6.	Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.
	No.
7.	Are there one or more environmentally sensitive areas (see Ecological Risk Assessmen Figure #1 for definition) at or within a ½ mile radius of the site?
	No.
8.	Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?
	No.

1.

ATTACHMENT 2-B(R)

ECOLOGICAL RISK ASSESSMENT – AREA 1 RUNWAY PROTECTION ZONE TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, shallow groundwater impact has been observed within this Area.

1b. Are contaminants associated with the site mobile in groundwater?

Yes, some migration of impacted groundwater has occurred, but impact is delineated within the boundaries of the Area.

1c. Does groundwater from the site discharge into ecological receptor habitat?

Yes, ultimately into Coldwater Creek.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

No, although groundwater impact has been observed, it is delineated within the boundaries of the specific Area, and Coldwater Creek is located about 2,700 feet to the northeast of Area 1.

2a. Is NAPL present at the site?

Yes, it is measureable in one monitoring well (0.04 foot thick in 3/2004), and a sheen in two other monitoring wells..

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No, the closest ecological receptor is Coldwater Creek located about 2,700 feet from the Area.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

No.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, the site is paved.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the site is paved, thereby limiting any possible contact. Also, surficial soil is not impacted within this Area.

4a. Are contaminants present in surface soil or on the surface of the ground?

No chemicals are on the surface. COCs in surficial soil if present are not of concern for ecological receptors since the area is paved and likely to stay so.

4b. Are potential ecological receptors on the site?

No, the site is paved, and located within a commercial area.

4. Could contaminants reach ecological receptors via direct contact?

No.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the site is paved.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the site is paved.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

Yes, in shallow subsurface soils.

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, the site is paved.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No, the site is paved.

6d. Do contaminants found on the site bioaccumulate?

Some metals may bioaccumulate but since ecological receptors are not likely to come in contact with soil, the bioaccumulation is unlikely.

6.	Could contaminants	reach	ecological	receptors	via	ingestion	of	either	soil,	plants,
	animals, or contamina	ants dir	ectly?							

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

3.1 INTRODUCTION

The Demolished Area is located in the southern portion of the Facility, adjacent to and south of the Norfolk and Western Railroad Company railroad tracks and Banshee Road (see Figure 3-1). This section describes the constituents found in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

3.2 DESCRIPTION OF AREA

The Demolished Area is approximately 900 feet long by 750 feet wide. Within this Area are six buildings (four of which have been demolished), portions of two buildings, and a parking lot. The Area is currently paved. Under future construction plans, the remaining buildings are due to be demolished; however, it is not known whether new buildings will be constructed in the Area. It is anticipated that whatever the future building arrangements, the remainder of the Area will continue to be paved. For the purposes of this risk evaluation, Area 2 was further subdivided into three Sub-areas; 2A, 2B, and 2C (see Figure 3-1), to (i) reduce the size of the exposure units evaluated, and (ii) to evaluate the risk from specific sources. A brief description of the Sub-areas follows:

- <u>Sub-area 2A</u>: This is the smallest of the three Sub-areas consisting of the western portion of Area 2 and covers an area of 3.03 acres. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs, TPH, and metals.
- <u>Sub-area 2B</u>: This is the largest of the three Sub-areas consisting of the middle portion of Area 2 including SWMU 17 and covers an area of 4.48 acres. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs, TPH, and metals.
- <u>Sub-area 2C</u>: This is the intermediate sized Sub-area consisting of the eastern/southeastern portion of Area 2 and covers an area of 3.88 acres. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs and TPH.

3.2.1 Potential Sources within Area

The following SWMU's (see Figure 3-1) were identified in the Sub-areas during the RFA investigation (SAIC, 1995):

Sub-area 2A

- SWMU 9: Six 750-gallon waste nitric acid and hydrofluoric acid ASTs (H1, H2, H3, H4, H5, and H6);
- SWMU 15: One 4,380 gallon waste jet fuel UST (B31); and
- SWMU 27: Storage area for ten 55-gallon drums, containing waste hydrofluoric and nitric acid plastic scrubber saddles.

Additionally, Airport Terminal Services, Inc. had a tank farm located on Airport property at 5310 Banshee Road immediately west (upgradient) of Sub-area 2A, which contained 14 gasoline USTs with capacities of 1,000 gallons to 20,000 gallons. The tank farm has been closed and the USTs removed.

Sub-area 2B

- SWMU 1: Two 10,000-gallon waste sodium hydroxide aboveground storage tanks (ASTs) (H19 & H20);
- SWMU 2: Three 850-gallon waste nitric acid and hydrofluoric acid ASTs (H12, H13, & H14);
- SWMU 16: MEK and MIBK recycling/recovery unit;
- SWMU 17: PCE recovery unit; and
- SWMU 25: Less-than-90 Day Storage area for up to twenty-eight 55-gallon drums of waste solvents, paints, and oils.

Additionally, there were two 15,000-gallon fuel oil ASTs formerly located in Sub-area 2B just west of Building 48A and north of Building 48, which had distribution lines running east-west along the south side of the former Building 51 and into the former Building 53 (MACTEC, 2004).

Sub-area 2C

There are no SWMUs in Sub-area 2C. However, a petroleum pipeline (carrying jet fuels JP-5 and JP-8) traversed Sub-area 2C to the east of Building 45 and is connected to a tank farm near Building 41 located to the east (outside of Area 2).

USTs

Three USTs (see Table 3-1) have been identified within this Area, ranging in size from 335 gallons to 6,000 gallons. The contents of the USTs were diesel, solvents, and waste jet fuel. Two of the USTs are located in Sub-area 2A and one in Sub-area 2C.

Two jet fuel pipelines were located outside of the Area 2 along the north side of Banshee Road.

Hence, within Area 2 we anticipate the impact to be primarily petroleum hydrocarbons and VOCs.

3.2.2 Soil Stratigraphy within Area

One hundred soil borings have been advanced in Area 2 (see Table 3-2 for additional information). Based on the soil boring logs, the soil stratigraphy within this Area is silty clay from approximately 0.5 feet bgs to 20 feet bgs, below which is clay. For additional details, refer to MACTEC, 2004. Bedrock is found in this Area at approximately 75 feet bgs, which consists of a low permeability shale. No karst features have been identified in this Area. For the calculation of risk to indoor inhalation, a soil source average depth for each of the Sub-areas was used as noted below (See Table 1-9):

- Sub-area 2A: 4.3 feet (131 cm)
- Sub-area 2B: 5.6 feet (171 cm)

• Sub-area 2C: 5.1 feet (155 cm)

Since the calculated average depth to soil source was deeper than the average groundwater depth for Sub-area 2C, the average depth to groundwater (5.1 feet) was conservatively used as the average depth of soil source.

3.2.3 Hydrogeology within Area

Based on recent (since 2000) groundwater gauging data, groundwater flow within the shallow zone is to the southeast (see Figure 3-2), towards Area 3, the airport runway, and eventually Coldwater Creek located 2,500 feet (at its closest point) from the Area. The depth to shallow groundwater in this Area ranges from 4 to 9 feet bgs. To evaluate risk to indoor inhalation, an average depth to groundwater for each of the Sub-areas was used as noted below (see Table 1-13):

Sub-area 2A: 6.6 feet (201 cm)
Sub-area 2B: 6.6 feet (201 cm)
Sub-area 2C: 5.1 feet (155 cm)

Since no monitoring wells were monitored for groundwater depths in Sub-area 2A, the average depth to groundwater in the adjacent Sub-area 2B was used. One deep monitoring well (MW-11D) is located within Sub-area 2B and screened from 64 - 74 feet bgs. The stabilized groundwater depth in the deep well (MW-11D) is consistently between 21 and 24 feet bgs.

3.3 LAND USE

3.3.1 Current Land Use

The Area is owned by the St. Louis Airport Authority and is currently leased by Boeing. It is being used as an industrial facility. However, Boeing intends to vacate the Area during 2005, at which point the remaining buildings may be demolished.

3.3.2 Future Land Use

In the future, it is anticipated that as part of the St. Louis Airport redevelopment plans, the current buildings located within the Area will be demolished; however, it is not known whether a building will be constructed in the Area in the future (personal communication, St. Louis Airport). Hence, conservatively we have anticipated that a building will be constructed, and that it will encompass the impacted areas of the site (i.e., those areas where soil and groundwater concentration information is available). This new building will be a non-residential structure without a basement.

3.4 AVAILABLE DATA

The following gives an overview of the available data within the Area:

• Twenty-two monitoring wells are located within this Area of which 13 are active (none of 5 in Sub-area 2A, 11 of 11 in Sub-area 2B, and 2 of 6 in Sub-area 2C) (see Table 3-3 for monitoring well information).

- Recent groundwater sampling (since 1998) has been completed at 12 wells (none in Sub-area 2A, 11 in Sub-area 2B, and 1 in Sub-area 2C).
- Forty-eight soil borings completed as piezometers exist within this Area, and have been sampled at least once for groundwater since 1998 (5 in Sub-area 2A, 32 in Sub-area 2B, and 11 in Sub-area 2C).
- Five temporary piezometers were installed during 2004 to obtain groundwater samples for speciation and fractionation of total petroleum hydrocarbons (TPH) (1 in Sub-area 2A, 4 in Sub-area 2B, and none in Sub-area 2C).
- A total of 119 soil samples have been collected within this Area from 78 soil borings since 1988 (32 samples from 15 borings in Sub-area 2A, 76 samples from 52 borings in Sub-area 2B, and 11 samples from 11 borings in Sub-area 2C) (see Appendix C-1).

3.5 CONSTITUENTS IDENTIFIED WITHIN AREA

3.5.1 Soil

Soil samples were analyzed during the various investigations conducted within the Area for a comprehensive list of constituents that included VOCs, TPH, and metals. Laboratory methods that were used include SW 846 Methods 3546/DRO, 6010, 7060, 7421, 7471, 7740, 8015, 8021, 8240, 8260, OA1, and OA2. Appendix C-1 includes a comprehensive table of the soil sample results for those constituents detected at least once. PCBs and SVOCs including PAHs were analyzed in pre-1998 samples from this Area but all were found to be non-detect. These data are not included in Appendix C-1. This is generally consistent with the identified potential sources within the Area; and therefore, PCBs and SVOCs will not be quantitatively evaluated.

The following 50 constituents were detected in at least one soil sample from depths less than or equal to 20 feet bgs.

TOTAL METAL	S/INORGANICS	VOCs	/TPH
Aluminum	Lead	1,1-Dichloroethene	Naphthalene
Antimony	Magnesium	1,2-Dichloroethene (total)	n-Butylbenzene
Arsenic	Manganese	1,2,4-Trimethylbenzene	n-Propylbenzene
Barium	Mercury	Acetonė	o-Xylene
Beryllium	Nickel	Benzene	p-Isopropyltoluene
Cadmium	Potassium	cis-1,2-Dichloroethene	sec-Butylbenzene
Calcium	Selenium	Chloroethane	Tetrachloroethene
Chromium	Silver	Dichlorodifluoromethane	Toluene
Cobalt	Sodium	Ethylbenzene	trans-1,2-Dichloroethene
. Copper	Thallium	Isopropyl benzene	Trichloroethene
Fluoride	Vanadium	m,p-Xylene	Xylenes, total
Iron	Zinc	Methyl ethyl ketone	Vinyl chloride
		Methylene chloride	TPH (21 types)

Data for these constituents are presented in Appendix C-1 and were segregated into data for each Sub-area. This segregated data was used to (i) identify the chemicals to be included in the risk assessment, and (ii) calculate the representative concentrations. The specific steps are discussed below:

Step1: The Area 2 soil data was segregated into three parts for Sub-areas 2A, 2B, and 2C.

Step 2: The data for each Sub-area was divided into data applicable for estimating exposure to the non-residential worker and the construction worker. For the non-residential worker, soil data above the average depth of water table was used since concentrations below the water table would not contribute to indoor inhalation. The depth to groundwater was estimated as the average of the four quarterly measurement events between December 2003 and June 2003. See Table 1-13 for depth to groundwater for the monitoring wells measured in these Sub-areas. For construction worker, data up to 20 ft bgs (assumed depth of construction) was used. Table 3-4 presents a listing of the soil samples used in the risk calculations.

<u>Step 3</u>: The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration.

Note as discussed in Sections 1.9.11 and 1.9.12, lead and 1,2-dichloroethene (total) were also eliminated. Calcium and iron were not considered since they are ubiquitous in nature and have no known sources in this Area. Magnesium and fluoride were not considered because toxicity and physical/chemical values were not available.

The result of applying the above steps to the three Sub-areas and two receptors is discussed below. Tables 3A-5(a)-(c), 3B-5(a)-(c), and 3C-5(a)-(c) present the soil constituents average concentrations.

3.5.1.1 Sub-area 2A

Non-residential Worker

Tables 3A-5(a) - (c) for the non-residential worker presents the data for constituents in soil samples collected at or above a depth of 6.6 feet bgs (average depth of groundwater table).

Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and include aluminum, barium, chromium, manganese, potassium, sodium, and vanadium (see Table 3A-5(c)).

Based on this evaluation, the following 17 constituents were considered for quantitative risk evaluation for soil exposures to the non-residential worker, and are presented in Tables 3A-5(a) – (c):

TOTAL METALS/INORGANICS		VOCs/TPH		
Antimony	Copper	Benzene	Methylene Chloride	
Arsenic	Mercury	Dichlorodifluoromethane	Tetrachloroethene	
Beryllium	Nickel	Ethylbenzene	Toluene	
Cadmium	Zinc	Xylenes, total	TPH (16 types)	
Cobalt				

Construction Worker

Tables 3A-5(a) - (c) for the construction worker presents the data for constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs in this Area are included in Tables 3A-5(a) - (c).

Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and include aluminum, barium, chromium, manganese, potassium, sodium, and vanadium (see Table 3A-5(c)).

Based on this evaluation, the following 18 constituents were considered for quantitative risk evaluation for soil exposures to the construction worker, and are presented in Tables 3A-5(a) – (c):

TOTAL METALS/INORGANICS		VOCs/TPH		
Antimony	Cobalt	Benzene	Tetrachloroethene	
Arsenic	Copper	Dichlorodifluoromethane	Toluene	
Beryllium	Mercury	Ethylbenzene	Trichloroethene	
Cadmium	Nickel	Methylene chloride	TPH (16 types)	
	Zinc	Xylenes, total		

3.5.1.2 Sub-area 2B

Non-residential Worker

Tables 3B-5(a) - (c) for the non-residential worker present the data for constituents in soil samples collected above the groundwater table. Tables 3B-5(a) - (c) present the data for soil samples collected in this Sub-area at or above a depth of 6.6 feet bgs.

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include aluminum, barium, potassium, sodium, and vanadium (see Table 3B-5(c)).

Based on this evaluation, the following 33 constituents were considered for quantitative risk evaluation for soil exposures to the non-residential worker, and are presented in Tables 3B-5(a) – (c):

TOTAL META	LS/INORGANICS	VOCs/TPH		
Antimony	Manganese	Acetone	n-Propylbenzene	
Arsenic	Mercury	cis-1,2-Dichloroethene	p-Isopropyltoluene	
Beryllium	Nickel	Chloroethane	sec-Butylbenzene	
Chromium	Selenium	Ethylbenzene	Tetrachloroethene	
Cobalt	Zinc	Isopropyl benzene	Toluene	
Copper	Silver	Methyl ethyl ketone	trans-1,2-Dichloroethene	
Cadmium	Thallium	Methylene chloride	Trichloroethene	
		Naphthalene	Vinyl chloride	
		n-Butylbenzene	Xylenes, total	
			TPH (17 types)	

Construction Worker

Tables 3B-5(a) - (c) for the construction worker present the data for constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs in this Sub-area are included in Tables 3B-5(a) - (c).

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include aluminum, barium, potassium, sodium, and vanadium (see Table 3B-5(c)).

Based on this evaluation, the following 37 constituents were considered for quantitative risk evaluation for soil exposures to the construction worker, and are presented in Tables 3B-5(a) – (c):

TOTAL META	LS/INORGANICS	VOC	s/TPH
Antimony	Manganese	1,1-Dichloroethene	n-Propylbenzene
Arsenic	Mercury	1,2,4-Trimethylbenzene	o-Xylene
Beryllium	Nickel	Acetone	p-Isopropyltoluene
Cadmium	Selenium	cis-1,2-Dichloroethene	sec-Butylbenzene
Chromium	Silver	Chloroethane	Tetrachloroethene
Cobalt	Thallium	Ethylbenzene	Toluene
Copper	Zinc	Isopropyl benzene	trans-1,2-Dichloroethene
		m,p-Xylene	Trichloroethene
		Methyl ethyl ketone	Vinyl chloride
		Methylene chloride	Xylenes, total
		Naphthalene	TPH (17 types)
		n-Butylbenzene	·

3.5.1.3 Sub-area 2C

Non-residential Worker

Tables 3C-5(a) - (c) for the non-residential worker present the data for constituents in soil samples collected above the groundwater table. Tables 3C-5(a) - (c) present the data for soil samples collected in this Sub-area at or above a depth of 5.1 feet bgs.

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include lead (see Table 3C-5(c)).

Based on this evaluation, the following 1 constituent was considered for quantitative risk evaluation for soil exposures to the non-residential worker, and is presented in Table 3C-5(b):

VOCs/TPH	
TPH (7 types)	

Construction Worker

Tables 3C-5(a) - (c) for the construction worker present the data for constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs in this Sub-area are included in Table 3C-5(a) - (c).

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include lead (see Table 3C-5(c)).

Based on this evaluation, the following 6 constituents were considered for quantitative risk evaluation for soil exposures to the construction worker, and are also presented in Tables 3C-5(a) and (b):

VOCs/TPH					
Benzene Toluene					
Ethylbenzene	Xylenes, total				
Methylene chloride	TPH (15 types)				

3.5.2 Groundwater

Ground water samples were analyzed during the various investigations for a comprehensive list of constituents that included VOCs, PAHs, TPH, metals, and cyanide. Typical laboratory analysis methods that were used include SW-846 Methods 3510/DRO, 3550/DRO, 6010, 7060, 7421, 7470, 7471, 7740, 8021, 8240, 8260, OA1, and OA2. In 2004, additional sampling of groundwater was performed to speciate and fractionate TPH using Texas Methods TX1005 and TX1006 and SW-846 Method 8260. Appendix C-2 includes a comprehensive list of the groundwater analytical data that were detected in at least one sample.

Of the various constituents analyzed in groundwater, the following 34 constituents were detected in at least one groundwater sample:

TOTAL METALS	VOCs/TPH			
Arsenic	1,1,1-Trichloroethane	Naphthalene		
Barium	1,1-Dichloroethane	n-Butylbenzene		
Cadmium	1,1-Dichloroethene	n-Propylbenzene		
Chromium	1,2,3-Trimethylbenzene	p-Isopropyltoluene		
Lead	1,2,4-Trimethylbenzene	sec-Butylbenzene		
Selenium	1,2-Dichloroethene (total)	tert-Butylbenzene		
	Acetone	Tetrachloroethene		
	Benzene	Trichlorofluoromethane		
	cis-1,2-Dichloroethene	Toluene		
	Ethylbenzene	trans-1,2-Dichloroethene		
	Isopropylbenzene	Trichloroethene		
	Methyl tertiary-butyl ether	Vinyl chloride		
	Methylene Chloride	Xylenes, total		
	Methyl isobutyl ketone	TPH (23 types)		

The data from Appendix C-2 was segregated into data for each Sub-area and further screened for potential exposures to the non-residential worker and construction worker. Table 3-6 presents the list of samples used in the risk calculations.

3.5.2.1 Sub-area 2A

Tables 3A-7(a) – (c) present the data for constituents detected at least once in groundwater in Sub-area 2A. Constituents for which the target level criteria exceeded the maximum detected concentration were eliminated from further consideration and included ethylbenzene, methyl terbutyl ether, methylene chloride, tetrachloroethene, toluene, xylenes (total), barium, and chromium.

The remaining constituents are listed in Tables 3A-7(a) – (c) and consist of 1 VOC, 2 metals, and TPH. These constituents are listed in the following table:

TOTAL METALS	VOC	Cs/TPH
Arsenic	Benzene	TPH (15 types)
Cadmium		

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

Within Sub-area 2A, six groundwater sampling points exist, which have been sampled recently. Additionally, there are three historic groundwater monitoring wells in Sub-area 2A, which have not been sampled recently (see Table 3-8 for historic data back to 1990).

3,5,2,2 Sub-area 2B

Tables 3B-7(a) – (c) present the data for constituents detected at least once in groundwater in Sub-area 2B. Constituents for which the target level criteria exceeded the maximum detected concentration were eliminated from further consideration and included 1,1-dichloroethane, 1,1,1-trichloroethane, acetone, ethylbenzene, isopropylbenzene, methylene chloride, methyl isobutyl ketone, p-isopropyltoluene, tert-butylbenzene, trichlorofluoromethane, xylenes (total), barium, chromium, lead, and selenium.

The remaining constituents are listed in Tables 3B-7(a) - (c) and consist of 15 VOCs, 2 metals, and TPH. These constituents are listed in the following table:

TOTAL METALS	VOCs	TPH		
Arsenic	1,1-Dichloroethene	n-Propylbenzene		
Cadmium	1,2,3-Trimethylbenzene	sec-Butylbenzene		
	1,2,4-Trimethylbenzene	Tetrachloroethene		
	Benzene	Toluene		
	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene		
	Methyl tertiary-butyl ether	Trichloroethene		
	Naphthalene	Vinyl chloride		
•	n-Butylbenzene	TPH (16 types)		

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

Within Sub-area 2B, 47 groundwater sampling points exist, which have been sampled recently. There are no historic groundwater monitoring wells in Sub-area 2B (see Table 3-8 for historic data back to 1990).

3.5.2.3 Sub-area 2C

Tables 3C-7(a) – (c) present the data for constituents detected at least once in groundwater in Sub-area 2C. Constituents for which the target level criteria exceeded the maximum detected concentration were eliminated from further consideration and included ethylbenzene, methyl terbutyl ether, toluene, and xylenes (total).

The remaining constituents are listed in Tables 3C-7(a) and (b) and consist of 1 VOC and TPH. These constituents are listed in the following table:

VOCs/	ТРН
Benzene	TPH (16 types)

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

Within Sub-area 2C, 12 groundwater sampling points exist, which have been sampled recently. Additionally, there are three historic groundwater monitoring wells in Sub-area 2C, which have not been sampled recently (see Table 3-8 for historic data back to 1990). To demonstrate the overall concentration trend, concentration vs. time plots for BTEX have been developed for one of these monitoring wells, MW-A13 (see Figure 3-3) for which historic data is available. This evaluation of the overall concentration trend indicates that concentrations are decreasing.

3.6 FREE PRODUCT

Table 3-9 presents the historic free product thicknesses measured in monitoring wells in Area 2. The table also compares the measured depth to water table and the screened interval. Note during periods when the depth to groundwater is above the screened interval, free product should not be detected. Table 3-9 identifies the monitoring wells in each Sub-area and those that had free product at installation and those that detected free product since 1992.

Based on the data, no free product has been documented in Sub-area 2A since 1990. The following monitoring wells in Sub-areas 2B and 2C have had measurable free product present since 1992:

• Sub-area 2B: MW-10S; and

• Sub-area 2C: MW-A10 and MW-A13.

Table 3-9 presents the historic free product thicknesses for Area 2 wells, which can be summarized as follows:

Sub-area 2A

• MW-A19 had sheen or no free product during the last 6 measurements from January 14, 1990 to December 27, 1994. The screened interval was 2.5-12 feet bgs. During the seven measurements from September 9, 1993 to December 26, 1996, the groundwater level was below the top of the screened interval.

Sub-area 2B

- MW-9S had sheen or no measurable free product during the last 10 measurements from February 21, 2001 to June 27, 2003. The screened interval was 6-16 feet bgs. During all of the measurements, the groundwater level was above the top of the screened interval; however, monitoring wells MW-10S and TP-6 are located downgradient to the northeast approximately 45 feet and 115 feet away, respectively. These two wells are discussed in next two bullets;
- MW-10S had sheen during 6 of the last 8 measurements from February 20, 2001 to May 4, 2004. Measurable free phase product was present March 5, 2002 (0.02 feet) and May 4, 2004 (0.01 feet). The screened interval was 5-15 feet bgs. During all of the measurements, the groundwater level was below the top of the screened interval; and
- TP-6 had sheen or no free product during the last 8 measurements from September 5, 2001 to June 17, 2003. The screened interval was 6-16 feet bgs. During three of the eight measurements, the groundwater level was above the top of the screened interval. The depth to groundwater vs. the top of the screened interval did not seem to make a difference, as both sheen and no free product were documented during measurements where the groundwater depth was above or below the top of the screened interval.

Sub-area 2C

- MW-A10 had one measurement each of sheen or 0.01-foot of free product during the last 15 measurements from September 23, 1993 to March 31, 1997. The other 13 measurements indicated no free product present, including 2 of the last 3 measurements. The screened interval was 4.5-14.5 feet bgs. During the last four measurements, the groundwater level was below the top of the screened interval with free product thicknesses from oldest to most recent of 0.01-foot, none, sheen, and none:
- MW-A12 had no free product present during the last 15 measurements from February 1, 1990 to September 28, 1995. The screened interval was 4.5-14.5 feet bgs. During six of the last 14 measurements, the groundwater level was below the top of the screened interval, with no free product thicknesses during any of the measurements, whether the water depth was above or below the top of the screened interval; and
- MW-A13 had sheen or no free product during last 23 measurements from November 15, 1996 to November 5, 1998. The screened interval was 4.5-14.5 feet bgs. During the 42 measurements from August 11, 1993 to November 5, 1998, the groundwater level was below the top of the screened interval.

Based on the above, following are the key conclusions:

- No measurable free product has been detected in any of the wells since 1996 except for two measurement in MW-10S of 0.02 ft (3/5/2002) and 0.01 ft (5/4/2004). Thus, there is no significant evidence of a free product plume. Sheen is indicative of very localized impacts.
- Dissolved BTEX concentrations have shown a generally decreasing trend. Thus, there is
 no evidence of an expanding dissolved phase plume.

3.7 EXPOSURE MODEL

3.7.1 Current Conditions for Sub-areas 2A, 2B, and 2C

Boeing currently has commercial workers within Area 2; however in the very near future, Boeing will shut down their operations at which point there will be no workers on-site. Hence the risk and exposure to these workers will not be quantified. The only receptor under current conditions would be the visitor/maintenance worker to the Area. As the exposure duration for the visitor/maintenance worker is (i) small relative to the on-site non-residential worker, and (ii) site conditions will change in 2005, the risk from any soil or groundwater impact will not be quantitatively evaluated for the visitor/maintenance worker.

3.7.2 Future Conditions for Sub-areas 2A, 2B, and 2C

Under future conditions, the land use is anticipated to remain non-residential, and a building may be constructed within this Area. Exhibit 3-1 presents the EM for the future non-resident.

EXHIBIT 3-1. EM FUTUI	RE ON-SIT	E NON-RESIDENTIAL WORKER
(SUB-	AREAS 2A	A, 2B, AND 2C)
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Surficial Soil	NC	The Area is entirely paved; therefore, contact with surficial soil is unlikely.
Ingestion of Surficial Soil	NC	The Area is entirely paved and likely to remain so; therefore, ingestion of surficial soil is unlikely.
Indoor Inhalation of Vapors from Subsurface Soil	C	A number of volatile constituents were identified in soil within this Area. A building could be constructed above the impacted areas, hence this pathway is complete.
Indoor Inhalation of Vapors from Groundwater	С	A number of volatile constituents were identified in groundwater within this Area. A building could be constructed above the impacted areas, hence this pathway is complete.
Notes: NC: Not Complete C: Com		
Exposure pathways highlighted in bol	d indicate	that these pathways are complete and will b

quantitatively evaluated.

In the future, construction work could also be performed within this Area. Exhibit 3-2 presents the EM for the potential future construction worker.

EXHIBIT 3-2. EM POTEN	NTIAL FUT	TURE CONSTRUCTION WORKER
(SUB	-AREAS 2A	A, 2B, AND 2C)
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Soil	С	Soil is impacted within the normal depth of construction; therefore, contact is possible.
Accidental Ingestion of Soil	С	Soil is impacted within the normal depth of construction; therefore, ingestion is possible.
Outdoor Inhalation of Vapors and Particulates from Soil	С	Soil is impacted within the normal depth of construction with volatile constituents; therefore, contact is possible.
Dermal Contact with Groundwater	С	Depth to groundwater ranges from 4 to 9 feet bgs, which is within the typical zone of construction. Hence this pathway is possible.
Outdoor Inhalation of Vapors from Groundwater	С	Groundwater is impacted with volatile constituents, hence this pathway is complete.
Notes: NC: Not Complete C: Com	plete	
Exposure pathways highlighted in bolumntitatively evaluated.	ld indicate	that these pathways are complete and will be

3.8 REPRESENTATIVE CONCENTRATIONS

Representative soil and groundwater concentrations for each Sub-area were determined as the average concentration. This was chosen as the sampling activities that have been performed have all been within the areas of most impact; and therefore, the mean concentration represents a conservative estimate of the overall impact to the Area. Further this is consistent with the MRBCA program.

Note representative concentrations in groundwater were estimated by first averaging the concentration in each well and then averaging the concentrations for the various wells located within the Sub-area.

3.8.1 Sub-area 2A

Tables 3A-10(a) and (b) present the soil average and maximum concentrations, and Table 3A-11 presents the groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. As per the MRBCA process document, if this ratio exceeds 10, it may require an explanation. None of the constituents exceeded this ratio of 10.

3.8.2 Sub-area 2B

Tables 3B-10(a) and (b) present the soil average and maximum concentrations, and Table 3B-11 presents the groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. As per the MRBCA process document, if this ratio exceeds 10, it may require an explanation. Following are the constituents and the locations/samples for which this ratio exceeds 10:

SC	IL	GROU	UNDWATER		
Chemicals	Locations/Samples	Chemicals	Locations/Samples		
Non-resider	itial Worker	n-Butylbenzene	MW-10S		
Acetone	SB-4 6-7	Tetrachloroethene	MW-7S, TP-1, & TP-5		
Tetrachloroethene	TP-5-7	Trichloroethene	MW-5I, MW-7S, & TP-5		
Cadmium	H-19-S-A	cis-1,2- Dichloroethene	TP-1 & TP-5		
Lead	H-19-S-A	sec-Butylbenzene	MW-10S		
Construction Worker		TPH-GRO	MW-5I, TP-1, TP-2, TP-3, & TP-5		
Acetone	SB-4 6-7	TPH-DRO	TP-15 & TP-16		
cis-1,2- Dichloroethene	SB-18-15 & TP-5- 15	TPH-ORO	TP-23		
Ethylbenzene	MW-7S-14				
Naphthalene	SB-30-6				
Tetrachloroethene	SB-18-15				
trans-1,2- Dichloroethene	TP-5-15		·		
Trichloroethene	SB-18-15				
Vinyl chloride	TP-5-15				
Xylenes, total	MW_7S-14				
Cadmium	H-19-S-A				
Lead	H-19-S-A	<u> </u>			

However, several of these chemicals were at concentrations several orders of magnitude below the acceptable HQ of 1 and the acceptable IELCR of 1×10^{-5} , refer to Tables 3B-11(a) and 3B-11(b). Thus, despite the presence of localized exceedences, the target risk will not exceed the long-term unacceptable levels. However, to be conservative, we have identified (below) those constituents whose concentrations are within two orders of magnitude of acceptable risk (i.e., those chemicals with an IELCR > 1×10^{-7} and/or HQ > 0.01 for any receptor).

Based on this comparison, five constituents in groundwater, tetrachloroethene, trichloroethene, aliphatics >nC12 to nC16, aliphatics >nC16 to nC21, and aliphatics >nC21 to nC35, in the SWMU 17 area, specifically in the vicinity of TP-1, TP-5, TP-16, TP-23, MW-5I, and MW-7S are within two orders of magnitude of acceptable risk.

3.8.3 Sub-area 2C

Tables 3C-10(a) and (b) present the soil average and maximum concentrations, and Table 3C-11 presents the groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. As per the MRBCA process document, if this ratio exceeds 10, it may require an explanation. None of the constituents exceeded this ratio of 10.

3.9 CALCULATION OF RISK

Series of Tables 3-12(a) and 3-12(b) present the results for the non-residential worker and construction worker, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

3.9.1 Sub-area 2A

3.9.1.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 3A-12(a), the cumulative IELCR is 5.97×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 3A-12(a) the cumulative HI for all COCs and all routes of exposure is 22.4, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of TPH-GRO and TPH-DRO from groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

3.9.1.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 3A-12(b), the cumulative IELCR is 3.52×10^{-7} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 3A-12(b), the cumulative HI is 0.31, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

3.9.2 Sub-area 2B

3.9.2.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 3B-12(a), the cumulative IELCR is 7.57×10^{-6} , which is below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 3B-12(a) the cumulative HI for all COCs and all routes of exposure is 96.1, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of aliphatics C12 - C16, aliphatics C16 - C21, and aliphatics C21 - C35 from groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

3.9.2.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 3B-12(b), the cumulative IELCR is 1.89×10^{-5} , which is below the regulatory acceptable level of 1×10^{-4} . However, further examination of the table indicates that the IELCR for dermal contact of tetrachloroethene from groundwater is 1.51×10^{-5} , which is above the regulatory acceptable risk level of 1×10^{-5} for each COC and routes of exposure.

Non-carcinogenic Risk:

As shown in Table 3B-12(b), the cumulative HI is 3.1 which exceeded the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributor to HI is HQ for dermal contact of tetrachloroethene from groundwater. This is 2.03, i.e., the contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

3.9.3 Sub-area 2C

3.9.3.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 3C-12(a), the cumulative IELCR is 2.02×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 3C-12(a), the cumulative HI is 0.95, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

3.9.3.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 3C-12(b), the cumulative IELCR is 3.92×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 3C-12(b), the cumulative HI is 0.047, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

3.10 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek, which flows north about 2,500 feet to the east of Area 2. There are no known unpermitted conduits present that could carry impacts from Area 2 to Coldwater Creek. Considering the geology, groundwater flow characteristics and the chemical types and concentrations of impacts in Area 2, it is not likely that migration of impacts from Area 2 to Coldwater Creek will occur. Quantitative evaluation of this pathway is presented in an addendum to this risk assessment. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 3-A and Attachment 3-B. These checklists identified no potential ecological receptors or issues.

3.11 CONCLUSIONS

Carcinogenic and non-carcinogenic risks to the non-residential worker and construction worker were calculated for each Sub-area. Key conclusions of the risk evaluation are:

Sub-area 2A

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of TPH-GRO and TPH-DRO from groundwater. The calculated carcinogenic risk for the non-residential worker was below the acceptable target risk. The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker are below the acceptable target risks.

Sub-area 2B

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of aliphatics C12 – C16, aliphatics C16 – C21, and aliphatics C21 – C35 from groundwater. The calculated carcinogenic risk for the non-residential worker was below the acceptable target risk.

The cumulative non-carcinogenic risk for the construction worker exceeded the target risk. The primary contributor to the risk was dermal contact of tetrachloroethene in groundwater. The carcinogenic risk of tetrachloroethene exceeded the target risk for dermal contact of groundwater.

Sub-area 2C

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker and the non-residential worker are below the acceptable target risks.

Table 3-1
Summary of Underground Storage Tanks (USTs) Present Historically within Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

UST/AST Number	Sub-area	Location	Volume (Gallons) Contents		Contents Construction Material		Year Installed	Status	Comments
B25	2C	NWEC of Bldg. 45	335	Diesel	Single Wall Steel	1958	Removed 1987	Excavated	
B31	2A	NWEC of Building 45K	4380	Waste JP-4	Fiberglass Reinforced Plastic	1983	Removed 1993	Excavated	
B32	2A	NWEC of Building 51	6000	Solvents	Single Wall Steel	1977	Removed 1986	Excavated	

Notes:

Two former 15,000 gallon ASTs for fuel oil storage were located north of Building 48 and west of Building 48A and distribution lines ran east-west along the south side of Building 51 (MACTEC, 2004).

14 USTs owned by Airport Terminal Services located off-site to the west of Area 2 containing gasoline and ranging in size for 1,000 gallons to 20,000 gallons (MACTEC, 2004).

Table 3-2
Soil Boring Information for Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

SUB-A	REA 2A	SUB-AR	REA 2B	SUB-A	REA 2C
Boring	Date Drilled	Boring	Date Drilled	Boring	Date Drilled
1	6/28/1988	51A-1	11/1/1994	B48E1	7/23/2003
2	6/28/1988	51B-1	11/1/1994	B48S1	11/14/2002
3	6/28/1988	52-H19-S	7/1/1995	B48S10	11/21/2002
52-1	11/1/1994	52-H19-S2	7/1/1995	B48S11	6/30/2003
52-2	11/1/1994	52-H19-SE	7/1/1995	B48S2	11/15/2002
B-7	1/10/2002	B48I1	11/11/2002	B48S3	11/15/2002
B-8	1/10/2002	B48I2	11/11/2002	B48S4D	NA
B-27	1/10/2002	B48N1	11/11/2002	B48S5	11/19/2002
B-2002	10/9/2001	H-12E	12/6/1993	B48S6	11/19/2002
B51W1	7/2/2003	H-12 Drain	12/6/1993	B48S7	11/20/2002
B51W2	7/2/2003	H-12S	12/6/1993	B48S8	11/20/2002
B51W3	7/23/2002	H-19E	12/6/1993	B48S9	11/21/2002
B51W4	7/23/2002	H-19N	12/6/1993		
Sidewall	8/10/1993	H-19S	12/6/1993		
U-Tank	8/10/1993	H-19W	12/6/1993		•
		MW-7S	12/4/2000		
		· S17B1	NA		
		S17B10	NA		
		S17B11	NA		
		S17B12(MW10S)	· NA		
		S17B13	NA		
		S17B14(MW10S)	NA		~
		S17B15	NA		
		S17B16	NA		
		S17B17	NA		
		S17B18	NA		
		S17B2	NA		
		S17B20	NA		· · · · · · · · · · · · · · · · · · ·
		S17B3	NA		
		S17B4	NA	,	
		S17B5	NA		
		S17B6	NA		
		S17B7	NA		1
		S17B8	NA		
		S17B9	NA		-
		SB-1	2/4/1998		
		SB-10	4/20/1998		
		SB-12	12/4/2000		
		SB-13	12/4/2000		
		SB-15	12/4/2000		
		SB-16	12/4/2000		
<u> </u>		SB-17	12/5/2000		
	<u> </u>	SB-18	12/5/2000		

Table 3-2
Soil Boring Information for Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

SUB-Al	REA 2A	SUB-Al	REA 2B	SUB-A	REA 2C
Boring	Date Drilled	Boring	Date Drilled	Boring	Date Drilled
		SB-2	2/4/1998		
		SB-20	12/6/2000		
		SB-21	9/5/2001		
		SB-22	9/5/2001		
		SB-23	9/5/2001		
		SB-24	9/5/2001		
		SB-25	9/5/2001		
		SB-26	9/5/2001		
		SB-27	9/5/2001		
		SB-28	9/5/2001		
		SB-29	9/6/2001		
		SB-3	2/4/1998	,-	
		SB-30	9/6/2001		
		SB-31	9/6/2001		
		SB-32	9/6/2001		
		SB-33	9/6/2001		
		SB-34	9/6/2001		
		SB-35	10/15/2001		
		SB-36	10/15/2001		
		SB-37	10/15/2001		
		SB-38	10/15/2001		
		SB-39	10/15/2001		
		SB-4	2/4/1998		
		SB-40	10/15/2001		
		SB-5	2/4/1998		
	1	SB-6	2/5/1998		
		SB-7	2/6/1998		
		SB-8	2/6/1998	1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·
	1	SB-9	4/21/1998		
		TP-5	12/4/2000		

Note:

NA: Not available

Table 3-3

Monitoring Well Information within Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

Monitoring Well	Sub-area	Diameter (inches)	Screened Interval (ft bgs)	Total Depth (ft)	Installation Date	Status	# of Times Sampled	Last Time Sampled	Free Product at Installation	Free Product Observed Since 1992
MW-A6	2A	2	2.5-12.5	15	7/14/1989	Inactive	NA	6/30/1998	No	No
MW-A7	2A	2	2.5-12.5	15	7/14/1989	Inactive	2	6/30/1998	No	- No
MW-A8	2A	2	2.5-12.5	15	7/17/1989	Inactive	2	7/26/2001	No	No
MW-A16	2A	2	2.5-12.5	13	8/3/1989	Inactive	8	6/30/1998	No	No
MW-A19	2A	2	2.5-12.5	12.5	8/7/1989	Inactive	7	6/30/1998	Yes	No
MW-5I	2B	2	32.0-42.0	45	4/21/1998	Active	11	6/27/2003	No	No
MW-6S	2B	2	5.0-15.0	15	4/20/1998	Active	7	6/19/2003	No	No
MW-7S	2B	4	3.0-15.0	16	12/5/2000	Active	7	6/19/2003	No	No
MW-10S	2B	2	5.0-15.0	16	12/12/2000	Active	7	6/17/2003	Yes.	Yes
MW-11D	2B	2	64.0-74.0	75.25	12/18/2000	Active	10	6/26/2003	No	No
MW-11I	2B	2	32.0-40.0	40	12/13/2000	Active	10	6/25/2003	No	No
MW-11S	2B	2	6.5-16.5	16.5	12/12/2000	Active	10	6/17/2003	No	No
TP-6	2B	1	6.0-16.0	16	9/5/2001	Active	8	6/17/2003	Yes	Yes
MW-8I	2B	2	32.0-40.0	40	12/18/2000	Active	10	6/26/2003	No	No
MW-8S	2B	2	8.0-16.0	16	12/18/2000	Active	10	6/19/2003	No	No
MW-9S	2B	2	6.0-16.0	16	12/20/2000	Active	10	6/27/2003	Yes	Yes
MW-A10	2C	2	4.5-14.5	15	7/18/1989	Inactive	7	4/30/2002	No	Yes
MW-A11	2C	2	8.5-18.5	19	7/19/1989	Inactive	NA	4/30/2002	Yes	Yes
MW-A12	2C	2	4.5-14.5	15	8/2/1989	Active	7	4/30/2002	Yes	Yes
MW-A13	2C	2	4.5-14.5	15	8/2/1989	Active	13	3/20/2003	Yes	Yes
MW-A9	2C	2	4.5-14.5	15	7/17/1989	Inactive	NA	N/A	Yes	N/A
MW-A20	2C	2	8.5-18.5	19	8/7/1989	Inactive	NA ·	N/A	No	Yes

Notes:

no: No free product observed historically yes: Free product observed historically

NA: No information available ft bgs: Feet below ground surface

ft: Feet

The thickness of free product is tabulated in Table 3-3(a)

Soil Samples Used in Average Concentration and culations in Area 2: Demolished Area

					oeing Tract 1, St. L						
	Velatile Organic Compounds		Total Petroleum Hydrocarbons		Polynuclear Arom	atic Hydrocarbons		orinated enyls	Metals		
	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	
	B51W1-6	B51W1-6	B51W2-6	B51W2-6					52-1 (0-1)	52-1 (0-1)	
	B51W2-6	B51W2-6	B-7 (na)	B-7 (na)		-:>:	The same of the sa		52-1 (1-2)	52-1 (1-2)	
	BSIW4-6	B51W3-12	B-8 (na)	B-8 (na)					52-2 (0-1)	52-2 (0-1)	
	52-1 (0-1)	B51W4-6	B-27 (na)	B-27 (ns)	->-<-	-:>-<:_			52-2 (1-2)	52-2 (1-2)	
2A	52-2 (0-1)	52-1 (0-1)	B-2002 (6-7.5)	B-2002 (6-7.5)	<:-	>	-		B51W4-6	B51W3-12 B51W4-6	
	B7	52-2 (0-1)					The same of the sa	The same of the sa		B31W4-0	
	B8	B7	ļ				-	45			
	B-2002 (6-7.5)	B8					- The same of the				
		B-2002 (6-7.5)	CD 20 D	SB-15-9					51A-1 (0-1)	51A-1 (0-1)	
	51A-1 (0-1)	51A-1 (0-1)	SB-20-7 SB-25-6	SB-16-9					51B-1 (0-1)	51B-1 (0-1)	
	51B-1 (0-1)	51B-1 (0-1)	SB-26-6	SB-20-15		~===			51A-1 (1-2).	51A-1 (1-2)	
	51A-1 (1-2)	51A-1 (1-2)	SB-30-6	SB-20-7	-		-	-	51B-1 (1-2)	51B-I (1-2)	
	51B-1 (1-2) SB-1 2.5-4	51B-1 (1-2) MW-7S-14	SB-31-6	SB-21-8					SB-12.5-4	SB-1 12-13	
	SB-1.2.5-4 D	SB-1 12-13	SB-33-7	SB-22-8				1000	SB-1 2.5-4 D	SB-1 16-17	
	SB-10.4-5	SB-1 16-17	SB-5 5.5-7	SB-23-8		~~ ~~~	***	-	SB-23-4.5	SB-1 2.5-4	
	SB-23-4-5	SB-1-2-5-4	35-3 3.3-7	SB-24-8			The same	- Jane	SB-4 6-7	SB-1 2.5-4 D	
	SB-20-7	SB-1 2.5-4 D		SB-25-6					H-19-W-A (0.5-1)		
	SB-25-6.	SB-10 14-15		SB-26-6		~ ~			H-19-S-A (0.5-1)		
	SB-30-6	SB-10 4-5		SB-27-8.			-	The same of	H-19-N-A (0.5-1)	SB-3 10.5-11.5	
	SB-31-6	SB-13-9		SB-28-8			-		H-19-E-B (0.5-1)	SB-4 11.5-13.5	
	SB-35-6	SB-15-9		SB-29-8					H-19-E-A (2-5-3)	SB-4 14-16	
	SB-4.6-7	SB-16-9.	Part Carlo	SB-30-6	13:3-4:5		The state of the s	The state of	H-12-E-A (0.5-1)	SB-4 6-7	
•	SB-5 5.5-7	SB-17-10		SB-31-6	2.5-2	المعادية الم	25-4-1		H-12-E-B (2.5-3)	SB-5 14-16	
	SB-7,3.5-4.5	SB-18-11		SB-32-8	-:>			-	H-12-S-A (0.5-1)		
	SB-8 6-7	SB-18-15		SB-33-7					H-12-S-B (2.5-3)		
	TP-5-7	SB-2 11-12.5		SB-34-8		المسحد المسحد المساحد			H-12-DRAIN	H-19-N-A (0.5-	
	1. 1. 1. 1.	SB-2 3-4.5		SB-5 5:5-7		>~<				H-19-E-B (0.5-1	
		SB-20-15		SB-69.5-11	>K				<u> </u>	H-19-E-A (2.5-3	
		SB-20-7	4.1		_:>-<:		To The Late	200		H-12-E-A (0.5-	
2B		SB-21-8				e		-		H-12-E-B (2.5-3	
		SB-22-8	<u> </u>	the start of						H-12-S-A (0.5-)	
:		SB-23-8		11. 12. 12. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14						H-12-S-B (2.5-3	
	5. 5.	SB-24-8								H-12-DRAIN	
	3.5	SB-25-6					-		<u> </u>		
		SB-29-8									
٠.		SB-3 10.5-11.5						-			
		SB-30-6									
		SB-31-6						-			
		SB-35-6							· · · · · · · · · · · · · · · · · · ·		
•	**	SB-4 11.5-13.5					4				
		SB-4 14-16									
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SB-4 6-7									
		SB-5 14-16									
		SB-5 5.5-7.	<u> </u>								
		SB-69-5-11			~= := ·= ·				1.21		
		SB-7.3.5-4.5		<u> </u>					<u> </u>	*	
		SB-77.5-8.5		-	~=						
		SB-8 11.5-12.5			~				************		
		SB-8 6-7	· · · · · ·		-VE						
		TP-5-15								-	
	and the second	TP-5-7	2.001.0	7.49010.5					B48E1-8	B48E1-8	
		B48E1-8	B48S11-3	B48S10-7					D49E1-9	D40E1-9	
		B48S1-6		B48S11-3					 		
		B48S3-10		B48S1-6		4=					
2C		B48S5-6		B48S3-10				-			
		B48S7-7		B48S5-6		>-=:					
		B48S8-7		B48S7-7	\ \ \ \				L		
				B48S8-7	1.5-V.						
				B48S9-8			The same of the sa				

. Table 3A-5(a)

Soil Constituents Average Concentrations for VOCs in Sub-area 2A: Demolished Area

Roeing Tract 1, St. Louis, Missouri

	Boeing Tr	act 1, S	L Louis, N					
	· ·		·	VOC	s			
Sample ID	BENZENE	DICHLORODIFLUOROMETHAN	ETHYLBENZENĘ	METHYLENE CHLORIDE	TETRACHLOROÈTHENE	TOLUENE	TRICHLOROETHENE	XYLENES, TOTAL
Non- Residential Worker		·						
B51W1-6	25	4.3	25	0.5	0.5	25	0.5	25
B51W2-6	25	NA	25	NA	NA	25	NA	90
B51W4-6	2.5	2.5	2.5	5.3	3.9	2.5	2.5	2.5
Sidewall (na)	2500	NA	2500	ND	ND	· 57	ND	NA
52-1 (0-1)	ND	NA	ND	ND	12	ND	ND	NA
52-2 (0-1)	ND	NA	ND	ND	26	ND	ND	NA
B-7 (na)	102	NA	25	ŇA	NA	5.3	NA	NA
B-8 (na)	218	NA	28	NA	NA	5	NA	NA
B-2002 (6-7.5)	225	NA	25	NA	NA	13	NA	NA
Average Concentration - Only Samples With VOC Detections	442.5	3.4	375.786	2.9	10.6	18.971		39.167
Construction Worker		<u> </u>		•		•		
B51W1-6	25	4.3	25	0.5	0.5	25	0.5	25
B51W2-6	25	NA	25	NA	NA	25	NA	90
B51W3-12	2.5	2.5	2.5	4.8	10	2.6	2.6	2.5
B51W4-6	2.5	2.5	2.5	5.3	3.9	2.5	2.5	2.5
Utank (na)	2500	NA	2500	ND	ND	472	ND	NA
Sidewall (na)	2500	ΝA	2500	ND	ND	57	ND	NA
52-1 (0-1)	ND	NA	ND	ND	12	ND	ND	NA
52-2 (0-1)	ND	NA	ND	ND	26	ND	ND	NA
B-7 (na)	102	NA	25	NA	NA	5.3	NA	NA
B-8 (na)	218	NA	28	NA	NA	5	NA	NA
B-2002 (6-7.5)	225	NA	25	NA	NA	13	NA	NA
Average Concentration - Only Samples With VOC Detections	622.22	3.10	570.33	3.53	10.48	67.49	1.87	30.00

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

na - not available

NA - Not Analyzed

ND - Not Detected

Bold indicates a detection

Table 3A-5(b)
Soil Constituents Average Concentrations for TPHs in Sub-area 2A: Demolished Area Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B51W2-6	B-7 (na)	B-8 (na)	B-27 (na)	B-2002 (6-7.5)	Side Wall	Overall Area Average (ug/kg)
TPH - DRO							TPH - DRO
8/10/1993	NA	NA	NA	NA	NA	640,000	
7/2/2003	2,500	4,780	12,100	3,215	45,920	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - DRO	2,500	4,780	12,100	3,215	45,920	640,000	118,086
TPH - GRO							TPH - GRO
7/2/2003	27,000	4,640	10,400	5,000	15,100	NA	
7/23/2003	, NA	NA	NA	NA	NA	NA	
AVERAGE TPH - GRO	27,000	4,640	10,400	5,000	15,100	en de la companya de La companya de la co	12,428
TPH - ORO						and the second s	TPH - ORO
7/2/2003	2500	NA	NA	NA	NA	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO	2,500				e:		2,500

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 3A-5(b)
Soil Constituents Average Concentrations for TPHs in Sub-area 2A: Demolished Area Construction Worker
Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B51W2-6	B-7 (na)	B-8 (na)	B-27 (na)	B-2002 (6-7.5)	U Tank	Side Wall	Overall Area Average (ug/kg)
TPH - DRO					·			TPH - DRO
8/10/1993	NA	NA	NA	NA	NA	14,890,000	640,000	•
7/2/2003	2,500	4,780	12,100	3,215	45,920	NA	NA	
7/23/2003	NA	NA	NA	NA	· NA	NA	. NA	
AVERAGE TPH - DRO	2,500	4,780	12,100	3,215	45,920	14,890,000	640,000	2,228,359
TPH - GRO								TPH - GRO
7/2/2003	27,000	4,640	10,400	5,000	15,100		NA	
7/23/2003	NA	NA	NA	NA	NA NA	NA	NA	
AVERAGE TPH - GRO	27,000	4,640	10,400	5,000	15,100		1, 4	12,428
TPH - ORO				3-7-				TPH - ORO
7/2/2003	2,500	NA	NA	NA	NA		NA	
7/23/2003	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO	2500	7				engeleggeber (1975) Großensker (1975)		2,500

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Soil Constituents Average Concentrations for Metals in Suo-area 2A: Demolished Area Non-Residential Worker

*								Boeing Tr	act 1, St. Lo	uis, Missouri										
										Metak										
1 1										(ug/kg	·									
Sample ID	LUMINUM	NTIMONY	RSENIC	ARIUM	ERYLLIUM	АБМІОМ	АТСІЛМ	HROMIUM	OBALT	OPPER	RON	ЕАБ	MAGNESTUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	SODIUM	VANADIUM	ZINC
L	_ ₹	-3			-9	242.6	8,400,000	16,100	4,560	15,100	14,600,000	29,200	1,980,000	143,000	33	15,200		2,930,000		
52-1 (0-1)	14,200,000		30,700	201,000				17,500			19,600,000		2,350,008	613,600		19,900		1,830,000		
52-1 (1-2)	17,480,890		34,500	254,000				20,200			21,900,000		7,510,000	249,000	112	14,000	2,210,000	1,340,000	34,100	219,000
52-2 (0-1)	14,200,000		69,480	129,000							21,600,000						1,140,000	1,580,000	31,600	38,000
52-2 (1-2)	18,990,900		29,900	173,000											·NA		. NA	NA	NA	NA.
B51W4-6	NA.	NA	NA	NA	NA	NA	NA NA	NA.	I NA	11/1		0350								
Average Concentration - Only Samples With Metals Detections	16,175,000	3,785	38,875	189,250	1,106	730	8,307,500	17,400	6,125	33,525	19,425,000	46,166	3,600,000	362,250	49	15,750	1,427,500	1,920,000	34,375	86,675

Notes

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 3A-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 2A: Demolished Area, Construction Worker
Boeing Tract 1, St. Louis, Missouri

								DOCIDE 11	act 1, on Lo	MIS, MISSOULI								,		
					",					Metak (ng/kg				 	·		· · · · · · · · · · · · · · · · · · ·	·	·	
Sample ID	ALUMINUM	ANTIMONY	ARSENIC	ВАВІОМ	BERYLLIUM	САРМІТІМ	CALCIUM	СНКОМІТИМ	COBALT	COPPER	IRON	ĽEAD	MAGNESIUM	MANGANESE	MERCURY	NICKEL	POTASSIUM	Whigos 2,930,000	VANADIUM	ONI 25,600
52-1 (0-1)	14,200,000	3,400	30,700	201,000	1,130	243.5	8,400,000	16,100					1,980,600	143,000				1,830,000		
52-1 (1-2)	17,400,000		34,500		1,270	243.5	3,780,000	17,500	11,200					613,000				1,340,000		
52-2 (0-1)	14,200,000		60,400		943	2,190	16,900,000	28,200			21,900,600	140,000	7,510,000	249,000				1,580,000		
52-2 (1-2)	18,990,000		29,900		1,080	243.5	5,050,000	15,800	4,320	13,000	21,690,508		2,560,000	444,000						
B51W3-12	NA NA						NA	NA	NA	NA					NA					
B51W4-6	NA.				NA	NA.	NA	. NA	NA	NA	NA	8530	NA	NA	NA	NA.	IVA	14V	12/	NA.
Average Concentration - Only Samples With Metals Detections	16,175,000	3,785	38,875	189,250	1,106	730	8,397,590	17,490	6,125	33,525	19,425,800	39,773	3,600,000	362,250	49	15,750	1,427,500	1,920,000	34,375	86,675

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Net Assilyzof

Table 3A-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 2A:

Demolished Area

Boeing Tract 1, St. Louis, Missouri

200	ing Tract 1,		V	OCs			
Sample ID	BENZENE	ETHYLBENZENE	METHYL TERT-BUTYL ETHE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TOLUENE	XYLENES, TOTAL
B51W1W	1.75	1.75	2.5	1	3.5	1.75	2.5
B51W2W	60.9	2.5	2.5	NA	NA	60.8	179
B51W3W	2	2.5	3.67	6.05	2.50	2.5	2
B51W4W	1.75	1.75	3	10	4.8	1.75	2.5
B-7	817	130	20	NA	NA	33	140
Average Concentration - Only Samples With VOC Detections	220.35	34	7	5.5	4.15	24.33	81

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample.

Bold indicates a detection

Table 3B-5(a)
Soil Constituents Average Concentrations for VOCs in Sub-area 2B: Demolished Area

				-				Doeing	Tract 1,		VOCs (u	alka)			-							
ŀ	<u>-</u>	— T			- 1	\neg			g T	T	VOCS (12)	VAE	T	\Box	T				7		<u> </u>	\dashv
Sample ID	,1-DICHLOROETHENE	24-TRIMETHYLBENZENE	ACETONIE	CHLOROETHANE	CIS-1,2-DICHLOROETHENE	ETHYLBENZENE	SOPROPYL BENZENE	K.P.XYLENE	METHYL ETHYL KETONE (MEK)	WETHYLENE CHLORIDE	NAPHTHALENE	N-BUTYLBENZENE	N-ROPYLBENZENE	o-xytene	P-ISOPROPYLTOLUENE	SEC-BUTYLBENZENE	IETRACHLOROETHENE	TOLUENE.	RANS-1,2-DICHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE	XYLENES, TOTAL
Non- Residential Worker										-												
SIA-1 (0-1)	ND	NA	140	NA	ND	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	290,000	ND	44	ND	NA	NA
SIB-1 (0-1	ND	NA	88	NA	ND	ND	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA:	40,000	ND	14	ND	NA	NA
51A-1 (1-2)	ND	NA	130	NA	ND	ND	NA	NA	ND	ND	NA	NA	NA	NA.	NA	NA	880	ND	17	ND	NA	NA
518-1 (1-2)	_ ND	NA	12.5	NA NA	ND 1600	ND NA	NA NA	NA NA	ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	760 24,000	ND NA	9.6	ND NA	NA NA	NA 41
SB-1 2.5-4	NA NA	NA NA	240 800	NA NA	90	NA.	NA NA	NA	- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	NA	NA	- NA	NA NA	NA	NA.	NA.	32,000	NA.	36	NA.	NA	230
SB-1 2.5-4 D SB-10 4-5	3.15	NA NA	26	6.5	3.15	3.15	NA	NA.	6.5	24	NA	NA	NA.	NA.	NA.	NA.	3.15	3.15	3.15	9.3	6.5	3.15
SB-2 3-4.5	NA NA	NA.	25	NA.	3.25	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA.	18,000	NA	3.25	NA	NA	3.25
SB-20-7	25	25	50	50	25	330	110	25	50	40	25	330	250	25	NA	180	25	60	25	25	50	1,000
SB-25-6	25	25	1250	25	25	25	25	NA	6,100	125	25	25	25	NA	25	25	25	125	25	25	25	75
SB-30-6	125	125	6000	125	125	125	125	NA	6000	600	2,100	390	125	NA	125	125	125	600	125	125	125	375
SB-31-6	2.5	2.5	125	2.5	2.5	2.5	210	NA	125	12.5	2.5	1,200	420	NA	130	540	2.5	12.5	2.5	2.5	2.5	7.5
SB-35-6	2.5	NA	NA	NA	2.5	2.5	NA	2.5	. NA	2.5	NA	NA	NA	2.5	NA.	NA	. 2.5	2.5	2.5	2.5	9.6	NΑ
SB-4 6-7	NA	NA	27,000	NA	13	NA	NA NA	NA C	NA 6.5	NA 126	NA NA	NA NA	NA	NA 44	NA NA	NA	12,000	NA 2.26	3.35	NA 7.25	NA 65	3.35
SB-5 5.5-7	3.25	NA	42 68	6.5	3.25 3.3	4.4	NA NA	NA.	6.5 82	3.25 6.7	NA NA	NA NA	NA NA	4.4 NA	NA NA	NA NA	35 4,200	3.25 20	3.25 3.3	3.25 44	6.5	13.5
SB-7 3.5-4.5	3.3 3.15	NA NA	30	6.5 6.5	3.15	3.15	NA NA	NA NA	52	6.7	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	4,200	3.15	3.15	3.15	6.5	3.3
SB-8 6-7 TP-5-7	25	25	50	48	500	25	25	25	50	28	25	25	25	25	NA.	25	1,700,000	25	25	2,200	50	25
Average Concentration -						- 23											1,750,550			3,500	- 50	
Only Samples With	į.	1	2,122.15	30.72	171.36	53.37	99.00		1,385.78	84.87	435.50	394.00	169.00	- 1	93.33	179.00	117,293	85.46	19.50	243.97	28.81	137.17
VOC Detections	l	1	0,1.22.110											i								
Construction Worker								-		-												
51A-1 (0-1)	ND	NA	140	NA	ND	ND	NA.	NA	ND	ND	NA	NA	NA	NA	NA	NA	290,000	ND	44	ND	NA	NA
51B-1 (0-1	ND	NA	88	NA	ND	ND	ÑA	NA	ND	ND	NA	ŇÁ	NA	NA	NA	NA	40,000	ND	14	ND	NA	NA
51A-1 (1-2)	ND	NA.	130	NA	ND	ND	NA	NA	ND.	ND	NA	NA	NA	NA	NA	NA	880	סא	17	_ND	NA	NA
51B-1 (1-2)	ND	NA	12.5	NA	ND	ND	NA	NA	ND	ND	NA	NA.	NA	NA	NA	NA	760	ND	- 6	ND	NA	NA
MW-7S-14	NA	NA	NA.	NA	NA.		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1,300	NA	NA	NA	5,100
SB-1 12-13	NA	NA	21	NA	22	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	9,100	NA	3.2	NA	NA	3.2
SB-1 16-17	NA	NA NA	20		88	NA	NA.	NA	NA.	NA	NA	NA	NA	NA	NA	NA	58,000	NA	3.4	NA	NA	7.7
SB-1 2.5-4 SB-1 2.5-4 D	NA				1000	114	NIA.		ALA	MA						314					37.4	
IDB-1 4.3-4 D			240	NA NA	1600	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	24,000	NA	9.6	NA	NA NA	41
	NA	NA.	800	NA	90	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	24,000 32,000	NA NA	9.6 36	NA NA	NA	230
SB-10 14-15	NA 3.7	NA NA	800 180	NA 7.5	90 3.7	NA 3.7			NA 50	NA 69					NA NA	NA NA	24,000 32,000 3.7	NA NA 3.7	9.6 36 24	NA NA 28	NA 7.5	230 3.7
SB-10 14-15 SB-10 4-5	NA	NA NA NA	800	NA 7.5 6.5	90	NA 3.7 3.15	NA NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA NA	24,000 32,000	NA NA	9.6 36	NA NA	NA	230 3.7 3.15
SB-10 14-15	NA 3.7 3.15	NA NA NA	800 180 26 13 39	NA 7.5 6.5 6.5 6.5	90 3.7 3.15 19	NA 3.7 3.15 3.2 3.25	NA NA NA NA	NA NA NA NA	NA 50 6.5 13	NA 69 24 20 26	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	2 2 2 2	NA NA NA NA	NA NA NA NA	24,000 32,000 3.7 3.15	NA NA 3.7 3.15	9.6 36 24 3.15	NA NA 28 9.3 3.2	NA 7.5 6.5	230 3.7
SB-10 14-15 SB-10 4-5 SB-13-9	NA 3.7 3.15 3.2 3.25 3.15	NA NA NA NA NA	800 180 26 13 39 34	NA 7.5 6.5 6.5 6.5 6.5	90 3.7 3.15 19 1.6 1.6	NA 3.7 3.15 3.2 3.25 3.15	NA NA NA NA NA	NA NA NA NA NA	NA 50 6.5 13 13	NA 69 24 20 26 27	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	24,000 32,000 3.7 3.15 3.2 3.25 3.15	NA NA 3.7 3.15 3.2 3.25 3.15	9.6 36 24 3.15 1.6 1.6	NA NA 28 9.3 3.2 3.25 3.15	NA 7.5 6.5 3.2	230 3.7 3.15 3.2 3.25 3.15
SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10	NA 3.7 3.15 3.2 3.25 3.15 2.5	NA NA NA NA NA NA	800 180 26 13 39 34	NA 7.5 6.5 6.5 6.5	90 3.7 3.15 19 1.6 1.6 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5	NA NA NA NA NA NA	NA NA NA NA NA NA	NA 50 6.5 13 13 12.5 5	NA 69 24 20 26	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA 2.5	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	24,000 32,000 3.7 3.15 3.2 3.25 3.15	NA NA 3.7 3.15 3.2 3.25 3.15 2.5	9.6 36 24 3.15 1.6 1.6 2.5	NA NA 28 9.3 3.2 3.25 3.15 2.5	NA 7.5 6.5 3.2 3.25	230 3.7 3.15 3.2 3.25 3.15 2.5
SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11	NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5	NA NA NA NA NA NA 2.5	800 180 26 13 39 34 5	NA 7.5 6.5 6.5 6.5 6.5 5	90 3.7 3.15 19 1.6 1.6 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5	NA NA NA NA NA NA 2.5 2.5	NA NA NA NA NA NA 2.5	NA 50 6.5 13 13 12.5 5	NA 69 24 20 26 27 8 8	NA NA NA NA NA NA 2.5	NA NA NA NA NA NA 2.5	NA NA NA NA NA NA 2.5 2.5	NA NA NA NA NA 2.5 2.5	NA NA NA NA NA NA	NA NA NA NA NA NA 2.5	24,000 32,000 3.7 3.15 3.2 3.25 3.15 6	NA NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5	9.6 36 24 3.15 1.6 1.6 2.5 2.5	NA NA 28 9.3 3.2 3.25 3.15 2.5 90	NA 7.5 6.5 3.2 3.25 3.15 5	230 3.7 3.15 3.2 3.25 3.15 2.5 2.5
SB-10 14-15 SB-104-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15	3.7 3.15 3.2 3.25 3.15 2.5 2.5	NA NA NA NA NA 2.5 2.5 35	800 180 26 13 39 34 5 5	NA 7.5 6.5 6.5 6.5 5 5 94	90 3.7 3.15 19 1.6 1.6 2.5 140 68,000	NA 3.7 3.15 3.2 3.25 3.15 2.5 400	NA NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5	NA 50 6.5 13 13 12.5 5 5	NA 69 24 20 26 27 8 8 43	NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 25	NA NA NA NA NA 2.5 2.5	NA NA NA NA NA NA NA	NA NA NA NA NA NA 2.5 2.5	24,000 32,000 3.7 3.15 3.2 3.25 3.15 6 800 9,300,000	NA NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5 1,600	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000	NA 7.5 6.5 3.2 3.25 3.15 5 5	230 3.7 3.15 3.2 3.25 3.15 2.5 2.5 2,100
SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5	3.7 3.15 3.2 3.25 3.15 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 35 NA	800 180 26 13 39 34 5 5 130	NA 7.5 6.5 6.5 6.5 6.5 5 94 NA	90 3.7 3.15 19 1.6 1.6 2.5 140 68,000	NA 3.7 3.15 3.2 3.25 3.15 2.5 400 NA	NA NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 1,600	NA 50 6.3 13 12.5 5 5 50 NA	NA 69 24 20 26 27 8 8 43 NA	NA NA NA NA NA 2.5 2.5 2.5 NA	NA NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 540 NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA 2.5 2.5 2.5	24,000 32,000 3.7 3.15 3.2 3.25 3.15 6 800 9,300,000	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 2.5 1,600 NA	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000 NA	NA 7.5 6.5 3.2 3.25 3.15 5 5 63 NA	230 3.7 3.15 3.25 3.25 3.15 2.5 2.5 2,100 3.2
SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-15 SB-2 11-12-5 SB-2 3-4-5	3.15 3.25 3.15 2.5 2.5 2.5 NA	NA NA NA NA NA 2.5 2.5 35 NA NA	800 180 26 13 39 34 5 5 130 6.5	NA 7.5 6.5 6.5 6.5 6.5 5 94 NA	90 3.7 3.15 19 1.6 1.6 2.5 140 68,000 46 3.25	NA 3.7 3.15 3.25 3.15 2.5 2.5 400 NA	NA NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 1,600 NA	NA 50 6.3 13 13 12.5 5 50 NA NA	NA 69 24 20 26 27 8 8 43	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA	NA NA NA NA NA NA 2.5 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 25	NA NA NA NA NA 2.5 2.5 540 NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA	24,000 32,000 3.7 3.15 3.25 3.15 6 800 9,300,000 1,100	NA NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5 1,600	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2 3.25	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000 NA NA	NA 7.5 6.5 3.2 3.25 3.15 5 5	230 3.7 3.15 3.2 3.25 3.15 2.5 2.5 2,100 3.2 3.25
SB-10 14-15 SB-104-5 SB-13-9 SB-15-9 SB-16-9 SB-16-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 3-4.5 SB-20-15	3.7 3.15 3.2 3.25 3.15 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 35 NA NA	800 180 26 13 39 34 5 5 130 6.5 25	NA 7.5 6.5 6.5 6.5 5 5 94 NA NA	90 3.7 3.15 19 1.6 2.5 140 68,000 46 3.25	NA 3.7 3.15 3.25 3.25 3.15 2.5 400 NA NA	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA	NA NA NA NA NA NA 2.5 2.5 1,600 NA NA 2.5	NA 50 6.3 13 12.5 5 5 50 NA	NA 69 24 20 26 27 8 8 43 NA NA 8	NA NA NA NA NA 2.5 2.5 2.5 NA	NA NA NA NA NA NA 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 540 NA	NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 NA NA	24,000 32,000 3.7, 3.15 3.2 3.25 6 800 9,300,000 1,100 18,000	NA NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5 1,600 NA NA	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000 NA	NA 7.5 6.5 3.2 3.25 3.15 5 5 63 NA	230 3.7 3.15 3.25 3.15 2.5 2.5 2,100 3.2 3.25 56
SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-15 SB-2 11-12-5 SB-2 3-4-5	NA 3.7 3.15 3.2 3.25 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.55 3.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	800 180 26 13 39 34 5 5 130 6.5 25 90 50	NA 7.5 6.5 6.5 6.5 5 5 94 NA NA 5 50 25	90 3.7 3.15 19 1.6 2.5 140 68,000 46 3.25 2.5 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5 2.5 400 NA NA S 330 25	NA NA NA NA NA NA NA 2.5 2.5 2.5 NA NA S S	NA NA NA NA NA 2.5 2.50 1,600 NA NA 2.5 2.5 NA	NA 50 6.5 13 13 12.5 5 5 5 80 NA NA 36 50 3,900	NA 69 24 20 26 27 8 8 43 NA NA NA 123	NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 33 330 25	NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 540 NA NA 2.5 2.5 540 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	24,000 32,000 3.7, 3.15 3.2 3.25 3.15 6 800 9,300,000 1,100 18,000 2.5 2.5	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 2.5 1,600 NA NA 5 60	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2 3.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000 NA NA 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA S 50 25	230 3.7 3.15 3.25 3.15 2.5 2,100 3.2 3.25 56 1000
SB-10 14-15 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 21-12.5 SB-20-7 SB-20-7 SB-20-7 SB-21-8 SB-22-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.55 2.5 35 NA NA 2.55 2.5 35 2.5 35 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	800 180 26 13 39 34 5 5 130 6.5 25 90 50 1250	NA 7.5 6.5 6.5 6.5 5 94 NA NA 5 50 25	90 3.7 3.15 19 1.6 1.6 2.5 140 68,000 46 3.25 2.5 2.5 2.5	NA 3.7 3.15 3.25 3.15 2.5 400 NA NA 5 330 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 10 10 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA 2.5 2.5 1,600 NA 2.5 2.5 1,600 NA NA	NA 50 6.5 13 12.5 5 5 5 0 NA NA NA 3.6 3.900 1250	NA 69 24 20 26 27 27 8 8 43 NA NA NA 125 125	NA NA NA NA NA NA 2.5 2.5 25 NA NA 2.5 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA 2.5 2.5 25 NA NA 330 25 910	NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 540 NA NA 2.5 2.5 NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA S 180	24,000 32,000 3.7.7 3.15 3.2 3.25 3.15 6 800 9,300,000 11,100 18,000 2.5 25 25 25	NA NA 3.7 3.15 3.2 3.25 3.25 3.15 2.5 1,600 NA NA NA 5 60 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2500 3.25 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.2 3.25 3.15 2.5 90 14,000 NA NA 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA S 50 25	230 3.7 3.15 3.25 3.15 2.5 2.100 3.2 3.25 5.5 1000 75
SB-10 14-15 SB-10 4-5 SB-10-9 SB-13-9 SB-15-9 SB-16-9 SB-16-10 SB-18-11 SB-18-15 SB-2 3-4.5 SB-2 3-4.5 SB-20-15 SB-20-7 SB-21-8 SB-22-8 SB-23-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 3.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	800 180 26 13 39 34 5 5 5 130 6.5 25 90 1250	NA 7.5 6.5 6.5 6.5 5 94 NA NA 50 25 25	90 3.7 3.15 19 1.6 6.1 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5 400 NA NA 330 255 255 255 255 255 255 255 255 255 25	NA NA NA NA NA NA 2.55 2.5 2.5 10 110 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA 2.5 2.5 1,600 NA NA 2.5 2.5 2.5	NA 50 6.5 13 12.5 5 5 50 NA NA 3.60 3,900 3,600	NA 69 24 20 26 27 8 8 43 NA NA 8 40 125 125	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA 2.55 2.5 25 NA NA 13 330 25 910	NA NA NA NA NA 2.5 2.5 25 NA NA 8 250 250 252 252 253 253 254 254 255 255 255 255 255 255 255 255	NA NA NA NA NA 2.5 2.5 540 NA NA 2.5 540 NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	24,000 32,000 3.7,7 3.15 3.2 3.25 3.15 6 800 1,100 18,000 2.5 25 25 25 25	NA NA 3.7 3.15 3.25 3.25 2.5 2.5 1,600 NA NA S 60 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2500 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.2 3.25 3.25 90 14,000 NA NA 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA S 50 25 25	230 3.7 3.15 3.25 3.15 2.5 2.100 3.2 3.25 5.5 1000 75
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-16-9 SB-18-11 SB-18-15 SB-2 14-12-5 SB-2 3-4.5 SB-20-15 SB-20-15 SB-20-15 SB-21-8 SB-22-8 SB-22-8 SB-22-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.55 2.5 3.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	800 180 26 13 39 34 5 5 130 6.5 25 90 1250 1250 1250	NA 7.5 6.5 6.5 6.5 5 5 94 NA NA 5 50 2.5 2.5 2.5 2.5 2.5	90 3.7 3.15 199 1.6 1.6 2.5 140 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.2 3.25 3.25 2.5 2.5 400 NA NA 5 330 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.55 2.55 2.5 2.5 110 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.55 2.50 NA NA 2.55 2.50 NA NA NA NA	NA 50 6.5 13 12.5 5 5 50 NA NA NA 36 50 3,900 1250 4,200	NA 69 24 20 26 8 8 8 43 NA NA NA 125 125 125	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.5 2.5 25 25 25 25 29 10 910 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA NA 2.55 540 NA NA 2.55 2.5 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 3.7,7 3.15 3.2,5 3.25 3.15 6 800 9,300,000 18,000 2.5,5 25 25 25 25 25 25	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 1,600 NA NA S 60 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.25 3.15 2.5 90 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA S 50 25 25 25	230 3.7 3.15 3.25 3.25 2.5 2.5 2.100 3.2 3.25 56 1000 75 75
SB-10 14-15 SB-10 4-5 SB-10-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-211-12-5 SB-211-12-5 SB-20-7 SB-22-8 SB-20-7 SB-21-8 SB-22-8 SB-23-8 SB-23-8 SB-24-8 SB-24-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA 2.55 35 NA NA NA NA NA NA NA NA NA NA NA NA NA	800 180 264 133 399 34 5 5 5 5 5 5 5 5 5 5 5 5 5	NA 7.5 6.5 6.5 6.5 5 5 94 NA NA 5 50 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	90 3.7, 3.15 199 1.6 6.1.6 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5 400 NA NA S 330 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA S 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 1,600 NA 2.5 2.5 NA NA NA NA NA NA	NA 50 6.5 133 12.5 5 5 5 5 8 NA NA NA 3.6 3.900 1250 3,900 4,200 6,100	NA 69 24 20 26 8 8 8 43 NA NA 8 40 125 125 125	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA 2.55 2.5 2.5 NA NA 8 2.50 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 3.7,7 3.15 3.2,2 3.25 3.15 6 800 9,300,000 1,100 18,000 2.5 25 25 25 25 25 25 25 25	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 1,500 NA NA 5 60 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.2 3.15 9.0 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA 5 50 25 25 25	230 3.7 3.15 3.25 3.15 2.5 2.5 2.5 2.100 3.2 3.25 56 1000 75 75 75
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-16-9 SB-18-11 SB-18-15 SB-2 14-12-5 SB-2 3-4.5 SB-20-15 SB-20-15 SB-20-15 SB-21-8 SB-22-8 SB-22-8 SB-22-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 264 133 399 34 5 5 5 5 5 5 5 5 5 5 5 5 5	NA 7.5 6.5 6.5 6.5 5 94 NA 50 25 25 25 25 25 25 25	90 3.7, 3.15 199 1.6 1.6 2.5, 140 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.2 3.25 3.15 2.5 400 NA NA 5 330 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA 2.5 1,600 NA NA 2.5 NA NA NA NA NA NA	NA 50 6.5 13 12.5 5 50 NA NA 3,60 1250 3,500 4,000 125	NA 699 244 226 277 8 8 43 NA NA 8 400 125 125 125 125 125 125	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA 8 2.50 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 3.7,7 3.15 3.2,2 3.25 3.15 6 800 9,300,000 1,100 2.5 25 25 25 25 25 25 25 25 25 25	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 1,500 NA NA 5 60 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.50 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.2 3.15 9.0 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 63 NA NA S 5 5 25 25 25 25 2.5	230 3.7 3.15 3.25 3.25 2.5 2.5 2.100 3.2 3.25 56 1000 75 75 75
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-21-11-12-5 SB-20-15 SB-20-15 SB-20-15 SB-20-15 SB-20-15 SB-21-8 SB-22-8 SB-22-8 SB-22-6 SB-29-8 SB-310-5-11.5	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.55 2.55 NA NA S 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.	800 180 266 276 287 399 344 5 5 130 6.5 5 90 1250 12	NA 7.5 6.5 6.5 6.5 5 94 NA NA 5 50 2.5 2.5 2.5 2.5 2.5 2.5 2.5	90 3.7 3.15 19 1.6 6.5 1.6 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.22 3.25 3.15 2.5 4000 NA NA 5 330 25 25 25 25 25 25 25 25 25 25 3.10 2.5 4000 2.5 2.5 3.10 2.5 3.10 2.5 4000 2.5 3.0 2.5 3.0 2.5 3.0 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	NA NA NA NA NA NA NA NA NA NA NA NA S S S S	NA NA NA NA NA NA NA 2.5 1,600 NA NA NA NA NA NA NA	NA 50 6.5 13 13 12.5 5 50 NA 3,60 4,200 4,100 6,100 1255 NA	NA 699 244 200 226 277 8 8 43 NA NA NA 125 125 125 125 125 125 125 125 125 NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA 133 330 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA 2.5 2.5 NA NA 8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA S 180 97 520 525 25 25 25 25 25 25 25 25 25 25 25 25	24,000 32,000 3.7,7 3.15 3.2 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.00	NA NA 3.7 3.15 3.25 3.25 3.15 2.5 1,600 NA NA S 60 125 125 125 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.25 3.25 2.5 90 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.25 5 63 NA NA NA S 50 25 25 25 25 25 25 25 NA	230 3.7 3.15 3.2 3.25 2.5 2,100 3.2 3.25 5.66 1000 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 21-12.5 SB-2-3-4.5 SB-20-7 SB-21-8 SB-22-8 SB-23-8 SB-33-8 SB-33-8 SB-33-8 SB-33-8	NA 3.7 3.15 3.2 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 266 131 34 5 5 5 130 6.5, 25 90 90 1250 1250 1250 1250 1250 1250 1250 125	NA 7.5 6.5 6.5 6.5 5 94 NA NA 5 50 2.5 2.5 2.5 2.5 2.5 2.5 2.5	90 3.7 3.15 19 1.6 2.5 2.5 140 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.25 3.15 2.5 4000 NA NA 5 3300 2.5 2.5 2.5 2.5 2.5 3.20 3.20 3.20 3.20 3.20 3.20 3.20 3.20	NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 10 110 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.55 1,600 NA NA NA NA NA NA	NA 50 6.5 13 12.5 5 50 NA NA 3,60 1250 3,500 4,000 125	NA 699 244 226 277 8 8 43 NA NA 8 400 125 125 125 125 125 125	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA 2.55 25 NA NA 250 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA 180 180 125 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	24,000 32,000 3.7,0 3.15 3.2,2 3.25 3.15 6 800 9,300,000 1,100 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA 3.15 3.25 3.25 3.15 2.5 2.5 1,600 NA NA S 60 125 125 125 125 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9,3 3.25 3.15 90 14,000 NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 5 63 NA NA S 5 50 25 25 25 25 25 25 25 25 25 25	230 3.7 3.15 3.25 3.25 2.5 2,100 3.2 3.25 56 1000 75 75 75 75 75 75 3.33 3.33 3.35
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-21-11-12-5 SB-20-15 SB-20-15 SB-20-15 SB-20-15 SB-20-15 SB-21-8 SB-22-8 SB-22-8 SB-22-6 SB-29-8 SB-310-5-11.5	NA 3.7 3.15 3.15 2.5 2.5 NA NA 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 264 253 344 5 5 5 130 6.5 25 25 25 1250	NA 7.55 6.5 6.5 6.5 5 94 NA NA NA S 5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	900 3.7 3.18 19 1.6 2.5; 140 68,000 466 3.25 2.5; 25 25 25 25 25 25 25 25 25 25 25 25 25 2	NA 3.7 3.2 3.25 3.15 2.5 400 NA NA S 330 2.5 2.5 2.5 3.15 400 NA NA NA S 2.5 2.5 3.25 400 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 13 13 12.5 5 50 NA NA 3,900 1250 4,200 6,100 125 125	NA 699 244 226 277 8 8 8 43 NA NA NA 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA 13 330 25 25 25 25 25 25 33 30 33 33 33 33 25 25 25 31 31 31 31 31 31 31 31 31 31 31 31 31	NA NA NA NA NA 2.55 25 NA NA 250 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA 2.5 2.5 340 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	24,000 32,000 32,000 3.7 3.15 3.2 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 3.15 3.25 3.25 3.15 2.5 2.5 1,600 NA NA S 60 125 125 125 125 125 125 125 125	9.6 36 24 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 288 9.3 3.25 3.25 90 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.23 3.25 3.15 5 5 6 3 6 3 NA NA S 5 5 25 25 25 25 25 25 25 25 25 25 25 25	230 3.7 3.15 3.25 3.25 2.5 2,100 3.25 56 1000 75 75 75 7.5 7.5 3.33 3.35 7.5 7.5
SB-10 14-15 SB-10-4-5 SB-10-4-5 SB-13-9 SB-15-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12-5 SB-2 3-4-5 SB-20-15 SB-20-7 SB-21-8 SB-22-8 SB-23-8	NA 3.7 3.15 3.22 3.15 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA NA NA NA 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	800 180 266 334 5 5 5 130 6.5, 25 90 90 1250 1250 1250 1250 1250 1250 1250 125	NA 7.5 6.5 6.5 6.5 5 94 NA 50 25 25 25 25 25 2.5 NA NA NA NA NA NA NA NA NA NA NA NA NA	90 3.7 3.1st 19 1.6 1.6. 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.25 3.15 2.5 400 NA 5 330 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA 2.5 2.5 1,600 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA 50 6.5.5 13 12.5 5 5 50 NA NA NA 3.6 3.5 5 3,900 12.50 3,600 6,100 6,100 6,100 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	NA 699 240 220 26 8 8 8 43 NA NA NA 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA 2.55 2.5 2.5 NA NA NA 180 97 97 97 97 15 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	24,000 32,000 3.7,0 3.15 3.2 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 3.77 3.15 3.25 3.25 2.5 2.5 1,600 NA NA NA NA 125 125 125 125 125 125 125 125 125 125	9.6 36 24 3.15 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 288 9.3 3.2 3.25 3.15 2.5 90 14,000 NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.5 6.5 3.2 3.25 3.15 5 5 63 NA NA S 5 50 25 25 25 25 25 25 25 25 25 25	230 3.7 3.15 3.25 3.25 2.5 2,100 3.25 56 1000 75 75 75 7.5 7.5 3.33 3.35 7.5 7.5
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-20-15 SB-20-7 SB-21-8 SB-20-8 SB-20-8 SB-20-8 SB-20-8 SB-31-6	NA 3.7 3.15 3.25 3.12 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA NA NA 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.5	800 180 266 133 39 34 5 5 5 5 5 5 5 5 5 5 5 5 5	NA 7.5 6.5 6.5 6.5 6.5 5 5 94 NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	90 3.7 3.15 19 1.6 1.6 2.5 140 68,000 46 68,000 25 25 25 25 25 25 25 25 25 25	NA 3.7 3.15 3.25 2.5 400 NA NA 5 330 25 25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	NA NA NA NA NA NA 2.5.5 2.5. 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA 2.5 2.5 1,600 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA 50 6.5 6.5 7.5 5.5 8.6 8.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9	NA 699 244 25 277 8 8 8 8 40 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA 2.5 2.5 2.5 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 2.53 540 NA NA 2.53 2.53 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA 180 977 520 525 525 525 525 525 525 525 525 525	24,000 32,000 32,000 3.7, 3.15 3.2 3.25 3.315 6 800 9,300,000 1,1,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 3.7 3.15 3.25 3.15 2.5 2.5 1,600 NA NA NA 125 125 125 125 125 125 125 125 125 125	9.6 36 24 24 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 288 9.3 3.25 3.25 3.15 90 14,000 NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 7.55 6.5 3.22 3.25 3.15 5 63 NA NA NA S 5 5 25 25 25 25 25 25 25 25 25 25 25 25	230 3.7, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2
SB-10 14-15 SB-10 14-15 SB-10 4-5 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-21-12-5 SB-2-13-4-5 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-22-8 SB-22-8 SB-22-8 SB-23-8 SB-23-8 SB-23-8 SB-31-6 SB	NAA 3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 334 5 5 5 130 6.5 255 90 1250	NA 7.5.5 6.5.5 6.5.5 6.5.5 5 944 NA 5.5 5 5 9225 2.5.2	90 3.7 3.15 1.6 1.6 68,000 46 68,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA 3.7 3.15 3.25 3.25 2.5 2.5 4000 NA NA S 3300 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA 2.5 2.5 1,600 NA NA NA NA NA NA NA NA NA NA NA NA NA	NA 50 6.5 6.5 13 13 12.5 5 50 NA 36 50 3,900 6,100 6,100 12.5 80 12.5 12.5 12.5 12.5 12.5 12.5 12.5 13.6 13.6 10	NAA 699 2444 200 226 8 8 8 8 8 43 3 NAA 8 8 400 1255 1255 1255 1255 1255 1255 1255 1255	NA NA NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA 13 330 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA 2.55 2.5 NA NA 2.55 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA NA NA NA NA NA NA 2.5 540 NA NA NA NA NA NA NA NA NA NA NA 2.5 2.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 3.7,0 3.15 3.25 3.15 6 800 9,300,000 18,000 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA 3.7; 3.15 3.25 3.25 3.15 2.5, 1,600 NA NA NA 125 125 125 125 125 125 125 125 125 125	9.6 36 244 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA 28 9.3 3.25 3.15 2.5 90 14,000 NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.25 2.5 3.25 3.2	NA	230 3.7, 3.19 3.2, 3.25 2.5, 2.5, 2.100 3.2, 2.5, 5.6 1000 7.75 7.55 7.55 7.55 7.55 7.55 7.55 7
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-17-10 SB-18-11 SB-18-15 SB-2-17-10 SB-18-15 SB-2-17-10 SB-18-15 SB-2-17-10 SB-2-18-15 SB-2-18-1	NAA 3.7.3 3.19 3.2.3 3.22 2.22 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.2 2.2.3 NAN NAN NAN NAN NAN NAN NAN NAN NAN NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 266 334 5 5 5 130 6.5 25 90 90 1250 1250 1250 1250 1250 1250 1250 125	NA 7.5.5 6.5.6 6.5.6 6.5.5 5 5 8.4 NA NA 5 2.5 2.5 2.5 2.5 2.5 3 NA	900 3.7 3.15 19 1.6 1.6. 2.5 140 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA 3.7. 3.151 3.22 3.2252 4000 NAA NAA 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 6.5 7.5 12.5 5.5 NA NA 8.6 9.00 12.5 NA 12.5 12.	NAA 69 244 20 25 8 8 8 4 3 3 NAA NAA 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA 1330 255 252 252 253 253 254 254 255 255 255 255 255 255 255 255	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA 180 180 525 25 25 25 125 25 125 125 125 125 125	24,000 32,000 32,000 3.77 3.15 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA 3.7, 3.15 3.23 3.15 2.5, 3.25 1,600 NA NA S G G S 125 125 125 125 125 125 125 125 125 125	9.6 36 24 24 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA NAA 9.33 3.22 3.25 3.15 2.5 90 14,000 NA NA 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	NAA 7.5 6.5 3.22 3.25 3.15 5 6.3 NAA NAA 5 5 6.25 25 25 25 25 25 26 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	230 3.7, 3.153 3.125 3.153 2.5, 2.5, 2.1000 3.2, 3.255 5600 755 755 755 755 755 755 755 755 755 7
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-20-15 SB-20-7 SB-21-8 SB-20-8 SB-21-8 SB-22-8 SB-23-8 SB-24-8 SB-25-6 SB-29-8 SB-3 10.5-11.5 SB-30-6 SB-31-6 SB-35-6 SB-31-6 SB-35-6 SB-31-6 SB-35-6 SB-411.5-13.5 SB-4 6-7 SB-5 14-16 SB-4 6-7 SB-5 14-16 SB-4 5-7 SB-5 14-16	NAA 3,3,3 3,2 3,3,2 2,3,3 3,2 2,5,5 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 33 39 34 5 5 5 5 130 6.5 125 90 1250 12	NAA 7.5.5 6.5.6.5.6.5.6.5.6.5.5 5.5.7 8.6.5.6.5.5.5 5.5.7 8.6.5.6.5.6.5.5 5.5.7 8.6.6.5.6.5.6.5.6.5.6.5.6.5.6.5.6.5.6.5.	900 3.7 3.15 1.9 1.6 2.5 1.40 68,000 46 68,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA 3.7. 3.151 3.22 3.2252 2.5. 3.151 4000 NAA NAA NAA 1.252 2.5. 2.5. 2.5. 2.5. 2.5. 2.5. 2.5	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 3 13 12.5 5 5 5 5 8 NA 3.6 3.6 12.5 5 5 9.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	NAA 69 244 220 256 8 8 8 8 43 NAA NAA 9 400 1255 1255 1255 1255 1255 1255 1255 12	NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA 2.55 2.55 NA 1250 255 255 255 255 255 265 275 275 275 275 275 275 275 275 275 27	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7.7 3.15 3.2 3.25 3.315 6 800 9,300,000 1,1,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA 3.77 3.15 3.23 3.15 2.5. 2.5 1,600 NA NA NA S 125 125 125 125 125 125 125 125 125 125	9.6 36 244 3.15 1.6. 1.6. 1.6. 2.5. 2.50 3.2. 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA N	NAA 7.5 6.5 3.2 3.25 3.15 5 6.3 NAA NA 5 5 25 25 25 25 25 26 125 2.5 NAA NA	230 3.7.7 3.193 3.25 2.5.5 2.5.5 3.22 2.5.5 5.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-17-10 SB-18-11 SB-18-15 SB-21-12-5 SB-21-12-5 SB-20-7 SB-22-8 SB-20-7 SB-22-8 SB-23-8 SB-23	NAA 3.7.3 3.15 3.2.2 3.22 2.5.5 NAA NAA 122 2.22 2.22 2.22 2.22 2.23 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 265 334 5 5 5 5 5 5 5 5 5 5 5 5 5	NA. 7.5.5 6.5.6.5.6.5.6.5.6.5.5 5.5.6.5.6.5.5 5.5.7 NA.	90 3.7 3.15 19 1.6 1.6 68,000 46 68,000 46 58,000 25 25 25 25 25 25 25 25 25 25	NAA 3.7. 3.153 3.225 3.255 4000 NAA 5.5 400 NAA 5.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5.5 6.5.5 5.5 5.5 5.5 5.0 NA 3.66 5.5 5.0 12.50 6,100 6,100 12.5 1	NAA 69 24 24 220 26 8 8 8 8 NAA NAA 9 125 125 125 125 NAA 000 12.5 NA NAA NAA NAA 3.33 3.33	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA 13 330 25 25 25 25 25 25 25 25 25 25 25 25 25	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA 2.5; 2.5; NA 180 1977 1975 125 25 25 25 25 25 25 25 25 25 25 25 25 2	24,000 32,000 3.7,0 3.15 3.2 3.25 3.15 6 800 9,300,000 1,100 18,000 2.5 25 25 25 25 25 25 25 25 25 25 25 25 25	NA N	9.6 36 24 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA NAA 9-33 3-22 3-155 2-5 90 14,000 NA NA 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5 2-5	NAJA 7.5.5 3.25 3.25 3.3.5 5 3.3.5 5 63 NA NA NA S 5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	230 3.7.3 3.2.2 2.5.3 3.2.2 2.5.5 5.6 5.6 5.7 75 75 75 75 75 75 75 75 75 75 75 75 75
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-17-10 SB-18-11 SB-18-15 SB-21-12-5 SB-23-4-5 SB-20-7 SB-21-8 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-23-6 SB-23-	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 264 334 5 5 5 130 6.5 25 90 90 125	NAA 7.5.5 6.5.6.5.6.5.5 5.5 5.5 9.44 NAA NAA 2.5.5 2.5.2 2.5.2 2.5.2 2.5.2 2.5.3 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	900 3.7 3.15 19 1.6 1.6.6 2.5 140 68,000 46 3.25 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA 3.7. 3.153 3.2.3. 3.255 2.5. 2.5. 4000 NAAN NA S 3303 2.55 2.5. 2.5. 2.5. 3.151 2.5. 3.151 2.5. 3.151 2.5. 3.151 2.5. 3.151 3.15	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 6.5 7.5 12.5 5.5 NA NA 3.5 9.0 1.25 0.3 3.600 4.200 1.25 NA NA NA NA NA NA NA NA NA NA	NA 699 244 240 226 8 8 8 8 8 43 NA 1255 1255 1255 1255 125, NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7,7 3.15 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA 3.77 3.151 3.25 3.152 3.25 2.5 1,600 5 6 6 6 123 125 125 125 125 125 125 125 125 125 125	9.6 366 244 3.151 1.6. 1.6. 1.6. 2.5. 2.500 3.2. 2.55 2.55 2.55 2.55 2.55 2.55 2.55	NAA NAA 9.3.325 3.255 9.00 14,000 NAA NAA NAA NAA NAA NAA NAA NAA NAA	NAS 7.5 6.5 3.2 3.25 5.5 5.5 5.5 6.3 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	230 3.7.3 3.151 3.2.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5.5 2.5 2
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-15 SB-23-15 SB-23-4.5 SB-20-15 SB-23-4.5 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-23-8 SB-23-8 SB-24-8 SB-25-6 SB-29-8 SB-3 10.5-11.5 SB-30-6 SB-31-6	NAA 3.7.3 3.15 3.2.2 3.22 2.5.5 NAA NAA 122 2.22 2.22 2.22 2.22 2.23 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 33 39 34 5 5 5 5 130 6.5 5 5 5 5 5 5 5 5 5 5 5 5 5	NA 7.5.5 6.5.6 6.5.6 5.5 5 5 944 NA NA SO 5.5 2.2 2.5 2.2 2.5 3.0 1.2 2.5 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	900 3.7 3.15 1.9 1.6 1.6 1.6 68,000 46 68,000 45 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NAA 3.7. 3.151 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 13 13 12.5 5 5 5 5 0 NA 3.6 5 5 0 3.5 12.5 5 5 0 0 12.5 5 0 0 12.5 6,10 6,10 6,10 6,10 6,10 6,10 6,10 6,10	NAA 69 24 24 22 26 8 8 8 8 NAA NAA 9 122 125 125 125 125 NAA 0600 07 12.5 NA NAA NAA NAA 3.33 3.33	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7,7 3.15 3.2 3.25 3.315 6 800 9,300,000 1,1,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA 3.7, 3.15 3.23 3.15, 2.5, 1,600 60 60 125 125 125 125 125 125 125 125 125 125	9.6 36 24 3.15 1.6 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA N	NAS 7.5.5 3.25 3.25.5 5.5 5.5 5.5 5.6 3.3 5.5 5.0 6.3 5.0 6.3 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	230 3.7.3.3.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.5.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.2.3.3.2.3.3.2.3
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-21-12-5 SB-23-4-5 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-22-8 SB-23-8 SB-23-8 SB-23-6 SB-29-8 SB-310-5-11.5 SB-30-6 SB-31-6	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 334 5 5 5 5 5 5 5 5 5 5 5 5 5	NAA 7.5.5 6.5.6.5.6.5.6.5.6.5.6.5.6.5.6.5.6.5	90 3.7 3.15 1.6 1.6 68,000 46 68,000 46 68,000 46 68,000 46 68,000 46 125 25 25 25 25 25 25 25 25 25	NAA 3.7. 3.153 3.22. 3.253 3.215 4000 NAA 5.3 300 S.2 2.5. 400 NAA 5.3 300 S.2 2.5. 2.5. 2.5. 400 NAA 5.3 300 S.3 300	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5.5 6.5.5 5.5 5.5 5.0 NA 3.66 5.5 5.0 12.5 5.0 12.5 5.0 12.5	NAA 699 244 220 246 8 8 8 8 8 40 125 125 125 125 125 125 125 125 NAA 600 600 125 NAA NAA NAA NAA NAA NAA NAA NAA NAA NA	NA NA NA NA NA NA NA 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7. 3.15 3.2. 3.25 3.15 6 800 9,300,000 18,000 2.5. 25 25 25 25 25 25 25 25 25 25 25 25 25	NA N	9.6 36 24 3.15 1.6 1.6 1.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NAA NAA 3.3.3 3.2 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.3	NAA 7.5 6.5 3.22 3.25 5 5 5 6 3 8 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8	230 3.7, 3.151 3.2, 3.151 3.2, 3.255 2.100 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2,
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-13-9 SB-15-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 11-12.5 SB-2 11-12.5 SB-2-3-4.5 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-22-8 SB-23-8 S	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 334 5 5 5 5 5 5 5 5 5 5 5 5 5	NAA 7.5.5 6.5.6 6.5.6 6.5.6 6.5.7 944 NAA 1.5.5 92222 92.5.7 1.5.7	900 3.7 3.15 1.9 1.6 1.6 1.6 68,000 46 68,000 45 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NAA 3.7. 3.15 3.2. 3.2. 3.15 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 6.5 6.5 6.5 7.5 5.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 12.	NA 699 244 220 226 8 8 8 8 8 8 40 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7,7 3.15 3.2 3.25 3.15 6 800 9,300,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA NA NA 3.77 3.151 3.25 3.152 3.25 2.5 1,600 5 60 60 123 125 125 125 125 125 125 125 125 125 125	9.6 36 24 3.151 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	NA NA NA 9.3.2 3.225 3.255 900 14,000 NA NA NA NA NA NA NA NA NA NA NA NA NA	NAMA 7.5 6.5 3.22 3.25 5 5 6.3 NAM NAM 5 50 25 25 25 25 2.5 NAM	230 3.7, 3.151 3.2, 3.25
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-17-10 SB-18-11 SB-18-15 SB-21-12-5 SB-23-4.5 SB-20-7 SB-21-8 SB-20-7 SB-21-8 SB-20-7 SB-21-8 SB-20-8 SB-20-8 SB-20-8 SB-21-8 SB-23-8 SB-21-8 SB-23-8 SB-21-8 SB-23-8 SB-21-8 SB-23-8 SB-21-8 SB-23-8 SB-21-10-5 SB-25-6 SB-25-6 SB-25-6 SB-25-6 SB-25-6 SB-25-6 SB-25-6 SB-25-1 SB-25-6 SB-25-1 SB-25-6 SB-25-1 SB-25-6 SB-25-6 SB-25-1 SB-25-6 SB-25-6 SB-25-1 SB-25-6 SB-25-6 SB-25-6 SB-25-6 SB-25-8 S	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 334 5 5 5 5 5 5 5 5 5 5 5 5 5	NAA 7.5.5 6.5.6 6.5.6 6.5.6 6.5.7 944 NAA 1.5.5 92222 92.5.7 1.5.7	900 3.7 3.15 1.9 1.6 1.6 1.6 68,000 46 68,000 45 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NAA 3.7. 3.15 3.2. 3.2. 3.15 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2. 3.2	NAI	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 6.5 6.5 6.5 7.5 5.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 5.0 12.5 12.	NA 699 244 220 226 8 8 8 8 8 8 40 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.7, 3.15 3.2 3.25 3.35 800 9,300,000 1,1,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA N	9.6 36 24 3.151 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.	NAA NAA 9.3.3 3.25 3.25 3.15 2.5.5 90 14,000 NAA NAA 2.5.2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	NAS 7.5 3.2 3.2 3.2 3.2 5 5 5 6 3 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	230 3.7, 3.151 3.2, 3.253 2.5, 3.253 3.25, 3.253 3.25, 3.253 5.666 10000 7.755 7.557 7.5, 3.353
SB-10 14-15 SB-10 4-5 SB-10 4-5 SB-13-9 SB-15-9 SB-15-9 SB-16-9 SB-17-10 SB-18-11 SB-18-15 SB-2 11-12.5 SB-2 11-12.5 SB-2 24-5 SB-20-7 SB-21-8 SB-22-8 SB-22-8 SB-22-8 SB-23-8 SB-21-15 SB-30-6 SB-31-6 SB-31-	NAM	NA NA NA NA NA NA NA NA NA NA NA NA NA N	800 180 265 334 5 5 5 5 5 5 5 5 5 5 5 5 5	NAA 7.5.5 6.5.6 6.5.6 6.5.6 6.5.7 944 NAA 1.5.5 92222 92.5.7 1.5.7	900 3.7 3.15 1.9 1.6 1.6 1.6 68,000 46 68,000 45 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.	NA 3.7.7 3.153 3.2.153 3.2.53 3.155 2.5.5 4000 NA 5 5 2.5.9	NA NA NA NA NA NA NA NA NA NA S. S. S. S. S. S. S. S. S. S. S. S. S.	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA 50 6.5 6.5 5 5 5 5 5 5 5 5 5 5 5 5 5	NA 699 244 220 226 8 8 8 8 8 8 40 125 125 125 125 125 125 125 125 125 125	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NAA	NA NA NA NA NA NA NA NA NA NA NA NA NA N	24,000 32,000 32,000 3.77 3.15 3.22 3.25 3.15 6 800 9,300,000 18,000 18,000 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	NA N	9.6 36 24 3.15 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	NA N	NAMA 7.5 6.5 3.22 3.25 5 5 6.3 NAM NAM 5 50 25 25 25 25 2.5 NAM NAM NAM 6.3 6.5 6.5 6.5 6.6 5 6 6 6 6	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3

VOCs + Volatile Organic Compounds NA - Not Analyzed Bold indicates a detection

Soil Constituents Average Concentrations for TPHs in Sub-area 2B: Demolished Area Non-Residential Worker Boeing Tract 1, St. Louis, Missouri

	<u> </u>		Boeing Tract 1, S					Overall
Constituent		1			,			Area
Fractions	SB-20-7	SB-25-6	SB-26-6	SB-30-6	SB-31-6	SB-33-7	SB-5 5.5-7	Average
Fractions					:	:		(ug/kg)
TPH - DRO					<u> </u>			TPH - DRO
2/5/1998	NA	NA	NA	NA	NA	NA	1,900,000	
12/4/2000	NA	NA	NA	NA		NA	NA	
12/5/2000	NA NA	NA	NA NA	NA	NA	NA	NA	
12/6/2000	900,000	NA	NA	NA	NA	NA	. NA	
9/5/2001	. NA	9,300	1,400,000	NA	NA	NA	NA	
9/6/2001	NA	ŇA	NA	1,400,000	110,000	5,500	NA	
10/15/2001	NA	NA	NA	NA	NA	NA	NA	1
11/11/2002	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - DRO	900,000	9,300	1,400,000	1,400,000	110,000	5,500	1,900,000	817,829
TPH - GRO	-							TPH - GRO
2/5/1998	NA	NA	NA	NA	NA	NA	180,000	
12/4/2000	NA	NA	NA	Ν̈́A	NA	NA	NA	1
12/5/2000	NA	NA	NA	NA	NA	. NA	NA	
12/6/2000	1,500	NA	NA	NA	NA	NA	NA	
9/5/2001	. NA	2,000	200,000	NA	NA	NA	NA	
9/6/2001	NA	NA	NA NA	20,000	2,000	2,000	NA	
10/15/2001	NA	NA	NA	NA	NA	NA	NA	Marie and the second second and
AVERAGE TPH - GRO	1,500	2,000	200,000	20,000	2,000	2,000	180,000	58,214
TPH - ORO	• ,					· · · · · · · · · · · · · · · · · · ·		TPH - ORO
12/4/2000	NA	NA	NA	NA	NA	NA	NA	
12/5/2000	NA	NA	NA	NA	NA	NA	, NA	
12/6/2000	1,500	NA	NA	. NA	NA	NA	NA	
9/5/2001	NA	2,000	200,000	NA NA	NA	NA	NA	
9/6/2001	NA	NA	NA	20,000	16,000	2,000	NA	
10/15/2001	NA	NA	NA	NA	NA	NA	NA.	}
11/11/2002	NA	NA	NA	· NA	NA	NA	NA	
AVERAGE TPH - ORO	1,500	2,000	200,000	20,000	16,000	2,000		40,250.00

Notes:

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

September 2004

7.00.7

MACTEC

Table 38: Constituents Average Concentrations for TPHs in Sub-area 38: Demokahod Area Construction Worker

Soil Constituents Average Concentrations for TPHs in Sub-area 28: Demokahod Area Construction Worker

Bacing Tract 1, St. Laois, Missouri

/9 '999'00		; ".";"	2,000	. 000 7	2,000	000 91	20,000	30,000	- 000 OZ	. 2,000	. 200,000	000 Z	20,000	000'07	000 OZ	200,000	005'1	005'1	005'1	0051	VERAGE TPH - ORO
	VΝ	VN											VN			VΝ	VΝ	VN	VN	VN	7,007,11/1
	ΑN	٧N	٧N	VN	VN	٧N	VN	VΝ	VΝ	VN	VN .	VN	¥Ν	VN	VΝ	VN	VN	VN	VN	VN	0/12/5001
	٧N	٧N	2,000	2,000	2,000	000'91	20,000	20,000	VN.	VN	٧N	VΝ	VΝ	VN	VN	YN	VN	VN .	٧N	YN	1007/9/
	ΥN	VΝ	VN.	VΝ	٧N	VN .	ΥN	VN .	20,000	000 Z	300,000	000 Z	000,0 <u>c</u>	000'0Z	000 OZ	000'00Z	VN	VΝ	٧N	VN	1007/5/
l. I	٧N	VN	VN.	VΝ	٧N	VN .	٧N	٧N	٧N	VN .	٧N	YN	ΥN	ΥN	٧N	AN	005,1	1 200	VN	VΝ	. 0002/9/7.
													VΝ			ΨN	٧N	٧N	٧N	VN .	7/2/2000
	VΝ	VN .	AN_	VN	VΝ	AN			¥Ν	ΫŇ	VΝ	אע	YN			VΝ	VN.	AM	005'1	1,500	7/4/2000
ORO-HTT																					PH ORO
051'ZE		000,081	2000	2 000	7 000	2000	20,000	20'000	000 OZ ;	7 000	000'00Z	2,000	20,000	. 20,000	20,000	200,000	005 1	1,500	005 1	0051.	VVERAGE TPH - GRO
													VN		VX		VΝ	YN	VN.	VΝ	1002/\$1/0
								20,000					VΝ				VΝ	VN	٧N	VN	1002/9/
													000'02				YN	AN .		YN	1002/\$/
													VN.							VΝ	7/6/2000
													ΥN							AN	3/2/3000
																	ΥN		008,1	1,500	3/4/2000
	000,25	129,466	YN	AN	ΔN	AN	AN	AN	AM	VΝ	VN	٧N	VN.		VΝ	AM	ΫN	AN	VN	AM	8661 <i>1</i> \$7
ORD - H9T	Transfer in the second		Non-land to the																		PH GRO
\$99 TES		000'006'1	00¢.≯		000,88	000'011'	1 400,000	000,079	180,000	.000'91'	-000,009,1	006,9	270,000	.310 000	000,047	1,100,000	000 006	009'66	00+'01	430,000	VVERAGE TPH - DRO
													VΝ				VΝ	ΥN	٧N	VN.	Z00Z/11/1
								ΑN					VN						AN .	VΝ	1007/\$1/0
	YN	ΑN	995 17	805°S						VN			VΝ					ΨN		VN	1007/9/
1	VN	VN	VN	YN	٧N	YN	VΝ	٧N	999,981	000'91	990'907'T	996,6	900'0/Z				ΑN	AN		ΫŇ	12/2001
i i	VN	VN .	AN .	VN				VΝ		VΝ	٧N		VΝ			AN			VΝ	AM	7/6/2000
	ΔN	77	VN.	VN				ŶŇ		VΝ			VN .				ΔN		ΑN	AM	3/2/2000
1										VN.			YN .			AN	AN		997'01	999,873	3/4/2000
	999'857	900,800,I	VΝ	ΫŇ	٧N	AN	AN	VN	AN	ΔN	AN	AN	AN	AN	٧N	٧N	AN	AN.	ΥN	AM	8661/\$/
OMG - HAT																<u> </u>	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>	v -		ORG - HY
agniA aganarA (gal/ga)	11-569-8S	r-2.2 2-82	8-16-H2	ℓ-88-88	8-11-83	9-16-8S	9-00-8S	8-62-82	8-84-EZ	8-12-82	9-90-BS	9-51-ES	8-17-BS	8-07-BS	8-22-B2	8-11-62	7-01-82	21-0C-83	6-91-8S	6-51-8S	Centilians Practions
NaniarO.											CIVI CINOTI TO 1			L			<u> </u>		·	L	L

Ommendwater table is at a depth of 7 fest below ground surface (bgs) for area

"Con Residential Worker's above groundwater table in the nex

Table 3B-5(c) Soil Constituents Average Concentrations for Metals in Sub-area 2B: Demolished Area, Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

											Boeing Tract 1, St. L	AUG, MUSSO	24.1										
												N.	(etals (ug/kg)										
Sample ID	ALUMINUM	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	САРМІИМ	САЬСІИМ	СНКОМІ UM	СОВАГТ	СОРРЕК	ІКОМ	LEAD	MAGNESIUM	Manganese	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER	SODIUM	THALIUM	VANADIUM	ZINC
H-19-W-A (0.5-1)	ND	ND	3,050	9,330	ND	730	ND	9,660	ND	ND	ND	2,000	ND	ND			ND	750	3,200	ND	ND	ND	ND
H-19-S-A (0.5-1)	ND	ND	33,000			20,200	ND	15,200	ND	ND	ND	2,260,000	ND.	ND	21	ND	ND	500	1,910	ND	ND	ND	ND
H-19-N-A (0.5-1)	ND	ND	2,220	3,370	ND	750	ND	40,400	ND	ND	ND	22,000	ND	ND		ND	ND	500	2,510	ND	ND	. ND	ND
H-19-E-B (0.5-1)	ND	ND	2,450	9,350	ND	740	ND		ND		ND		ND	ND		ND	ND	650	3,250	ND	NĐ	ND	ND
H-19-E-A (2.5-3)	ND	ND	2,030				ND		ND		ND		ND	ND		ND	ND	500	1,360	ND	· ND	ND	ND
H-12-E-A (0.5-1)	ND	ND	570	2,220		380	ND		ND		ND		ND				ND	600	3,410	ND	ND	ND	
H-12-E-B (2.5-3)	ND	ND	2,180	1,760			ND		ND		ND.		ND			ND	ND	500	380	ND	ND	ND	ND
H-12-S-A (0.5-1)	ND	ND	7,760	1,490	ND	960	ND		ND		ND		ND				ŃD	600	2,730	ND	ND	ND	
H-12-S-B (2.5-3)	ND			133,000			ND		ND		ND		ND			ND	ND	500	290	ND	ND	ND	ND ND
H-12-DRAIN	ND	ND	5,840	133,000			ND		ND		ND		ND	DA			ND	500	340	ND	ND	ND	
SIA-I (0-1)	4,790,000	830	9,900	46,200			14,600,000	6,150	2,660		5,550,000		39,600,000	481,080			755,000	4,020	307.5	348,000	1,575	12,100 9,520	24,400
51B-1 (0-1)	1,650,000				173		14,500,000	6,090	1,120		2,110,000		15,900,000	79,000		5,490	442,000	1,545	307.5	138,000 206,000	3,430 1,575	44,200	24,400 22,300 51,800
51A-1 (1-2)	21,800,000						16,400,000	19,700	9,570		30,500,000	33,100	3,790,000	747,000		25,200	1,120,000	1,545	307.5	203,000	1,575	46,700	31,600 47 200
SIB-1 (1-2)	22,700,000			219,000			3,850,000	18,500	13,100		34,208,600		3,210,000	2,070,000		31,100	992,000	1,545	307.5 650	203,000 NA	1,575 NA	46,700 NA	47,200 NA
SB-1 2.5-4	NA			210,000			NA.	19,000	NA		NA	15,000	NA	NA.		NA NA	NA NA		650	NA NA	NA.	NA NA	NA NA
SB-1 2.5-4 D	NA			160,000			NA	18,000	NA		NA.		NA			NA NA	NA NA	1,400 860	650	NA NA	NA.	NA NA	NA NA
SB-2 3-4.5	NA.			310,000	NA		NA.		NA NA		NA.		NA NA		540 550	NA NA	NA NA	335	650	NA.	NA.	NA NA	
SB-4 6-7	NA.	NA	28,000	130,000	NA.	335	NA	21,000	NA_	NA	NA.	16,000	NA.	NA.	330	- NA	NA.	333	- 00	11/1		11/1	. 147
A verage Concentration - Only Samples With Metals Detections	12,735,000	2,513	11,546	87,719	849	1,638	12,337,500	25,878	6,613	11,748	18,090,000	136,043	15,625,000	844,250	114	17,715	827,250	1,003	1,289	223,750	2,039	28,130	36,425

rgyrg - macrograms per austrant Groundwater table is at a depth of 7 feet below ground surface (bgs) for area. Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 3B-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 2B: Demolished Area, Construction Worker
Boeing Tract 1, St. Louis, Missouri

											Boeing Tract 1, St.	JOLES, MISSO	461				· · · · · · · · ·						
												!	Metals (ug/kg)										
Sample ID	лишил	rimony	RSENIC	RIUM.	ХУ ГГІОМ	рміим	гсілм	нкоміим	DBALT	OPPER	RON	EAD	GNESIUM	INGANESE	ERCURY	CKEL	TASSIUM	ELENIUM	LVER	DDIUM	.alitum	INADIUM	ZINC
1	₹	Ž	A.R.	BAI	<u> </u>	ี้	გ	Ü	. Ŭ	Ü			¥	. X	₹	Z	<u> </u>	<u>ت</u>	S .	Š.	F	ND ND	ND ND
H-19-W-A (0.5-1)	ND	ND	3,050	9,330			ND		ND				ND	, ND					3,200	ND ND	ND	ND	ND
H-19-S-A (0.5-1)	ND	ND	33,000	5,010		20,200	ND						ND	ND	. 21				1,910	ND ND	ND	ND	ND ND
H-19-N-A (0.5-1)	ND	ND	2,220	3,370			ND		ND				ND						2,510	ND ND	ND	ND	ND
H-19-E-B (0.5-1)	ND	_ND	2,450	9,350	ND	740	ND						ND	ND						ND	ND	ND	ND
H-19-E-A (2.5-3)	ND	ND	2,030			530	ΝD						ND	ND						ND	ND	ND	ND
H-12-E-A (0.5-1)	ND	ND	570	2,220	ND	380	ND		ND				ND						3,410	ND	ND	ND	
H-12-E-B (2.5-3)	ND	ND	2,180	1,760	ND		ND							ND							ND	. ND	ND ND
H-12-S-A (0.5-1)	ND	ND	7,760	1,490	ND	960	ND						ND	ND					2,730	ND		. ND	ND
H-12-S-B (2.5-3)	ND	ND	2,140	133,000	ND	180	ND	26,300	ND				ND	ND					290	ND	ND	ND	ND ND
H-12-DRAIN	ND	ND	5,840	133,000	ND	290	ND	1,410	ND				ND	ND						ND	ND	12,100	24,400
SIA-1 (0-1)	4,790,000	830	9,900	46,200	362	565	14,600,000	6,150	2,660	5,650	5,550,000	8,370	39,600,000	481,000					307.5	348,000 138,000	1,575 3,430	9,520	22,300
SIB-I (0-I)	1,650,000	280.5	4,090	21,000	173	1,670	14,500,000	6,090	1,120			4,550		79,000	. 5		442,000		307.5				51,800
51A-1 (1-2)	21,800,000	4,500	46,300	183,000	1,400	243.5	16,400,000	19,700	9,570	17,700	30,500,000	33,100		747,000			1,120,000		307.5	206,000	1,575	44,200	21,500
51B-1 (1-2)	22,709,000	4,440	43,100	219,000	1,460	243.5	3,850,000	18,500	13,100	19,000	34,200,600	35,500	3,210,000	2,070,000			992,000		307.5	203,000	1,575	46,700	47,200 NA
SB-1 12-13	NA	NA	20,600	100,000	NA	650	. NA	21,000	NA			13,000	NA	NA			NA.		650	NA.	NA	NA	NA NA
SB-1 16-17	NA	NA	15,000	110,000	NA	340	NA						NA	NA NA					700	NA.	NA	NA	
SB-1 2.5-4	NA			210,000		315	NA	19,000	NA		NA.		NA.	NA					650	NA NA	NA	NA NA	NA NA
SB-1 2.5-4 D	NA		3,200	160,000	NA	320	NA	18,000	NA	NA	NA.		NA.	NA					650	NA NA	NA.	. NA	
SB-2 11-12.5	NA		11,000	80,000	NA.	315	NA		NA.				NA.	NA NA		NA.			650	NA NA	NA		NA NA
SB-2 3-4.5	NA	NΑ	10.000	310,000	NA.	880	NA	22,000	NA	NA			NA.	NA					650	NA.	NA	NA:	NA NA
SB-3 10.5-11.5	NA	NΑ	3,300	170,000	NA	330	NA	14,000	NA				NA.	NA					650	NA NA	NA	NA NA	
SB-4 11.5-13.5	NA	NΑ	3,600	79,000	NA.	360	NA	13,000	NA				NA	NA.					700	NA NA	NA	, NA	NA NA
SB-4 (4-16	NA	NA		86,000	NA	375	NA.	13,000	NA	NA.	NA.		NA	NA.						NΑ	NA.	NA	
SB-4 6-7	NA	NA	20,000	130,000	NA	335	NA	21,600	NA			16,000	NA.	NA.					650	NA.	NA.	NA NA	NA
SB-5 14-16	NA		3,800	82,000	NA	380	NA	12,000	NA	NA	NA	9,000	NA	NA	50	NA.	NA.	1,690	750	NA	NA	NA	NA
Average Concentration - Only Samples With Metals Detections	12,735,000	2,513	10,969	91,438	849	1,289	12,337,500	22,860	6,613	11,748	18,090,000	100,759	15,625,000	844,250	194	17,715	827,250	909	1,122	223,750	2,039	28,130	36,425

ng/kg - micrograms per kilogram Groundwater table is at a depth of 7 feet below ground surface (bgs) for area. Non Residential Worker - above groundwater table in the area

Construction Weeker - shows a depth of 20 feet bgs

NA - Not Analyzed

Table 3C-5(a) Soil Constituents Average Concentrations for VOCs in Sub-area 2C: Demolished Area

Boeing Tract 1, St. Louis, Missouri

	1	iis, iviiss			
		VO	Cs (ug	/kg)	
Sample ID	BENZENE	THYLBENZENE	METHYLENE CHLORIDE	TOLUENE	XYLENES, TOTAL
Non- Residential Worker	<u> </u>				- PS
Average Concentration -					i i
Only Samples With				l .	
VOC Detections				l	
Construction Worker					
B48E1-8	2.5	2.5	5.8	2.5	2.5
B48S1-6	307	227	NA		
B48S3-10	98	346	NA	52	254
B48S5-6	57	. 25	NA	354	
B48S7-7	25	25	NA		
B48S8-7	125		NA	1090	
Average Concentration - Only Samples With VOC Detections	102.42	172.25	5.8	762.42	414.92

Notes:

ug/kg - micorgrams per kilogram

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Bold indicates a detection

Table 3C-5(b)

Soil Constituents Average Concentrations for TPHs in

Sub-area 2C: Demolished Area Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

Bueing Tract 1,	St. Louis, Missou	rı .
Constituent Fractions	B48S11-3	Overall Area Average (ug/kg)
TPH - DRO		TPH - DRO
11/14/2002	NA	
11/15/2002	NA	
11/19/2002	· NA	
11/20/2002	NA	
11/21/2002	NA NA	
6/30/2003	1,330,000	
7/23/2003	NA	
AVERAGE TPH - DRO	1,330,000	1,330,000
TPH - GRO		TPH - GRO
11/14/2002	NA	
11/15/2002	NA	
11/19/2002	NA	
11/20/2002	NA	
6/30/2003	13,000	
7/23/2003	NA	
AVERAGE TPH - GRO	13,000	13,000
TPH - ORO		TPH - ORO
11/14/2002	NA	
11/15/2002	NA	
11/19/2002	NA	
11/20/2002	NA	
6/30/2003	34,000	
7/23/2003	NA	
AVERAGE TPH - ORO	34,000	34,000

Notes:

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 3C-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 2C: Demolished Area Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B48S10-7	B48S11-3	B48S1-6	B48S3-10	B48S5-6	B48S7-7	B48S8-7	B48S9-8	Overall Area Average (ug/kg)
TPH - DRO									TPH - DRO
11/14/2002	NA	NA	2500	NA	NA	NA	NA	NA	1
11/15/2002	NA	NA	NA	2500	NA	NA	NA	NA.	
11/19/2002	NA	NA	NA	NA	2,500	NA	NA	NA	
11/20/2002	NA	NA	NA	NA	NA	2,500	2,500	NA	1
11/21/2002	38,000	NA	NA	NA	NA	NA	NA	38,000	
6/30/2003	. NA	1,330,000	NA	NA	NA	NA	NA	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - DRO	38,000	1,330,000	2,500	2,500	2,500	2,500	2,500	38,000	177,313
TPH - GRO				ar ar t					TPH - GRO
11/14/2002	NA	NA	250,000	NA	NA	NA	NA	NA.	i
11/15/2002	NA	NA	NA	83,000	NA	NA	NA	NA	
11/19/2002	NA	NA	NA	NA	66,000	NA	NA	NA	
11/20/2002	NA	NA	NA	NA	NA	38,000	133,000	NA	4 1
6/30/2003	NA	13,000	NA	NA	NA NA	NA	NA	NA	
7/23/2003	NA	NA	NA	. NA	NA	NA	NA	NA	
AVERAGE TPH - GRO		13,000	250,000	83,000	66,000	38,000	133,000		97,167
TPH - ORO									TPH - ORO
11/14/2002	NA	NA	47,000	NA	NA	NA	NA	NA	
11/15/2002	NA	NA	NA	2,500	NA	NA	NA	NA	II
11/19/2002	NA	NA	NA	NA	2,500	NA	NA	NA NA	
11/20/2002	NA	NA	NA	NA	NA	2,500	2,500	NA	
6/30/2003	NA	34,000	NA	NA	NA	NA	NA	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO		34,000	47,000	2,500	2,500	2,500	2,500		15,167

Notes:

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 3C-5(c)

Soil Constituents Average Concentrations for Metals in Sub-area 2C Demolished Area Non-Residential Worker

and Construction Worker
Boeing Tract 1, St. Louis, Missouri

Doeing Tract 1, St. Lo	uis, Missouli
	Metals (úg/kg)
Samplé ID	ЕАD
B48E1-8	원 3 8,210
Average Concentration - Only Samples With Metals Detections	8,210

Notes:

ug/kg - micrograms per kilogram
Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.
Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs NA - Not Analyzed

Table 3-6
Groundwater Samples Used in Average Concentration Calculations in Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

•	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals
	B51W1W	B51W2W			B51W3W
,	B51W2W	B51W3W			B51W4W
2A	B51W4W				MW-A8W
	B-7	:			
	B48N1W	B48N1W			TP-1
	MW-10S	MW-10S		<u></u>	TP-9
	MW-11S	MW-11S			
	MW-6S	MW-6S			
	MW-7S	MW-7S			
	MW-8S	MW-8S			
	MW-9S	MW-9S			
	SB13W	SB17W			
	SB18W	TP-1			
	SB20W	TP-10			1
	TP-1	TP-11			
	TP-10	TP-16-			
	TP-11	TP-17	The state of the s	Bernarda Park a marin productive se	
	TP-16	TP-18	the control of the co		
	TP-17	TP-19			
	TP-18	TP-2		in a second seco	
2B	TP-19	TP-20			
,	TP-2	TP-3			
	TP-20	TP-22			
	TP-21	TP-23			
	TP-22	TP-24			
	TP-23	TP-25			
	TP-24	TP-4			
	TP-25	TP-12			1
	TP-3	TP-13			1
	TP-4	TP-15	•	-	
	TP-5	TP-14			
	TP-6	TP-5			
	TP-8	TP-6			
		TP-7		.	
		TP-8			
		TP-9			
	B48S1W	B48E1W			B48E1W
	B48S2W	B48S10W			D TOLL IT
1	B48S3W	B48S2W		1	
	B48S5W	B48S3W			
2C	B48S7W	B48S5W			
	B48S8W	B48S6W]
ii .	B48S9W	B48S7W			
	MW-A13W	B48S9W			
<u></u>	<u></u>	MW-A13W			

Note:
- analysis type not performed

Table 3A-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 2A:

Demolished Area

Boeing Tract 1, St. Louis, Missouri

		Dt. Dot		/OCs						
		(ug/l)								
Sample ID	BENZENE	ETHYLBENZENE	METHYL TERT-BUTYL ETHE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TOLUENE	XYLENES, TOTAL			
B51W1W	1.75	1.75	2.5	1	3.5	1.75	2.5			
B51W2W	60.9	2.5	2.5	NA	NA	60.8	179			
B51W3W	2	2.5	3.67	6.05	2.50	2.5	2,5			
B51W4W	1.75	1.75	3	10	4.8	1.75	2.5			
B-7	817	130	20	NA	NA	33	140			
Average Concentration - Only Samples With VOC Detections	220.35	34	7	5.5	4.15	24.325	81			

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Bold indicates a detection

Table 3A-7(b)
Groundwater Constituents Average Concentrations for TPHs in
Sub-area 2A: Demolished Area
Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B51W2W	B51W2W - 2004	B51W3W	Overall Area Average (ug/l)
TPH-DRO	TPH-DRO			
1/10/2002	NA	NA	NA	
7/2/2003	190,000	NA	NA	
7/23/2003	NA	NA	NA	
7/24/2003	NA	NA	309	
4/30/2004	NA	250	NA	
AVERAGE	190,000		309	95,155
TPH-GRO	TPH-GRO			
7/2/2003	1,110,000	NA	. NA	
7/23/2003	NA	NA	NA	
7/24/2003	NA	NA	500	
4/30/2004	NA	250	NA	
AVERAGE	1,110,000		500	555,250
TPH-ORO	-			TPH-ORO
7/2/2003	500	· NA	NA	
7/23/2003	NA	NA	NA	
7/24/2003	NA	NA	. 75]
4/30/2004	NA	250	NA	
AVERAGE	500		75	288

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 3A-7(c)
Groundwater Constituents Average Concentrations for Metals in
Sub-area 2A: Demolished Area
Boeing Tract 1, St. Louis, Missouri

Average Concentration - Only Samples With Metals Detections	46.5	765	8.9	39.5	36.5
MW-A8W	46.5	765	8.9	39.5	65.5
B51W4W	NA	NA	NA	NA	22
B51W3W	NA	NA	NA	NA	22
Sample ID	ARSENIC	BARIUM	САВМПИМ	CHROMIUM	LEAD
		M	etals (ug	1)	

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

September 2004

Table 3B-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 2B: Demolished Area

Boeing Tract 1, St. Louis, Missouri

							-						voc	's (ug/l)												1
	-		r –		T	· · · · ·	Ι				1			1	· ·						· · · ·			ы		
Sample ID	LAJ:TRICHLOROETHANE	1,1-DICHLOROETHANE	1,1-DICHLOROETHENE	1,23-trimethylbenzene	1,24-TRIMETHYLBENZENE	ACETONE	BENZENE	CIS-1,2-DICHLOROETHENE	BTHYLBENZENE	ISOPROPYL BENZENE	METHYL ISOBUTYL KETONE	METHYL TERT-BUTYL ETHER	METHYLENE CHLORIDE	NAPHTHALENE	N-BUTYLBENZENE	n-propylbenzene	P-ISOPROPYLTOLUENE	SECBUTYLBENZENE	Tert-butylbenzene	TETRACHLOROETHENE	TOLUENE	TRANS-1,2 DICHLOROETHENE	TRICHLOROETHENE	TRICHLOROFLUOROMETHANE	VINYL CHLORIDE	XYLENES, TOTAL
B48NIW	1	1		0.5	1	25	1	26.375	1		25			2.5				1		11.475	2.5 315.41	72.14	3.125 72.14	72.14	72.14	189.47
MW-10S	72.14	72.14	72.14	0.50	72.14		63.16	72.14	63.16				360.71	217.00			72.70	302.66	72.14 0.5	. 72.14 3.35	2.11	72.14 0.5	1.34	0.5	0.5	1.43182
MW-IIS	0.5	0.5		28	0.5	25		2.45	0.52			0.68	2.5	1.8			0.75	1.13	1.58	1.71	4.29	9.40	70.64	1.58	153.36	4.43
MW-6S	1.71	1.71		0.50	· 1.58			582.87	1.71			1.58	7.57	3.92			1.58	1089.29	1089.29		5300.00	1089.29	15,657.14	1089.29	1089.29	3267.86
MW-7S	1089.29	1089.29						9,829	1089.29				5442.86	1871.43					0.5	4.81	2.26	0.5	0.63	0.5	0.5	1.45833
MW-8S	0.5	0.5			0.5			0.64	0.49	0.5		1.06	2.53	1.79			6.09	6.53	5.34	495.93	22.45	4.86	308.48	4.86	7.00	14.57
MW-9S	4.86	4.90			4.95				4.76	7.39		4.70	24.11	16.17			NA NA	NA NA	NA NA	14	27	2.5	6.6	NA.	2.5	10
SB13W	2.5	2.5		NA.	NA.		2.5		2.5	NA			2.5	NA 1260			NA NA	1250	1250	86,000	1250	1250	920	2500	2500	1250
SB18W	1250	1250			1250		1250		1250	1250		2500	1250	1250			NA NA	1230	2.5	2.5	2.5	2.5	2.5		5	2.5
SB20W	2.5	2.5	2.5		2.5		7	· 2.5	2.5			3	2.5	2.5 500			500	500	500	160,000	6500	325	8,350	500	12750	830
TP-I	254.65	255.5	340	NA	500			77,500	267.5	500			1,254.25				125	125	125	10,000	600	125	1,100	125	125	375
TP-10	125	125		NA	125		125	2,700	125	125		125	600	625			125	125	125	4,300	600	125	860	125	1,600	375
TP-11	125	125		NA	125				125			125		625			25		25	25	125	25	25	25	25	75
TP-16	25	25	· 25		25				25	120				25	3/0	200		410		230	25	-~	10			15
TP-17	5	5	5	NA	5	250		69.5	- 5		250			0.5	0.5	0.5	0.5	0.5	0.5	0.5		1.6	0.5	0.5	1	1.5
TP-18	0.5	0.5			0.5				0.5				2.5	-			0.5	0.5	0.5	3.55		0.5	1.35	0.5	0.5	1.5
TP-19	0.5	0.5			0.5				0.5				2.5	0.5			235.79		235.79			210.06	4,112.56	235,79	212.56	619.25
TP-2	206.63	206.63				10285.00								950.07		235.79		233.79	233.19	19,000.06	2.5	6.75	1.5	0.5	42.55	2
TP-20	1.5	3.3	1.5		0.5	25			1.5		25		2.5	0.5			0.5	NA NA	NA	2.5	2.5	2.5	2.5	NA.	28.9	2.5
TP-21	2.5	2.5	2.5		NA				2.5	NA.			2.5	NA NA			NA NA	NA NA	NA NA	1.540.87	2.5		139.9	NA.	108.1	2.5
TP-22	2.5	2.5	2.5		NA.				2.5	NA.			2.5	NA.			NA NA	NA NA	NA NA	2.5	9.6	2.5	2.5	NA	. 2.5	195.8
TP-23	2.5	2.5	2.5	NA	NA				6.8	NA.			2.5	NA.				28.5	0.5	0.5		0.5	0.5	0.5	0.5	1.5
TP-24	0.5	0.5	0.5	NA	0.5				0.5				2.5	0.5			0.5	0.5	0.5	0.5	2.5	0.5	0.5	0.5	0.5	13
TP-25	0.5	0.5		NA	0.5		0.5		0.5				2.5	0.5			0.5	24.19		659.64	179.09	18,73	923,27	20.35	18.95	151.18
TP-3	18.73	18.73	18.73	0.50	48.46			186.91	32.41	22.26			92.73	130.25			20.82		20.35			2.18	63.18	1.14	4.60	5.25
TP-4	1.22	1.22	1.22	0.50	0.86		1.13	60.02	1.82	0.86		1.06	3.89	5.09		0.86	0.86	0.86		3,489.44 132.250	9.95 2500	1000	24,725	1312.5	2.162.5	2687.5
TP-5	1000	1000	1000	NA	1000	34375	1000	20,150	1000	1000	34375	1312.5	3687.5	1500	1000	1000	916.67	1000	1000			61.50	378.32	61.50	61.50	184.50
TP-6	61.50	61.50	61.50	0.50	61.58		61.50	61.50	61.50	61.50	3075.00	61.50	307.50	285.28	61.67		61.90	62.06	61.50	61.50	307.50	4.2	3/8-34	01.50	120	1.5
TP-8	0.5	0.5	0.5	NA	0.5	25	0.5	200	0.5	0.5	_25	0.5	2.5	2.5	0.5	0.5	0.5	0.5	0.5	4.4	2.5	4.2	0.5		120	1.3
Average Concentration - Only Samples With VOC Detections	146.87	146.96	149.90	48.36	182.09	5,223.62	239.47	4,497.40	148.18	185.41	5,222.80	222.46	511.89	320.91	221.41	189.16	138.74	207.26	180.97	19,114.53	649.44	150.16	1,991.02	243.57	727.62	354.18


ng/l - micrograms per filer VOCs - Valstin Orranic Commonds NA - Not Analyzed Bold indicates a detectio

Groundwater Constituer

Tabi (Tabi	
ents Average Concentration for TPHs in Sub-area 2B: Demolished Area	
Roeing Tract 1. St. Louis, Missouri	

Boeing Tract I, St. Louis, Missouri																
Constituent Fraction by Sample Event	B48N1W	MW-10S	MW-HS	MW-6S	MW-7S	MW-8S	MW-9S	SB17W	TP-i	TP-40	TP-11	TP-12	TP-13	TP:14	TP-15	TP-16
TREEDRO																
07/19/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
12/06/2000	NA NA	NA		NA	NA	NA	NA	64	NA	NA	NA	NA	NA	NA	NA	NA.
02/19/2001	NA NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
02/20/2001	NA NA	950		NA	NA	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
02/21/2001	NA	NA		NA	NA	NA	2,400	NA	NA	NA	NA	NA	NA	NA	NA_	NA NA
02/22/2001	NA	NA	NA	50	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
02/23/2001	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
02/28/2001	NA	NA	NA	NA	NA	NA		NA	50	NA	NA	NA	NA	NA	NA	NA
07/25/2001	NA	NA	50	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA
07/26/2001	NA	NA	NA	NA	NA	50	NA	NA.	NA NA	NA	NA	NA	NA	NA	NA	NA
07/27/2001	NA	7,600	NA	50	50	NA	6,300	NA	NA	NA	NA.	NA	NA	NA	NA	NA
09/05/2001	NA	NA		NA	NA	NA		NA	NA.	50	14,000	NA NA	50	NA	NA COO COO	NA
09/06/2001	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	50	NA	110,000	2,200,000	2,100,000
10/15/2001	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA.
10/17/2001	NA	NA	NA	, NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
10/26/2001	NA	NA	NA	310	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
10/29/2001	NA	300,000	50	NA	· NA	150		NA	NA	NA	NA	NA	NA	NA	NA	NA NA
10/30/2001	NA	NA	NA	NA	50	NA		NA	NA.	NA	NA	NA.	NA	NA	NA NA	NA NA
12/13/2001	NA	NA	NA	NA	230	50		NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
12/17/2001	NA	NA	50	NA	NA	NA		NA	NA	NA	ŅA	NA NA	NA	NA		NA NA
12/18/2001	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA	NA	NA.	NA	NA NA
12/19/2001	NA	330,000	NA	300	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA
03/05/2002	NA	74,000	50	NA	50	NA	5,300		NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA
03/07/2002	NA	NA	NA	NA	NA	50		NA	NA	NA	NA.	NA	NA	NA NA	NA NA	NA NA
03/08/2002	NA	NA	NA	190	NA	NA.		NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
05/30/2002	NA	NA	NA	50	50	50			NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
06/03/2002	NA	140,000	50	NA	NA NA	NA		NA.	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
08/08/2002	NA	NA	NA	NA	NA	110			NA.	NA	NA	NA	NA NA	NA NA	NA NA	NA NA
08/13/2002	NA	NA	50	NA	NA.	NA NA		NA.	NA.	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
11/11/2002	500	NA		NA	NA	NA		NA	NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA
12/05/2002	NA	ΝA		NA	NA	NA		NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
12/09/2002	NA	NA	NA	NA	NA	50		NA:	NA NA	NA NA		NA NA	NA NA	NA NA	NA	NA NA
12/11/2002	110	NA	NA	NA NA	NA	NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
03/12/2003	NA	NA	50	NA	NA	NA NA			NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
03/18/2003	NA	NA	NA	NA NA	NA	130		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
03/19/2003	NA	NA	NA NA	NA	NA	NA.			NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
03/21/2003	480	NA	NA	NA	NA	NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
06/17/2003	NA	48,000	50	NA	NA	NA			NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA
06/19/2003	NA	NA	NA	50	50	50		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
06/25/2003	NA	NA	NA	NA	NA	NA		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA
06/26/2003	NA	NA		NA	NA	NA			NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
06/27/2003	50	NA	NA	NA	NA NA	NA			NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA
4/30/2004	NA	NA	NA	NA	NA	NA NA			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
5/4/2004	NA	38,000	NA	NA	250	NA	NA		NA		NA 14000	NA W	NA NA	110,000	2.200.000	2100.000
AVERAGE	200	117,319	50	143	98	77	4,525	64	50	50		34	[**************************************	***************************************		

Groundwater Con

		4
Table (1996)		•
onstituents Average Concentration for TPHs in Sub-area 2B: Demolished Area	•	
Boeing Tract 1, St. Louis, Missouri		

	***************		***************************************		***************************************			***************************************	***************************************							
										****	***	TP-12	TP-13	TP-14	TP-15	TP-16
Constituent Fraction	B48NaW	MW-10S	MW-11S	MW-65	MW-7S	MW-85	MW-95	SBITW	1P-1	TP-10	TP-11	*****				
by Sample Event																
TPH-GRO	NTA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
07/19/2000 12/06/2000	NA NA	NA NA	NA NA	NA NA	· NA	NA	NA	64	NA	NA	NA	NA	NA	NA	NA	NA NA
02/19/2001	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA NA
02/20/2001	NA NA	- 50		NA	NA	50	NA	NA	. NA		NA	NA		NA	NA NA	NA NA
02/21/2001	.NA	NA.	NA	NA	NA.	NA		NA	NA:	NA.	NA	NA.		NA NA	NA NA	NA NA
02/22/2001	NA.	NA	NA	650	45,000	NA		NA	NA	NA	NA	NA		NA NA	NA NA	NA NA
02/23/2001	NA	NA		NA	NA	NA	NA	NA	110,000	NA		NA			NA NA	NA NA
02/28/2001	NA	NA	NA	NA	NA	NA	NA	NA.	50			NA.		NA NA	NA NA	NA NA
09/05/2001	NA	NA	NA	NA	NA.		NA	NA	NA			NA 50			50000	50000
09/06/2001	NA	NA	NA	NA	NA		NA	NA	NA			50		5000 NA	30000 NA	
10/15/2001	NA	NA		NA	NA			NA	NA			NA NA		NA NA	NA NA	NA NA
10/17/2001	NA	NA		NA	NA			NA	NA NA			NA NA		NA NA	NA NA	NA NA
06/17/2003	NA	50		NA	NA NA			NA.	NA			NA NA		NA NA	NA NA	NA
06/19/2003	NA	NA.	NA	50				NA	. NA					NA NA	NA NA	NA
06/25/2003	NA	NA		NA	NA NA			NA	NA NA					NA NA	NA	NA
06/26/2003	NA	NA		NA					NA					NA	NA	NA
06/27/2003	50	NA		NA	NA NA				NA NA					NA NA	NA.	· NA
4/30/2004	NA	NA.		NA.	NA			NA NA	NA NA	NA NA				NA.	NA	NA
5/4/2004	NA	250		NA	250			64	55 025	50	2,000	50	50	5.000	50 000	50,600
AVERAGE	50		745	950	21,417	50	50	9-1	9-2- (449			*****				
TPH-ORO							NTA	344	NA	NA	NA	NA	NA	NA	NA	NA
12/06/2000	NA.			NA NA					NA NA					NA	NA	NA
02/19/2001	NA			NA NA					NA NA					NA	. NA	NA
02/20/2001	NA NA	50		NA NA					NA NA	*				NA	NA	NA
02/21/2001	NA			NA										NA	NA	NA
02/22/2001	NA			380					NA NA					NA	NA	. NA
02/23/2001	NA			NA NA					570					NA	NA	NA
02/28/2001	NA			NA NA					NA NA					NA	NA	NA
09/05/2001	NA								NA NA					5000	50000	50000
09/06/2001	NA			. NA					NA NA				NA NA	NA	NA	NA
10/15/2001	NA NA			NA NA					NA				NA NA	NA	NA	NA
10/17/2001	NA 500			NA NA								N/	NA NA	NA	NA	NA
11/11/2002	500			NA NA					NA		NA.	N/		NA	NA NA	NA.
06/17/2003	NA			540					NA						NA	NA.
				340								N/		NA		NA
06/19/2003	NA NA			ATA .	NTA											
06/25/2003	NA	NA	NA	NA NA					NA	NA NA	NA NA	N/	NA NA		NA	
06/25/2003 06/26/2003	NA NA	NA NA	NA NA	NA	NA NA	. NA	N/A	NA					NA NA	NA	NA	NA
06/25/2003 06/26/2003 06/27/2003	NA NA 170	NA NA NA	NA NA NA	NA NA	NA NA	. NA	NA 2,000	NA NA	NA	N/A	NA NA	N/	NA NA	NA NA	NA NA	NA NA NA
06/25/2003 06/26/2003 06/27/2003 4/30/2004	NA NA 170 NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA	2,000 NA	NA NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA NA	NA NA NA
06/25/2003 06/26/2003 06/27/2003	NA NA 170	NA NA NA NA	NA NA NA NA	NA NA	NA NA NA	NA NA	2,000 NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA NA

Notes:

ug/l - micrograms per liter

ORO - Oil range organic

TPH - Total petroleum hydrocarbon

Bold indicates a detection NA - Not analyzed

DRO - Diesel range organic GRO - Gasoline range organic

Page 2 of 4

Table 3B-7(b)

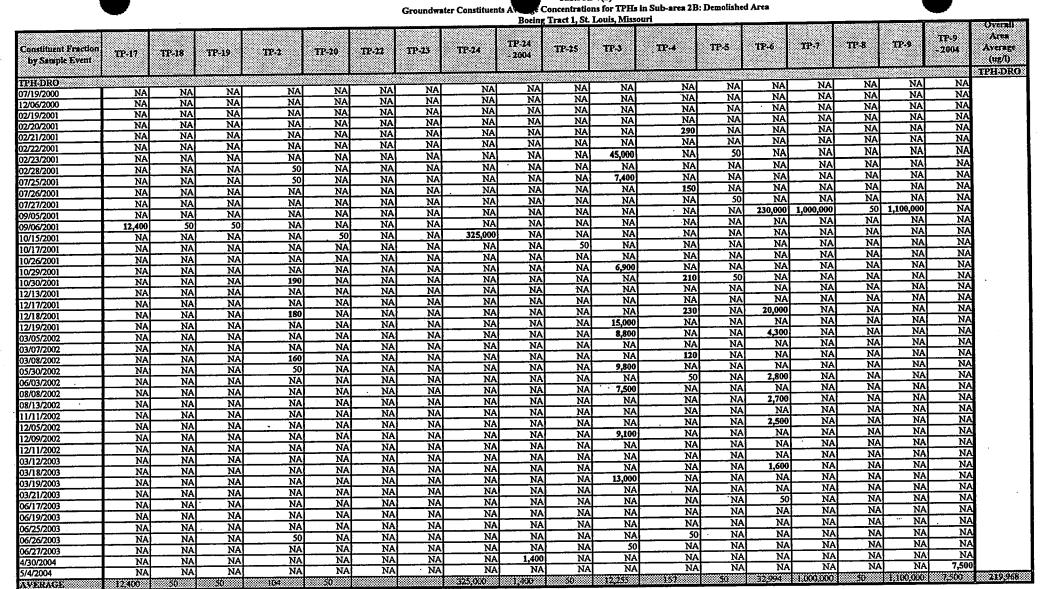


Table 3B-7(b)

Concentrations for TPHs in Sub-area 2B: Demolished Area
Boeing Tract 1, St. Louis, Missouri Groundwater Constituents A

									TP-24									TP-9	Overall Area
Constituent Fraction by Sample Event	TP-17	TP-18	TP-19	TP-2	TP-20	TP-22	TP-23	TP-24	2004	TP-25	TP3	TP-4	TP-5	TP-6	1P-7	TP-8	TP.9	-2004	Average (ug/l)
7																			TPH-GRO
TPH-GRO													•		NA	NA	NA	NA	SELECTION .
07/19/2000	NA	NA	· NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	
12/06/2000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	
02/19/2001	NA	NA.	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	
02/20/2001	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	· 50	NA NA	NA	NA	NA	NA	NA	
02/21/2001	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA.	NA	NA	NA	NA	
02/22/2001	NA	NA	NA	NA	NA	. NA	NA	NA	NA NA	NA NA		ŇA	27,000	NA	NA NA		NA	NA	
02/23/2001	NA	NA	NA	10,000	NA	NA	NA	NA	NA NA	NA	21,000						NA NA	NA NA	
02/28/2001	NA	NA	NA	50	NA	NA.	NA	NA	NA	NA	NA NA		NA NA	NA 5000	50000	NA 50	50000	NA NA	
09/05/2001	NA	NA	NA	NA	NA	NA.	· NA	NA	NA NA	NA	NA NA		_				NA NA	NA NA	
09/06/2001	500	50	50	NA	NA NA	NA TOO	NA	NA	NA	NA.	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA	
10/15/2001	NA	NA	NA	NA	500	500	500	5000	NA NA	NA SO	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA	
10/17/2001	NA.	NA	NA	NA	NA	NA NA	NA	NA NA	NA	50 NA	NA NA		NA NA	50			NA NA		
06/17/2003	NA.	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA		NA NA		NA NA				NA	NA NA	1
06/19/2003	NA NA	NA	NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA		NA NA	NA NA					
06/25/2003	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA			NA		1
06/26/2003	NA NA	NA	NA NA	20,000	NA	NA	NA NA			NA NA	420		NA NA	NA NA			NA NA	NA NA	
06/27/2003	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA 250	NA NA	NN		NA NA				NA NA		1
4/30/2004	NA.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA			NA.		
5/4/2004	NA	NA			500	500	300	5,000	250	50	10.710	825	27,000	2.525	50,000	50	50,000	670	10323
AVERAGE	500	50	50	10,017	74.7	3143	****	4,00				***							TPH-ORO
TPH-ORO		374	NYA.	NTA.	NA	ŇA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
12/06/2000	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA				NA	NA	
02/19/2001	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA						NA	NA	
02/20/2001	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			1					NA	NA	i i
02/21/2001	NA NA	NA NA	NA NA	.NA	NA NA	NA NA	NA	NA NA	NA NA		NA		NA			NA	NA	NA	
02/22/2001		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA							NA	NA	NA	1
02/23/2001	NA NA	NA NA	NA NA	160	NA NA	NA NA	NA NA	NA NA	NA							NA	NA	NA	
02/28/2001	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA						1	1,400	50000		
09/05/2001	2,400	140	160	NA NA	NA NA	NA NA	NA NA	NA NA	NA		NA NA		4		NA	NA	NA		
09/06/2001 10/15/2001	2,400 NA	NA	NA NA	NA NA	570	24,472	212,199	65,000	NA		NA			NA	NA	NA			
10/13/2001	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA NA	NA					NA	NA	NA			Į Į
11/11/2001	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA	NA				NA	NA	. NA				; ;
06/17/2003	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA				NA	1,300	NA	NA NA			į i
06/19/2003	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA	NA	NA			NA	NA	NA	NA				į i
06/19/2003	NA NA	· NA	NA NA	NA NA	NA NA	NA	NA.		NA				NA	NA	NA				į į
	NA NA	NA NA	NA NA	2,000	NA.	NA.	NA	NA	NA			130	NA	NA	NA				! I
06/26/2003 06/27/2003	NA NA	- NA	NA NA	2,000 NA	NA	NA	NA NA	NA	NA		5,900	NA	NA	NA	NA.				1 I
	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	7,800										į l
4/30/2004	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA				NA	NA	NA NA	NA NA	NA	250	
5/4/2004	NA 2.400	140	160	1080	370	24.472	212.199	65 000	7.800	950	3.200			3 150	\$0.000	1,400	50,000	250	15.814
AVERAGE		2000000 4.444. 000000		4,440,7					***************************************	***************************************									

ug/l - micrograms per liter

TPH - Total petroleum hydroca DRO - Diesel range organic

GRO - Gasoline range organic

Table 3B-7(c) Groundwater Constituents Average Concentrations for Metals in Sub-area 2B: **Demolished Area**

Boeing	Tract 1	, St. Louis	, Missouri

Boeing 11	act 1, bu	Louis, r	TILOGUETT			
			Metals	(ug/l)	•	
				3		
Sample ID	RSENIC	BARIUM	САРМИИМ	снкоміим	D	SELENIUM
					LEAL	
TP-1	3.7	440	2.5	5	4.2	2.5
TP-9	130	1600	5.4	19	6.7	13
Average Concentration - Only Samples With Metals Detections	66.85	1020	3.95	12	5.45	7.75

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 3C-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 2C: Demolished Area

Boeing Tract 1, St. Louis, Missouri

Boeing Trac	1, 31, 170				
			VOCs		
	· · ·	r	(ug/l)	· · · · · ·	
Sample ID	BENZENE	ETHYLBENZENE	METHYL TERT-BUTYL ETHER	TOLUENE	XYLENES, TOTAL
B48S1W	569	2.5	2.5	2.5	2.5
B48S2W	921	.24	9.9	2.5	2.5
B48S3W	14.6	2.5	2.5	16.1	2.5
B48S5W	24.8	5.3	2.5	36	17.1
B48S7W	25.7	2.5	2.5	59.6	23.6
B48S8W	22.2	2.5	2.5	2.5	2.5
B48S9W	0.61	0.25	NA	2.5	0.75
MW-A13W	44	180	59	12.5	15
Average Concentration - Only Samples With VOC Detections	202.739	27.444	11.629	16.775	8.3063

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed Bold indicates a detection

Table 3C-7(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 2C: Demolished Area

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B48E1W	B48S10W	B48S2W		B48S5W	B48S6W	B48S7W	B48S9W	MW-A13W	Overall Area Average (ug/l)
TPH-DRO						<u></u>				TPH-DRO
11/14/2002	NA	NA	NA	NA	NA		NA	NA	NA	1
11/15/2002	NA	NA	500	500				NA	NA	
11/19/2002	NA	NA	NA	NA	500			NA	NA	
11/20/2002	NA	NA	NA	NA	NA	NA	500	NA	NA	
11/21/2002	NA	180	NA	NA	NA	NA		1,000		
7/1/2003	NA	NA	NA	NA	NA	· NA		NA	NA	
7/23/2003	420	NA	NA	NA	NA	NA	NA	NA	NA	
AVERAGE	420	180	500	500	500	500	500	1,000		513
TPH-GRO										TPH-GRO
11/14/2002	NA	NA	NA	NA		NA				
11/15/2002	NA	NA	1,160	1,746		NA				
11/19/2002	NA	NA	NA	NA	301,200	500		NA		41
11/20/2002	NA	NA	NA	NA		NA	207,200			46
3/20/2003	NA	NA	NA	NA		NA	NA			41
7/1/2003	NA	NA	NA	NA		NA	NA	NA		41
7/23/2003	500	NA	NA	NA		NA.	NA	NA		
AVERAGE	500		1,160	1,746	301,200	500	207,200	ale .	3,300	73,658
TPH-ORO		ANT AND T	and the second			en de la company de la com La company de la company d		الحمل وي العربية المستريخ في في تعدد المبينية المستريخ في		TPH-ORO
11/14/2002	NA		NA	NA						41
11/15/2002	NA	NA	500	500			NA			41
11/19/2002	NA	NA	NA	NA						41
11/20/2002	NA	NA	NA	NA	NA	NA	500			41
7/1/2003	NA	NA	NA	NA	NA	NA				41
7/23/2003	75	NA	NA	NA	NA	. NA	NA	NA	NA	
AVERAGE	.75	Š	500	500	500	500	500	and an inches	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	429

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 3C-7(c)

Groundwater Constituents Average Concentrations for Metals in Sub-area 2C: Demolished Area

Boeing Tract 1, St. Louis, Missouri

Doeing Hatt 1, 5t. Louis, 1	Metals (ug/l)
Sample ID	
B48E1W	CEAD 22
Average Concentration -	†
Only Samples With Metals Detections	22

Notes:

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 3-8
Historical Groundwater Data for Area 2: Demolished Area
Boeing Tract 1, St. Louis, Missouri

	0.1	Carrallia a Data	Benzene	Toluene	Ethylbenzene	Xylenes
Well	Sub-area	Sampling Date	(ug/L)	(ug/L)	(ug/L)	(ug/L)
MW-A19	2A	1/24/1990	6400	1540	26000	6000
		6/5/1990	90	20	10	25
		6/20/1991	85	7	<5	17
		7/6/1993	14	2	4	55
		4/26/1994	12	<5	18	23
		1/13/1995	11	<5	<5	4
		12/26/1996	11	<5_	<5	<15
MW-A7	2A	6/5/1990	< 5	<5	<5	<15
		7/6/1993	<5	⋖ 5	<5	<15
MW-A16	2A	1/24/1990	15	11	100	38
		6/5/1990	<5	<5	ধ	<15
		6/20/1991	<5	<5	<5	<15
		7/6/1993	<5	<5	<5	<15
		4/26/1994	<5	<5	<5	<15
		1/13/1995	<5	<5	<5	<15
		12/27/1996	<5	ৰ্ব	4	<15
		7/14/1997	<5	4	1	<15
MW-A10	2C	6/5/1990	1200	140	35	900
		1/10/1991	1500	60	90	120
1		6/20/1991	4	<5	<5	<15
		7/6/1993	62	<5	<5	<15
	i	4/26/1994	<25	<25	<25	<75
		1/13/1995	11	<5	<5	• 4
 		12/27/1996	. 11	<5	<5	<15
MW-A12	2C	1/24/1990	5000	1600	8000	11800
		1/10/1991	80	15	<5	<15
1		7/6/1993	<5	<5	. 1	<15
		4/26/1994	<5	<5	<5	<15
1		1/13/1995	<5	<5	ব	<15
	•	12/27/1996	<5	<5	<5	<15
		7/14/1997	8	<5	<5	<15
MW-A13	2C	6/5/1990	26000	60	20	20
<u> </u>		1/10/1991	12000	<5	120	<150
		6/20/1991	<5	<5	<5	<15
		7/6/1993	. 5700	42	<5	<15
		4/26/1994	3810	<25	<25	<75
1		1/13/1995	<5	160	<5	6
		12/27/1996	2080	<5	<5	<15
		7/14/1997	1040	27	4	<15
		1/29/1998	3200	33	<5	<15
	•	1/5/1999	125	6	<5	<5
		6/13/2000	79	<5	<5	<15
1		4/30/2002	<2	<5	<5	<5
1		3/20/2003	44	<25	180	15

< Less than detection limit shown ug/L: micrograms per liter

Table 3-9 Historic Free Product Thicknesses for Area 2: Demolished Area Boeing Tract 1, St. Louis, Missouri

	Sub-ar	ea 2A		100000000000000000000000000000000000000	on to it is supported to				Sub-area	2B					
No. No. Cont.	MW-A19 (Allega Day	gers same	MW-9	S		Sec. 80.00	MW-1		Market State	and sweet	TP-	6	
Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)
9/7/1989	0.02		2.5-12	12/20/2000		Installed		12/12/2000		Installed		9/5/2001		Installed	
9/26/1989	<0.01		2.5-12	2/21/2001	0.00	4.79	6-16	2/20/2001	Sheen	6.73	5-15	9/5/2001	Sheen	6.65	6-16
1/14/1990	0.00		2.5-12	7/27/2001	0.00	4.29	6-16	7/27/2001	Sheen	7.31	5-15	12/18/2001	Sheen	5.63	6-16
2/0/1990	Trace		2.5-12	10/30/2001	Sheen	4.37	6-16	10/29/2001	Sheen	6.90	5-15	3/5/2002	0.00	5.99	6-16
				12/19/2001	0.00	3.91	6-16	12/19/2001	Sheen	6.71	5-15	6/3/2002	0.00	5.44	6-16
8/20/1993	Inacce		2.5-12	3/5/2002	0.00	4.75	6-16	3/5/2002	0.02	6.50	5-15	8/13/2002	0.00	6.25	6-16
8/27/1993	Inacce		2.5-12	5/30/2002	0.00	4.06	6-16	6/3/2002	Sheen	6:61	5-15	12/5/2002	Sheen	7.41	6-16
9/9/1993	0.00	3.41	2.5-12	8/8/2002	0.00	4.98	6-16	6/17/2003	Sheen	6.10	5-15	3/18/2003	0.00	5.30	6-16
9/16/1993	0.00	3.43	2.5-12	12/11/2002	0.00	5.06	6-16	5/4/2004	0.01	6.49	5-15	6/17/2003	0.00	4.63	6-16
9/23/1993	0.00	3.28	2.5-12	3/21/2003	Sheen	4.49	6-16		-						
12/27/1994	0.00	3.85	2.5-12	6/27/2003	<0.01	3.96	6-16						-		
11/30/1995	NA	NA 4.20	2.5-12						-						
12/27/1995	NA	4.29	2.5-12												
1/31/1996	NA NA	NA 2.22	2.5-12						-				-		
5/30/1996	NA NA	3.33	2.5-12												
12/26/1996	NA	4.3	2.5-12												
1					-				-						-
1															
									-				-		-
					 				-				-		
									-						
									l						

-															
-															
-															
-															1
															-
-															
Note:															

Note:

NA: Not Available
Highlighted depths to GW above top of screened interval

Table 3-9 Historic Free Product Thicknesses for Area 2; Demolished Area Boeing Tract 1, St. Louis, Missouri

	SE SERVE	PERSONAL TO		NE THE SECURITION	Sub-are				THE RESTRICTION OF STREET		
	MW-A	110		PERSONAL ARREST	MW-A	112	Market Higher		MW-A	113	er priest in
Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)	Date	Product Thickness (ft)	Depth to GW (ft)	Screened Interval (ft)
9/7/1989	0.01		4.5-14.5	1/4/1990	1.13		4.5-14.5	1/4/1990	0.00		4.5-14.5
9/26/1989	<0.01		4.5-14.5	2/1/1990	0.00		4.5-14.5	2/1/1990	0.00		4.5-14.5
1/4/1990	Trace		4.5-14.5								
2/1/1990	0.00		4.5-14.58	8/11/1993	0.00	3.96	4.5-14.5	8/11/1993	0.00	5.08	4.5-14.5
0/11/1002	0.02	171	45145	8/20/1993	0.00	4.31	4.5-14.5	8/20/1993	0.00	5.15	4.5-14.5
8/11/1993 8/20/1993	0.03	4.74	4.5-14.5 4.5-14.5	8/27/1993 9/9/1993	0.00	4.31 4.34	4.5-14.5 4.5-14.5	8/27/1993 9/9/1993	0.00	5.01	4.5-14.5
8/27/1993	0.02	4.16	4.5-14.5	9/9/1993	0.00	4.34	4.5-14.5	9/16/1993	0.00	5.02 4.98	4.5-14.5 4.5-14.5
9/9/1993	0.06	4.14	4.5-14.5	9/23/1993	0.00	3.83	4.5-14.5	9/23/1993	0.00	4.98	4.5-14.5
9/16/1993	0.02	4.14	4.5-14.5	12/27/1994	0.00	4.78	4.5-14.5	12/27/1994	0.00	5.23	4.5-14.5
9/23/1993	0.00	4.11	4.5-14.5	12/27/1994	0.00	6.49	4.5-14.5	12/27/1994	0.00	5.62	4.5-14.5
12/27/1994	0.00	4.36	4.5-14.5	1/26/1995	0.00	5.05	4.5-14.5	1/26/1995	0.00	5.22	4.5-14.5
12/27/1994	0.00	5.16	4.5-14.5	4/27/1995	0.00	4.23	4.5-14.5	4/27/1995	0.00	5.15	4.5-14.5
1/26/1995	0.00	4.34	4.5-14.5	5/25/1995	0.00	5.40	4.5-14.5	5/25/1995	0.00	4.94	4.5-14.5
4/27/1995	0.00	4.50	4.5-14.5	6/29/1995	0.00	4.22	4.5-14.5	6/29/1995	0.00	4.92	4.5-14.5
5/25/1995	0.00	4.10	4.5-14.5	7/27/1995	0.00	4.34	4.5-14.5	7/27/1995	0.00	4.85	4.5-14.5
6/29/1995	0.00	4.30	4.5-14.5	9/28/1995	0.00	5.21	4.5-14.5	9/28/1995	0.00	5.38	4.5-14.5
7/27/1995	0.00	3.83	4.5-14.5	11/30/1995	NA	5.32	4.5-14.5	11/30/1995	Sheen	5.54	4.5-14.5
9/28/1995	0.00	4.68	4.5-14.5	12/27/1995	NA	4.83	4.5-14.5	12/27/1995	NA	5.35	4.5-14.5
11/30/1995	NA	4.59	4.5-14.5	1/31/1996	NA	4.81	4.5-14.5	1/31/1996	NA	5.52	4.5-14.5
12/27/1995	NA	4.50	4.5-14.5	2/29/1996	NA	5.11	4.5-14.5	2/29/1996	Sheen	5.61	4.5-14.5
1/31/1996	NA	4.53	4.5-14.5	3/28/1996	NA	4.82	4.5-14.5	3/28/1996	NA	5.19	4.5-14.5
2/29/1996	0.00	4.75	4.5-14.5 4.5-14.5	4/25/1996	NIA	3.95	4.5-14.5	4/25/1996	NIA	4.63	4.5-14.5 4.5-14.5
3/28/1996 4/25/1996	NA NA	4.33 3.42	4.5-14.5	5/30/1996 7/2/1996	NA NA	4.47	4.5-14.5 4.5-14.5	5/30/1996 7/2/1996	NA NA	5.03	4.5-14.5
5/30/1996	NA NA	4.20	4.5-14.5	7/31/1996	NA NA	4.48	4.5-14.5	7/31/1996	NA NA	5.02	4.5-14.5
7/2/1996	NA	4.02	4.5-14.5	9/19/1996	NA	5.08	4.5-14.5	9/19/1996	NA NA	5.32	4.5-14.5
7/31/1996	0.01	4.21	4.5-14.5	9/30/1996	NA	4.60	4.5-14.5	9/30/1996	NA	4.89	4.5-14.5
9/19/1996	NA	4.69	4.5-14.5	10/17/1996	NA	4.91	4.5-14.5	10/17/1996	0.01	5.88	4.5-14.5
9/30/1996	NA	4.43	4.5-14.5	11/15/1996	NA	5.12	4.5-14.5	11/15/1996	0.00	5.43	4.5-14.5
10/17/1996	0.01	5.14	4.5-14.5	12/26/1996	NA	5.18	4.5-14.5	12/26/1996	Sheen	5.60	4.5-14.5
11/15/1996	0.00	4.49	4.5-14.5	3/31/1997	NA	NA	4.5-14.5	3/31/1997	0.00	5.08	4.5-14.5
12/26/1996	Sheen	4.69	4.5-14.5					1/14/1998	Sheen	5.05	4.5-14.5
3/31/1997	0.00	4.85	4.5-14.5					1/28/1998	Sheen	5.23	4.5-14.5
1/14/1998	Inacce	THE RESERVE AND ADDRESS OF THE PARTY.	4.5-14.5					2/13/1998	Sheen	5.35	4.5-14.5
1/28/1998	Inacce		4.5-14.5					2/27/1998	Sheen	5.07	4.5-14.5
2/13/1998	Inacce		4.5-14.5					3/13/1998	Sheen	5.08	4.5-14.5
2/27/1998	Inacce		4.5-14.5					3/25/1998	Sheen	5.01	4.5-14.5
3/13/1998	Inacce	-	4.5-14.5					4/9/1998	Sheen	5.55	4.5-14.5
3/25/1998 4/9/1998	Inacce Inacce	-	4.5-14.5 4.5-14.5					4/22/1998 5/7/1998	Sheen Sheen	5.48	4.5-14.5 4.5-14.5
4/22/1998	Inacce		4.5-14.5					5/21/1998	Sheen	5.67	4.5-14.5
5/7/1998	Inacce		4.5-14.5					6/5/1998	Sheen	4.54	4.5-14.5
5/21/1998	Inacce		4.5-14.5					6/24/1998	Sheen	4.76	4.5-14.5
6/5/1998	Inacce		4.5-14.5					7/13/1998	Sheen	4.89	4.5-14.5
6/24/1998	Inacce		4.5-14.5					7/22/1998	Sheen	5.07	4.5-14.5
7/13/1998	Inacce		4.5-14.5					8/26/1998	Sheen	5.61	4.5-14.5
7/22/1998	Inacce		4.5-14.5					9/14/1998	Sheen	5.16	4.5-14.5
8/26/1998	Inacce	ssible	4.5-14.5					9/28/1998	Sheen	4.95	4.5-14.5
9/14/1998	Inacce		4.5-14.5					10/12/1998	Sheen	5.05	4.5-14.5
9/28/1998	Inacce		4.5-14.5					10/22/1998	Sheen	5.02	4.5-14.5
10/12/1998	Inacce		4.5-14.5					11/5/1998	Sheen	4.75	4.5-14.5
10/22/1998	Inacce		4.5-14.5					11/18/1998	NA	5.03	4.5-14.5
11/5/1998	Inacce		4.5-14.5					2/20/2222	01	0.00	4.5
11/18/1998	Inacce	ssible	4.5-14.5					3/20/2003	Sheen	3.96	4.5-14.5
			<u> </u>								
									-		
			——								-
									1		la constant de la con

Note:
ft: Feet
NA: Not Available
Highlighted depths to GW above top of screened interval

Table 3A-10(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 2A: Demolished Area
Boeing Tract 1, St. Louis, Missouri

	T T		Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (u g/ kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	s)						
Benzene	12	3	0.51	225	443	NA	N/A
Dichlorodifluoromethane	2	11	1.26	4.3	3.4	NA	N/A
Ethylbenzene	12	3	0.07	28	376	NA	N/A
Methylene chloride	7	1	1.83	5.3	2.9	NA	N/A
Tetrachloroethene	7	3	2.45	26	11	NA	N/A
Toluene	. 12	3	3.00	57	19	NA	N/A
Xylenes, Total	3	1	2.30	90	39	NA	N/A
Total Petroleum Hydrocarbons (TP)	HD)	4.			4		
TPH DRO	8	5	5.42	640,000	118,086	NA	N/A_
TPH GRO	7	4	2.17	27,000	12,428	NA	N/A
TPH ORO	3	0	. N/A	ND	2,500	· NA	N/A
Total Metals							
Aluminum	5	4	1.17	18,900,000	16,175,000	41,000,000	N
Antimony	5	4	1.31	4,950	3,785	520	Y
Arsenic	5	4	1.55	60,400	38,875	9,200	Y
Barium .	5	4	1.34	254,000	189,250	725,000	N
Beryllium	5	4	1.15	1,270.	1,106	800	Y
Cadmium	5	1	3.00	2,190	730	<1,000	Y
Calcium	5	4	1.93	16,000,000	8,307,500	3,300,000	Y
Chromium .	5	4	1.16	20,200	17,400	58,000	N
Cobalt	5	. 4	1.83	11,200	6,125	10,000	Y
Copper	5	4	2.77	93,000	33,525	13,000	Y
Iron	5	4	1.13	21,900,000	19,425,000	21,000,000	Y
Lead	6	5	3.03	140,000	46,166	21,800	Υ
Magnesium	5	4	2.09	7,510,000	3,600,000	2,600,000	Y
Manganese	5	4	1.69	613,000	362,250	740,000	N
Mercury	5	4	2.31	112	49	39	Y
Nickel	- 5	4	1.26	19,900	15,750	14,000	Y
Potassium	5	4	1.55	2,210,000	1,427,500	14,000,000	N
Sodium	5	4	1.53	2,930,000	1,920,000	5,300,000	N
Vanadium	5	4	1.14	39,300	34,375	69,000	N _
Zinc	. 5	4	2.53	219,000	86,675	49,000	Y

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 3A-10(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 2A: Demolished Area

		В	eing Tract 1, St. Lo	uis, iviissouri		indian	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/kg)	Concent Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	Cs)						
Benzene	14	3	0.36	225	622	NA	N/A
Dichlorodifluoromethane	3	1	1.39	4.3	3.1	NA .	N/A
Ethylbenzene	14	3	0.05	28	570	NA	N/A
Methylene chloride	9	2	1.50	5.3	3.5	NA	N/A_
Tetrachloroethene	9	4	2.48	26	10	NA	N/A
Toluene	14	5	6.99	472	67	NA	N/A
Trichloroethene	9	1	1.39	2.6	1.9	NA	N/A
Xylenes, Total	4	1	3.00	90	30	NA	N/A
Total Petroleum Hydrocarbons (TP	PHO		1-v				
TPH DRO	10	6	6.68	14,890,000	2,228,359	NA	N/A
TPH GRO	8	4	2.17	27,000	12,428	NA	N/A
TPH ORO	4	0	N/A	ND	2,500	NA	N/A
Total Metals							
Aluminum	6	4	1.17	18,900,000	16,175,000	41,000,000	N _
Antimony	6	4	1.31	4,950	3,785	520	Y
Arsenic	6	4	1.55	60,400	.38,875	9,200	Y
Barium	6	4	1.34	254,000	189,250	725,000	N
Beryllium	6	4	1.15	1,270	1,106	800	Y
Cadmium	6	1	3.00	2,190	730	<1,000	Y
Calcium	6	4	1.93	16,000,000	8,307,500	3,300,000	Y
Chromium	6	4	1.16	20,200	17,400	58,000	N
Cobalt	6	4	1.83	11,200	6,125	10,000	Y
Copper	6	4	2.77	93,000	33,525	13,000	Y
Iron	6	4	1.13	21,900,000	19,425,000	21,000,000	Y
Lead	8	6 .	3.52	140,000	39,773	21,800	Y
Magnesium	6	4	2.09	7,510,000	3,600,000	2,600,000	Y
Manganese	6	4	1.69	613,000	362,250	740,000	N
Mercury	6	4	2.31	112	49	39	Y
Nickel	6	4	1.26	19,900	15,750	14,000	Y
Potassium	6	4	1.55	2,210,000	1,427,500	14,000,000	N
Sodium	6.	4	1.53	2,930,000	1,920,000	5,300,000	N
Vanadium	6	4	1.14	39,300	34,375	69,000	N
Zinc	6	4	2.53	219,000	86,675	49,000	Y

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 2B: Demolished Area
Boeing Tract 1. St. Louis, Missouri

Boeing Tract 1, St. Louis, Missour
Ratio of Max

		- B(oeing Tract 1, St. Lo	Concentration				
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOCs)					0.100	NA.	N/A	
Acetone	30	10	12.72	27,000	2,122	NA NA	N/A	
Chloroethane	14	1	1.56	48	31	NA NA	N/A	
cis-1.2-Dichloroethene	38	2	2.92	500	171	NA NA	N/A	
Ethylbenzene	34	2	6.18	330	53	NA NA	N/A	
Isopropylbenzene	10	2	2.12	210	99	NA NA	N/A	
Methyl ethyl ketone (MEK)	. 26	3	4.40	6,100	1,386		N/A	
Methylene chloride	34	5	0.47	40	85	NA NA	N/A	
Naphthalene	10	1	4.82	2,100	436	NA NA	N/A	
n-Butylbenzene	10	3	3.05	1,200	394	NA NA	N/A	
n-Propylbenzene	10	2	2.49	420	169	NA NA	N/A	
p-Isopropyltoluene	8	1	1.39	130	93	NA NA	N/A	
sec-Butylbenzene	10	2	3.02	540	179	NA	N/A	
Tetrachloroethene	38	12	14.42	1,700,000	117,893	NA NA	N/A	
Toluene	34	2	0.30	26	85	NA NA	N/A	
trans-1.2-Dichloroethene	38	2	2.26	44	20	NA NA	N/A	
Trichloroethene	34	3	9.02	2,200	244	NA NA	N/A	
Vinyl chloride	20	1	0.33	9.6	29	NA NA	N/A	
Xylenes, Total	16	3	7.29	1,000	137	I NA	10/15	
Total Petroleum Hydrocarbons (TPI	D	1. 1.				T NA	N/A	
TPH DRO	14	7	2.32	1,900,000	817,829	NA NA	N/A	
TPH GRO	13	1	3.09	180,000	58,214	NA NA	N/A	
TPH ORO	14	1	3.98	160,000	40,250	1 1/1/4	1777	
Total Metals		1		·. ,	1 10 525 000	41,000,000	N	
Ahminum	14	4	1.78	22,700,000	12,735,000	520	Y	
Antimony	14	4	1.79	4,500	2,513	9,200	Ý	
Arsenic	18	17	4.01	46,300	11,546	725,000	N	
Barium	18	18	3.53	310,000	87,719	800	$\frac{1}{Y}$	
Beryllium	14	4	1.72	1,460	849		Y Y	
Cadmium	18	13	12.33	20,200	1,638	<1,000	Ŷ	
Calcium	14	4	1.33	16,400,000	12,337,500	3,300,000	· Y	
Chromium	18	18	2.89	74,700	25,878	58,000	Y	
Cobalt	14	4	1.98	13,100	6,613	10,000	1 - Y	
	14	4	1.62	19,000	11,748	13,000	- 1 Y·	
Copper	14	4	1.89	34,200,000	18,090,000	21,000,000	- T	
Iron Lead	18	12	16.61	2,260,000	136,043	21,800	1 Y	
	14	4	2.53	39,600,000	15,625,000	2,600,000	$\frac{1}{Y}$	
Magnesium	14	4	2.45	2;070,000	844,250	740,000	- Y	
Manganese	18	8	4.82	550	114	39	Y	
Mercury Nickel	14	4	1.76	31,100	17,715	14,000	T N	
	14	4	1.35	1,120,000	827,250	14,000,000	Y	
Potassium Selenium	18	4	4.01	4,020	1,003	260	Y	
	18	10	2.64	3,410	1,289	<700	N N	
Silver	14	4	1.56	348,000	223,750	5,300,000	Y	
Sodium	14	i	1.68	3,430	2,039	<100	N N	
Thallium	14	4	1.66	46,700	28,130	69,000	Y	
Vanadium	14	4	1.42	51,800	36,425	49,000	· · · · · · · · · · · · · · · · · · ·	

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available ND - Not detected N/A - Not applicable

Tab.
Soil Constituents of Concern Summary for Cons
Worker for Sub-area 2B: Demolished Area

			Ratio of Max				
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
olatile Organic Compounds (VOC	s)			· · · · · · · · · · · · · · · · · · ·	21	NA	N/A
1-Dichloroethene	58	1	9.38	200		NA NA	N/A
2,4-Trimethylbenzene	26	1	1.50	35	23	NA NA	N/A
cetone	60 ·	23	26.10	27,000	1,034	NA NA	N/A
hloroethane	38	2	4.56	94	3,706	NA NA	N/A
s-1,2-Dichloroethene	69	14	18.35	68,000	136	NA NA	N/A
thylbenzene	59	5	19.79	2,700	42	NA NA	N/A
sopropylbenzene	26	3	4.96	210	182	NA NA	N/A
n.p-Xylene	18	2	8.80	1,600	994	NA NA	N/A
Methyl ethyl ketone (MEK)	49	10	6.13	6,100	59	NA NA	N/A
lethylene chloride	58	15	1.17	69	154	NA NA	N/A
laphthalene	26	1	13.61	2,100	200	NA NA	N/A
-Butylbenzene	26	5	5.99	1,200 420	66	NA NA	N/A
-Propylbenzene	26	3	6.38		65	NA NA	N/A
-Xylene	18	2	8.30	540	48	NA NA	N/A
-Isopropyltoluene	19	1	2.72	130 540	113	NA NA	N/A
ec-Butylbenzene	26	7	4.76	9,300,000	284,245	NA NA	N/A
etrachloroethene	69	25	32.72	1,600	177	NA .	N/A
oluene	59	5	9.05	7,200	470	NA NA	N/A
rans-1,2-Dichloroethene	69	7	15.32	14,000	688	NA NA	N/A
richloroethene	58	17	20.34	560	39	NA	N/A
/inyl chloride	44	3	14.19	5,100	507	NA	N/A
Cylenes, Total	47	10	10.03	3,100	10 344		
l'otal Petroleum Hydrocarbons (T		20	3.64	1,900,000	521,665	NA NA	N/A
TPH DRO	45	20	4.85	180,000	37.150	NA .	N/A
TPH GRO	28	1	0.52	16,000	30,667	NA	N/A
TPH ORO	29	11	0.52	1 10,000			
Total Metals		1 4	1.78	22,700,000	12,735,000	41,000,000	N
Aluminum	14	1 4	1.79	4,500	2,513	520	Υ
Antimony	25	21	4.22	46,300	10,969	9,200	Y
Arsenic	25	25	3.39	310,000	91,438	725,000	N
Barium	14	4	1.72	1,460	849	800	Y
Beryllium		14	15.67	20,200	1,289	<1,000	Y
Cadmium	25 14	4	1.33	16,400,000	12,337,500	3,300,000	Y
Calcium	25	25	3.27	74,700	22,860	58,000	Y
Chromium	14	4	1.98	13,100	6,613	10,000.	Y
Cobalt	14	1 4	1.62	19,000	11,748	13,000	Y
Copper	14	4	1.89	34,200,000	18,090,000	21,000,000	Y
lron	25	19	22.43	2,260,000	100,759	21,800	Y
Lead		4	2.53	39,600,000	15,625,000	2,600,000	Y
Magnesium	14	4	2.45	2,070,000	844,250	740,000	Y
Manganese	14	15	2.88	560	194	39	Y
Mercury .	25	4	1.76	31,100	17,715	14,000	Y
Nickel	14	+ 4	1.35	1,120,000	827,250	14,000,000	N
Potassium	14	7	4.42	4,020	909	260	Y
Selenium ·	25	10	3.04	3,410	1,122	<700	Y
Silver	25		1.56	348,000	223,750	5,300,000	N
Sodium	14	+- +-	1.68	3,430	2,039	<100	Y
Thallium	14	1 4	1.66	46,700	28,130	69,000	N
Vanadium	14	4	1.42	51,800	36,425	49,000	Y

ug/kg - micrograms per kilogram

RO - Diesel range organic

GRO - Gaseline range organic

ORO - Oil range organic

NA: Not evailable

ND - Not detected

/A - Not applicable

Table 3C-10(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 2C: Demolished Area
Boeing Tract 1, St. Louis, Missouri

	1		Ratio of Max Detected to Average Concentration	Concentration				
Constituents of Concern	# of Samples			Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOCs)					·	<u> </u>	4	
None	2	0	N/A	N/A	N/A	N/A	N/A	
Total Petroleum Hydrocarbons (TPH)					· · · · · · · · · · · · · · · · · · ·			
TPH DRO	2	1	1.00	1,330,000	1,330,000	NA	N/A	
	3	1	1.00	13,000	13,000	NA	N/A	
TPH GRO	 	. 1	1.00	34,000	34,000	NA	N/A	
TPH ORO	<u> </u>	!	<u> </u>	3 .,000				
Total Metals			1 100	8210	8,210	21.800	N	
Lead	11	11	1.00	6210	0,210			

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 3C-10(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 2C: Demolished Area

Constituents of Concern	# of Samples # of Detects		Ratio of Max	Concentration				
		Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background		
Volatile Organic Compounds (VOC	`ś)	· · · · · · · · · · · · · · · · · · ·			<u> </u>			
Benzene	11	4	3.00	. 307	102.42	NA NA	N/A	
Ethylbenzene	. 11	3	2.37	408	172.25	NA ·	N/A	
Methylene chloride	1	1	1.00	5.8	5.80	NA	N/A	
Toluene	11	5	3.93	3,000	762.42	NA	N/A	
Xylenes, Total	11	5	2.00	829	415	NA	N/A	
Total Petroleum Hydrocarbons (TP	H)							
TPH DRO	11	3	7.50	1,330,000	177,313	. NA	N/A	
TPH GRO	9	6	1.37	133,000	97,167	NA	N/A ·	
TPH ORO	9	1	2.24	34,000	15,167	NA	N/A	
Total Metals			in the second					
Lead	1	1	1.00	8210	8,210	21,800	N	

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 3A-11
Groundwater Constituents of Concern Summary for Sub-area 2A: Demolished Area
Boeing Tract 1, St. Louis, Missouri

			boeing Hact 1, St		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds	s (VOCs)						
Benzene	8	1	3.71	817	220	5	Y
Ethylbenzene	8	1	3.82	130	34	700	N
Methyl ter-butyl ether	7	· 1	2.86	20	7.0	146	N
Methylene chloride	4	· 1	0.38	2.1	5.5	49.1	N
Tetrachloroethene	4	2	1.16	4.8	4.2	5	N
Toluene	8	2	2.50	61	24	1,000	N
Xylenes, Total	4	2	2.21	179	81	10,000	N
Total Petroleum Hydrocarbo	ons (TPH)					and the second second	
TPH DRO	5	2	2.00	190,000	95,155	NA	N/A
TPH GRO	5	I	1.98	1,100,000	555,250	NA	N/A
TPH ORO	. 5	0	N/A	ND	288	NA	N/A
Total Metals							<u></u>
Arsenic	2	2	1.25	58	47	10	Y
Barium	2	2	1.31	1,000	765	2,000	N
Cadmium	2	2	1.57	14	8.9	5	Y
Chromium	2	2	1.42	56	40	100	N
Lead	3	2	2.74	. 100	37	15	Y

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Groundwater Constituents of Concern Summary for Sub-area 2B: Demolished Area

			Boeing Tract 1, St	Louis, Missouri	Corre	otrătion	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compound	s (VOCs)					200	N
1.1.1-Trichloroethane	125	1	0.06	9.3	147	200 157	N
.1-Dichloroethane	125	3	0.07	11	147		Ÿ
.1-Dichloroethene	125	3	1.20	180	150	7.0	Y
.2.3-Trimethylbenzene	11	1	0.58	28	48	2.6	Y
,2,4-Trimethylbenzene	113	4	1.81	330	182	2.6	N
Acetone	118	5	0.01	55	5,224	121	Y
Benzene	134	15	2.84	680	239	5	Y
cis-1,2-Dichloroethene	129	60	21.57	97,000	4,497	70	N
Ethylbenzene	130	7	1.35	200	148		N
isopropyibenzene	· 116	20	0.65	120	185	4,000	N
Methyl isobutyl ketone	118	1	0.00	25	5,223	32.7 146	Y
Methyl ter-butyl ether	123	7	6.29	1,400	222	49.1	N.
Methylene chloride	125	2	0.02	8.5	512	100	Y
Vaphthalene	114	4	1.68	540	321 221	48.6	Ŷ
-Butylbenzene	116	21	16.26	3,600	189	5.3	Ÿ
n-Propylbenzene	116	21	1.06	200	139	107	N
o-Isopropyltoluene	112	17	0.05	6.4	207	48.6	Y
ec-Butylbenzene	117	30	10.13	2,100	181	48.6	N
ert-Butylbenzene	113	2	0.02	3.2	19,115	5	, Ÿ
Tetrachloroethene	134	59	25.63	490,000	649	1,000	Y
Foluene	130	7	1.85	1,200	150	100	Ý
rans-1,2-Dichloroethene	125	13	1.00	150		5.	Ý
l'richloroethene	129	51	42.19	84,000	1,991 244	2,000	Ň
Frichlorofluoromethane	113	1	0.01	2.5	728	2,000	Ÿ
Vinyl chloride	126	25	6.05	4,400	354	10,000	N
Xylenes, Total	128	10	3.39	1,200	334	10,000	1
Polynuclear Aromatic Hyd	rocabons		100		N/A	I N/A	N/A
None :	11_	0	N/A	ND			1,111
Polychlorinated Biphenyls	<u> </u>		<u> </u>	3 NO	N/A	I N/A	N/A
None	1	0	N/A	ND	IVA	10/1	
Total Petroleum Hydrocar	bons (TPH)	·		T 200,000	219,968	NA NA	N/A
TPH DRO	153	60	10.00	2,200,000		NA NA	N/A
TPH GRO	56	12	10.87	110,000	10,123	NA NA	N/A
TPH ORO	. 56	25	13.42	212,199	15,814	1 100	1
Fotal Metals		<u>.</u>		1 100	67	10	Υ .
Arsenic	2	2	1.94	130		2,000	N
Barium	2	2	1.57	1,600	1,020	5	Ÿ
Cadmium	2	11	1.37	5.4	12	100	N
Chromium	2	11	1.58	19		15	N
Lead	2	2	1.23	6.7	5.5 7.8	50	N
Selenium	2	11	1.68	13	1.0		_!

Notes

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 3C-11
Groundwater Constituents of Concern Summary for Sub-area 2C: Demolished Area
Boeing Tract 1, St. Louis, Missouri

			Boeing Tract 1, St.		Conce	entration	
Constituents of Concern	# of Samples # of Detect		Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (\)	/OCs)						
Benzene	13	8	4.54	921	203	500	N
Ethylbenzene	13	3	6.56	180	27	700	
Methyl ter-butyl ether	11	2	5.07	59	12	146	N
	13	3	3.55	60	17	1,000	N
Toluene	12	3	2.84	24	8.3	10,000	N
Xylenes, Total							
Total Petroleum Hydrocarbons			1.95	1,000	513	NA	N/A
TPH DRO	11	3		301,200	73,658	NA	N/A
TPH GRO	10	5	4.09		429	NA	N/A
TPH ORO	9	0	N/A	ND I	+23		
Total Metals						1 15	Y
Lead	1	1	1.00	22	22		<u> </u>

ug/L - micrograms per liter

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Table 3A-12(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 2A: Demolished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Sofi Conc.	Vapors from	halation of a Subsurface oil	Average GW Conc.	Indoor Inl Vapor Groun		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	(ug/L)	IELCR _	HQ	·	
Benzene	443	2.71E-08	1.54E-03	220	3.26E-08	1.85E-03	5.96E-08	3.39E-03
Dichlorodifluoromethane	3.4	NA	5.11E-06				NA NA	5.11E-06
Ethylbenzene	376	NA	1.60E-06	·			NA	1.60E-06
Methylene chloride	2.9	1.80E-11	3.57E-08				1.80E-11	3.57E-08
Tetrachloroethene			5.86E-07				4.85E-11	5.86E-07
Toluene	19	NA ·	3.95E-07	_		-	NA	3.95E-07
Xylenes, total	39	NA	1.87E-07	<u> </u>			NA	1.87E-07
Organics Total Risk		2.71E-08	1.55E-03		· 3.26E-08	1.85E-03	5.97E-08	3.40E-03
TPH-GRO	12,428	NA	1.27E-04	555,250	NA	3.39E+00	NA	3.39E+00
TPH-DRO	118,086	NA	1.19E-04	95,155	NA	1.89E+01	NA	1.89E+01
TPH-ORO	2,500	NA	6.40E-08	288	NA	1.51E-01	NA	1.51E-01
TPH Total Risk		NA	2.47E-04		NA	2.24E+01	NA	2.24E+01
Arsenic	38,875	NA	NA	47	NA.	NA	NA	NA
Cadmium	730	NA	NA	8.9	NA	NA	NA	NA
Mercury	49	NA	1.37E-04				NA	1.37E-04
Antimony	3,785	NA	NA				NA	NA
Beryllium	1,106	NA	NA				. NA	NA_
Cobalt	6,125	NA	NA			_	NA	NA
Соррег	33,525	NA	NA	_			NA	NA
Nickel	15,750	NA	NA				NA	·NA
Zinc 86,675		NA	NA				NA	NA
Metals Total Risk	NA	1.37E-04		NA	NA	NA	1.37E-04	
CUMULATIVE RISK					3.26E-08	-2.24E+01	5.97E-08	2.24E+01

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

Table 3A-12(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 2A: Demolished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	tact with Soil	Accidental 1	•	Vapors and	nhalation of Particulates Soil	Average GW Conc.	Dermal Co Ground	iwater	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ	(ug/L)	IELCR	HQ_	1.74E-11	HQ 2.46E-05	4.32E-08	3.51E-02
Benzene	622	8.99E-11	7.23E-05	9.99E-11	8.04E-05	5.10E-10	7.24E-04	220	4.24E-08	3.42E-02		2.4015-03	NA	4.34E-07
Dichlorodifluoromethane	3.1	NA	1.80E-08	NA	6.01E-09	NA	4.10E-07						NA.	5.80E-06
Ethylbenzene	570	NA	1.99E-06	NA	2.03E-06	NA	1.78E-06						4.99E-13	5.43E-08
Methylene chloride	3.5	1.32E-13	2.05E-08	1.47E-13	2.28E-08	2.20E-13	1.09E-08						3.91E-12	6.30E-07
Tetrachloroethene	10	2.71E-13	3.65E-08	3.02E-12	4.06E-07	6.22E-13	1.88E-07						NA NA	8.84E-07
Toluene	67	NA	1.18E-08	NA	1.31E-07	NA	7.41E-07						3.61E-13	4.11E-07
Trichloroethene	1.9	1.70E-16	1.81E-10	1.14E-13	1.21E-07	2.47E-13	2.90E-07					_=_	NA	1.30E-07
Xylenes, total	30.0	NA	5.23E-09	NA	5.35E-09	NA	1.19E-07				1.74E-11	2.46E-05	4.32E-08	3.51E-02
Organics Total Risk		9.03E-11	7.44E-05	1.03E-10	8.31E-05	5.11E-10	7.28E-04		4.24E-08	3.42E-02 NA	1.74E-11 NA	3.04E-02	NA	3.06E-02
TPH-GRO	12,428	NA	NA	NA	5.65E-05	NA	7.32E-05	555,250	NA	NA NA	NA NA	1.68E-01	NA	1.92E-01
TPH-DRO	2,228,359	NA	4.91E-03	NA	1.49E-02	NA	4.28E-03	95,155	NA NA	NA NA	NA NA	1.35E-03	NA	1.37E-03
TPH-ORO	2,500	NA	6.37E-06	NA	1.64E-05	NA_	5.16E-07	288	NA NA	NA NA	NA NA	2.00E-01	NA	2.24E-01
TPH Total Risk		NA	4.92E-03	NA	1.50E-02	NA.	4.35E-03		NA.	NA NA	NA NA	NA NA	3.08E-07	4.79E-02
Arsenic	38,875	9.68E-10	1.51E-04	3.07E-07	4.77E-02	5.10E-10	7.94E-06	47	NA NA	NA NA	NA .	NA NA	4.02E-12	5.83E-04
Cadmium	730	NA	1.70E-05	NA	5.66E-04	4.02E-12	8.94E-08	8.9	NA		- NA		NA	2.36E-04
Mercury	49	NA.	1.88E-07	NA	9.40E-06	NA_	2.27E-04				 	 	NA	3.78E-03
Antimony	3,785	NA	1.10E-04	NA	3,67E-03	NA NA	4.07E-06				 	 	1.06E-09	8.58E-06
Beryllium	1,106	7.90E-10	6.43E-06	2.63E-10	2.14E-06	8.13E-12	1.19E-08				-		5.25E-11	5.40E-04
Cobalt	6,125	NA	3.56E-04	NA	1.19E-04	5.25E-11	6.58E-05					 	NA	3.42E-04
Copper	33,525	NA	9.74E-06	NA	3.25E-04	NA	7.18E-06						1.16E-11	4.79E-05
Nickel	15,750	NA	4.58E-07	NA_	3.05E-05	1.16E-11	1.69E-05	 			 	 	NA	3.14E-05
Zinc	86,675	NA	3.36E-06	NA	2.80E-05	NA	1.77E-08	 - -		NA	NA.	NA	3.09E-07	5.34E-02
Metals Total Risk		1.76E-09	6.54E-04	3.07E-07	5.24E-02	5.86E-10	3.29E-04		NA NA	3.42E-02	1.74E-11	2.00E-01	3.52E-07	3.13E-01
CUMULATIVE RISK		1.85E-09	5.65E-03	3.07E-07	6.75E-02	1.10E-09	5.41E-03	<u> </u>	4.24E-08	3.42E-U2	1./4E-11	1 2.0015-01	1_0.020-07_	

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

Table 3B-12(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker
Sub-area 2B: Demelished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soli Conc.	Indeer Inh Vapers from So	Subsurface	Average GW Conc.	Indoor Inh Vapors from C		Sum of IELCR	Sum of HQ (HI)
933-	(IELCR	HQ	(ug/L)	IELCR	НО	IELCK	(111)
	(ug/kg)	IELACK		150	5.95E-07	5.95E-02	5.95E-07	5.95E-02
,1-Dichloroethene				48	NA NA	1.91E-04	NA.	1.91E-04
,2,3-Trimethylbenzene				182	NA NA	1.41E-03	NA.	1.41E-03
,2,4-Trimethylbenzene			2 407 05	102		1.412 43	NA.	2.40E-05
Acetone	2,122	NA	2.40E-05	239	3.54E-08	3.54E-03	3.54E-08	3.54E-03
lenzene		1 227 00	4.38E-07	239	3.542-08	3.545-03	1.32E-09	4.38E-07
Inloroethane	31	1.32E-09 NA	9.96E-05	4,497	NA NA	4,26E-03	NA NA	4.36E-03
is-1,2-Dichloroethene	171		2.27E-07			4.202-05	NA	2.27E-07
Ethylbenzene	53	NA NA	9.64E-06		 -		NA.	9.64E-06
sopropyi benzene	1,386	NA NA	3.02E-06				NA.	3,02E-06
Methyl ethyl ketone (MEK)	85	5.27E-10	1.04E-06		 _		5.27E-10	1.04E-06
Methylene chloride		J.272-10	1.042-00	222	4.76E-11	4.76E-06	4.76E-11	4.76E-06
Methyl tert-butyl ether (MTBE)	436	NA.	5.83E-06	321	NA NA	3.95E-04	NA	4.01E-04
Naphthalene	394	NA.	2.66E-06	221	NA NA	1.48E-04	NA	1.51E-04
n-Butylbenzene	169	NA NA	3.42E-06	189	NA NA	1.03E-04	NA.	1.06E-04
n-Propyibenzene	93	NA.	2.37E-07				NA.	2.37E-07
p-Isopropyitoluene sec-Butylbenzene	179	NA NA	2.19E-06	207	NA	1.94E-04	NA	1.96E-04
Tetrachloroethene	117,893	5,39E-07	6.50E-03	19,115	4.91E-07	4.91E-02	1.03E-06	5.56E-02
Toluene	85	NA NA	1.78E-06	649	NA	9.32E-05	ÑA	9.49E-05
trans-1,2-Dichloroethene	20	NA.	8.54E-06	150	NA.	1.43E-04	NA	1.51E-04
Trichloroethene	244	1.89E-09	8.89E-05	1,991	9.58E-08	9.58E-03	9.77E-08	9.67E-03
Vinyl chloride	29	2.61E-07	8.55E-05	728	5.55E-06	5.55E-01	5.81E-06	5.55E-01
Xylenes, Total	137	NA.	6.55E-07				NA	6.55E-07
Organics Total Risk	1	8.04E-87	6.84E-03	†	6.77E-06	6.84E-01	7.57E-06	6.91E-01
Aliphatics > nC6 to nC8 (TX1006)	T		-	4,660	NA	2.72E-03	NA	2.72E-03
Aliphatics > nC8 to nC10 (TX1006)	 			2,732	NA	4.70E-02	NA	4.70E-02
Aromatics > nC8 to nC10 (TX1006)				2,732	NA	1.53E-03	NA	1.53E-03
TPH-GRO	58,214	NA.	5.96E-04	10,123	NA	5.12E-02	NA	5.18E-02
Aliphatics > nC10 to nC12 (TX1006)		-		17,717	NA	4.57E-01	NA	4.57E-01
Aliphatics > nC12 to nC16 (TX1006)	-			63,149	NA	7.05E+00	NA	7.05E+00
Aliphatics > nC16 to nC21 (TX1006)		-		74,726	NA	7.86E+01	NA	7.86E+01
Aromatics > nC10 to nC12 (TX1006)		T		. 8,107	NA	1.47E-03	NA	1.47E-03
Aromatics > nC12 to nC16 (TX1006)	-			30,484	NA	2.30E-03	NA	2.30E-03
Aromatics > nC16 to nC21 (TX1006)				25,786	NA	5.42E-04	NA	5.42E-04
TPH-DRO	817,829	NA	8.26E-04	219,968	NA	8.62E+01	NA	8.62E+01
Aliphatics > nC21 to nC35 (TX1006)		-	-	8,786	NA	9.25E+00	NA	9.25E+00
Aromatics > nC21 to nC35 (TX1006)				7,028	NA	1.71E-05	NA.	1.71E-05
TPH-ORO	40,250	NA	1.03E-06	15,814	NA	9.25E+00	NA	9.25E+00
TPH Tetal Risk		NA ·	1.42E-03		. NA	9.54E+01	NA	9.54E+01
Arsenic	11,546	NA	NA	67	NA	NA	NA	NA
Cadmium	1,638	NA	NA	4.0	NA	NA	NA	NA
Chromium	25,878	NA	NA		<u> </u>		NA	NA
Mercury	114	NA	3.22E-04		-		NA	3.22E-04
Selenium	1,003	NA	NA			·	NA	NA
Silver	1,289	NA	NA				NA	NA
Antimony	2,513	NA	NA				NA	NA
Beryllium	849	NA	NA				NA	NA
Cobalt	6,613	NA	NA		<u> </u>		NA.	NA
Copper	11,748	NA	NA				NA	NA
Manganese	844,250	NA	NA				NA	NA
Nickel	17,715	NA	NA				NA	NA
Thallium	2,039	NA	NA				NA	NA_
Zinc	36,425	NA	NA				NA	NA
Metals Total Risk		NA	3.22E-04		NA	NA	NA	3.22E-04
CUMULATIVE RISK	8.04E-07	8.59E-03						

Notes:

NA: Not available

Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Discharge personalic

DRO: Diesel range organic
ORO: Oil range organic
TPH: Total petroleum hydrocarbon

The RAM Group September 2004

Table 3B-12(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 2B: Demolished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental S	Ingestion of	Outdoor In Vapors and from	Particulates	Average GW Conc.	Dermal Co Groun		Vapors from		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	но	IELCR	НО	IELCR	HQ	(ug/L)	IELCR	HQ	IELCR	HQ	2 2 2 2 2 2	- 0000 00
117111	21	6.37E-11	8.26E-07	7.08E-11	9.18E-07	2.30E-10	1.62E-06	150	2.28E-07	2.95E-03	2.34E-10	1.64E-06	2.28E-07	2.96E-03
1,1-Dichloroethene		0.51 <u>D</u> -11						48	NA	ΝA	NA	3.11E-06	NA.	3.11E-06
1,2,3-Trimethylbenzene	23	NA NA	1.63E-07	NA	1.66E-07	NA	3.45E-06	182	NA	NA	NA	1.73E-05	NA	2.11E-05
1,2,4-Trimethylbenzene	1,034	NA NA	3.61E-06	NA NA	3.81E-06	NA	8.96B-06	_		ı			NA	1.64E-05
Acetone	1,034		5.012-00					239	4.61E-08	3.71E-02	1.89E-11	2.68E-05	4.61E-08	3.71E-02
Benzene	21	9.93E-13	5.99E-08	3.31E-13	2.00E-08	4.48E-12	3.73E-08		-	ı			5.80E-12	1.17E-07
Chloroethane cis-1,2-Dichloroethene	3,706	NA NA	1.29E-05	NA	1.44E-04	NA	7.28E-04	4,497	NA	NA	NA	7.15E-05	NA	9.56E-04
Ethylbenzene	136	NA NA	4,76E-07	NA	4.86E-07	NA	4.25E-07						NA	1.39E-06
Isopropyl benzene	42	NA	1.48E-07	NA	1.64E-07	NA	1.03E-06						NA NA	1.34E-06
m,p-Xylene	182 .	NA	1.06E-07	NA	3.52E-08	NA	1.72E-06	-					NA ·	1.86E-06
Methyl ethyl ketone (MEK)	994	NA	5.78E-07	NA	6,42E-07	NA	2.24E-06	_					NA	3.46E-06
Methylene chloride	59	2.20E-12	3.42E-07	2.44E-12	3.80E-07	3.67E-12	1.81E-07						8.31E-12	9.03E-07
Methyl tert-butyl ether					_	-	_	. 222	1.04E-09	2.58E-05	1.03E-13	2.39E-08	1.04E-09	2.58E-05
Naphthalene	154	NA	2.69E-06	NA	2.99E-06	NA	1.57E-05	321	NA	NA	NA NA	2.52E-05	NA NA	4.66E-05
n-Butylbenzene	200	NA	5.82E-06	NA	1.94E-06	NA	2.12E-06	221	NA	NA	NA	1.58E-06	NA NA	1.15E-05
n-Propylbenzene	66	NA	2.30E-05	NA	2.55E-05	NA	1.21E-06	189	NA.	NA NA	NA	1.14E-06	NA NA	5.08E-05
o-Xylene	65	NA	3.78E-08	NA	1.26E-08	NA	6.37E-08		<u></u>				NA	1.14E-07 9.53E-07
p-Isopropyitoluene	48	NA	5.56E-07	NA	1.85E-07	NA	2.12E-07		***				NA	7.98E-06
sec-Butylbenzene	113	NA	3.30E-06	NA	1.10E-06	NA	1.62E-06	207	NA	NA	NA	1.97E-06	NA NA	2.05E+00
Tetrachloroethene	284,245	7.36E-09	9.91E-04	8.18E-08	1.10E-02	1.69E-08	5.09E-03	19,115	1.51E-05	2.03E+00	2.02E-10	6.09E-05	1.52E-05	
Toluene	177	NA	3.08E-08	NA	3.43E-07	NA	1.94E-06	649	NA	3.24E-03	NA	1.14E-06	NA	3.24E-03
trans-1,2-Dichloroethene	470	NA NA	8.19E-07	NA	9.10E-06	NA	5.67E-05	150	NA	NA	NA	1.85E-06	NA NA	6.84E-05 1.18E-01
Trichloroethene	688	6.29E-14	6.67E-08	4.19E-11	4,45E-05	9.12E-11	1.07E-04	1,991	1.11E-07	1.18E-01	4.36E-11	5.12E-05	1.11E-07	
Vinyl chloride	39	3.73E-13	4.59E-09	4.15E-10	5.10E-06	1.26E-09	1.03E-05	728	3.19E-06	3.92E-02	2.00E-09	1.63E-05	3,20E-06	3.92E-02 2.05E-06
Xylenes, Total	507	NA.	2.95E-09	NA	2.46E-08	NA	2.02E-06				<u> </u>		NA NA	2.05E-06 2.25E+00
Organics Total Risk	1 301	7.43E-09	1.05E-03	8.23E-08	1.13E-02	1.84E-08	6.03E-03	T	1.87E-05	2.23E+00	2.49E-09	2.82E-04	1.88E-05	2.43E-05
Aliphatics > nC6 to nC8 (TX1006)		-						4,660	NA	NA	NA	2.43E-05	NA	4.18E-04
Aliphatics > nC8 to nC10 (TX1006)	 							2,732	NA	NA	NA	4.18E-04	NA.	
								2,732	NA	NA	NA	1.65E-05	NA_	1.65E-05
Aromatics > nC8 to nC10 (TX1006)	37,150	NA	NA	NA.	1.69E-04	NA	2.19E-04	10,123	NA	NA.	NA	4.59E-04	NA.	8.47E-04
TPH-GRO						_		17,717	NA	NA	NA	4.07E-03	NA	4.07E-03
Aliphatics > nC10 to nC12 (TX1006) Aliphatics > nC12 to nC16 (TX1006)		 						63,149	NA	NA	NA	6.28E-02	NA_	6.28E-02
Aliphatics > nC12 to nC16 (TX1006) Aliphatics > nC16 to nC21 (TX1006)								74,726	NA	NA	NA	7.00E-01	· NA	7.00E-01
								8,107	NA	NA	NA	2.26E-05	NA	2.26E-05
Aromatics > nC10 to nC12 (TX1006)	 							30,484	NA	NA	NA _	5.93E-05	NA_	5.93E-05
Aromatics > nC12 to nC16 (TX1006)	 		 		1			25,786	NA	NA	NA	4.01E-05	NA	4.01E-05
Aromatics > nC16 to nC21 (TX1006)	521,665	NA.	1.15E-03	NA.	3.50E-03	NA	1.00E-03	219,968	NA.	NA	NA	7.66E-01	NA.	7.72E-01
TPH-DRO		NA -	1.135-03					8,786	NA	NA	NA	8.22E-02	NA	8.22E-02
Aliphatics > nC21 to nC35 (TX1006)					 			7,028	NA	NA	NA	9.46E-06	NA	9.46E-06
Aromatics > nC21 to nC35 (TX1006)	30.667	NA.	7.81E-05	NA.	2.01E-04	NA	6.33E-06	15,814	NA	NA	NA.	8.23E-02	NA.	8.25E-02
TPH-ORO TPH Total Risk	1 30,007	NA NA	1.23E-03	NA.	3.87E-03	NA	1.23E-03		NA	NA_	NA.	8.49E-01	NA_	8.56E-01

Table 3B-12(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 2B: Demolished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Contact with Soil		Accidental Ingestion of Soil		Outdoor Inhalation of Vapors and Particulates from Soil		Average GW Conc.	Groundwater		Vapors from Groundwat		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ	(ug/L)	IELCR	HQ	IELCR	HQ	8.69E-08	1.35E-02
	10,969	2.73E-10	4.25E-05	8.65E-08	1.35E-02	1.44E-10	2.24E-06	67	NA NA	NA	NA NA	NA_		
Arsenic	1,289	NA NA	3.00E-05	NA	9.99E-04	7.11E-12	1.58E-07	4.0	NA	NA	NA	NA NA	7.11E-12	1.03E-03
Cadmium		NA NA	NA	NA	NA	8.40E-10	NA	-					8.40E-10	NA
Chromium	22,860	NA NA	7.54E-07	NA	3.77E-05	NA	9.09E-04						NA_	9.47E-04
Mercury	194			NA NA	7.04E-05	NA	9.77E-07				_		NA	9.26E-05
Selenium	909	NA ·	2.11E-05		8.69E-05	NA NA	2.40E-05					-	NA	1.89E-04
Silver	1,122	NA	7.83E-05	NA_			2.70E-06	 					NA	2.51E-03
Antimony	2,513	NA	7.30E-05	NA NA	2.43E-03	NA NA		 -					8.14E-10	6.59E-06
Beryllium	849	6.06E-10	4.93E-06	2.02E-10	1.64E-06	6.24E-12	9.10E-09						5.67E-11	5.83E-04
Cobalt	6,613	NA	3.84E-04	NA	1:28E-04	5.67E-11	7.11E-05	 					NA	1,20E-04
Соррег	11,748	NA	3.41E-06	NA	1.14E-04	NA	2.52E-06						NA NA	8.13E-03
Manganese	844,250	NA	2.10E-03	NA NA	2.34E-03	NA NA	3.69E-03						1.30E-11	5.38E-05
Nickel	17,715	NA	5.15E-07	NA	3.43E-05	1.30E-11	1.90E-05	<u> </u>					NA	1.02E-02
Thallium	2,039	NA	2.96E-04	NA	9.87E-03	NA	1.56E-06						NA NA	1.32E-05
Zinc	36,425	NA	1.41E-06	NA	1.18E-05	NA	7.44E-09							3.74E-02
	30,423	8.79E-10	3.04E-03	8.67E-08	2.96E-02	1.07E-09	4.73E-03	l	NA.	NA	NA.	NA	8.87E-08	
Metals Total Risk CUMULATIVE RISK	<u> </u>	8.31E-09	5.31E-03	1.69E-07	4.47E-02	1.95E-08	1,20E-02		1.87E-05	2.23E+00	2.49E-09	8.49E-01	1.89E-05	3.14E+00

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

GRO: Gasoline range organic DRO: Diesel range organic

ORO: Oil range organic

Table 3C-12(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 2C: Demolished Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of n Subsurface oil	Average GW Conc.		halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
,	(ug/kg)	IELCR	HQ	(ug/L)	IELCR	HQ		
Benzene		***		203	2.02E-08	2.02E-03	2.02E-08	2.02E-03
Organics Total Risk		NA	NA		2.02E-08	2.02E-03	2.02E-08	2.02E-03
TPH-GRO	13,000	NA	1.33E-04	73,658	NA	5.20E-01	NA	5.20E-01
TPH-DRO	1,330,000	NA.	1.34E-03	513	NA	1.18E-01	NA	1.19E-01
TPH-ORO	34,000	NA	8.69E-07	429	NA	2.61E-01	NA	3.12E-01
TPH Total Risk		NA	1.48E-03		NA	8.99E-01	NA	9.52E-01
CUMULATIVE RISK	UMULATIVE RISK				2.02E-08	9.01E-01	2.02E-08	9.54E-01

Notes:

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram ug/L: Micrograms per liter GRO: Gasoline range organic DRO: Diesel range organic ORO: Oil range organic

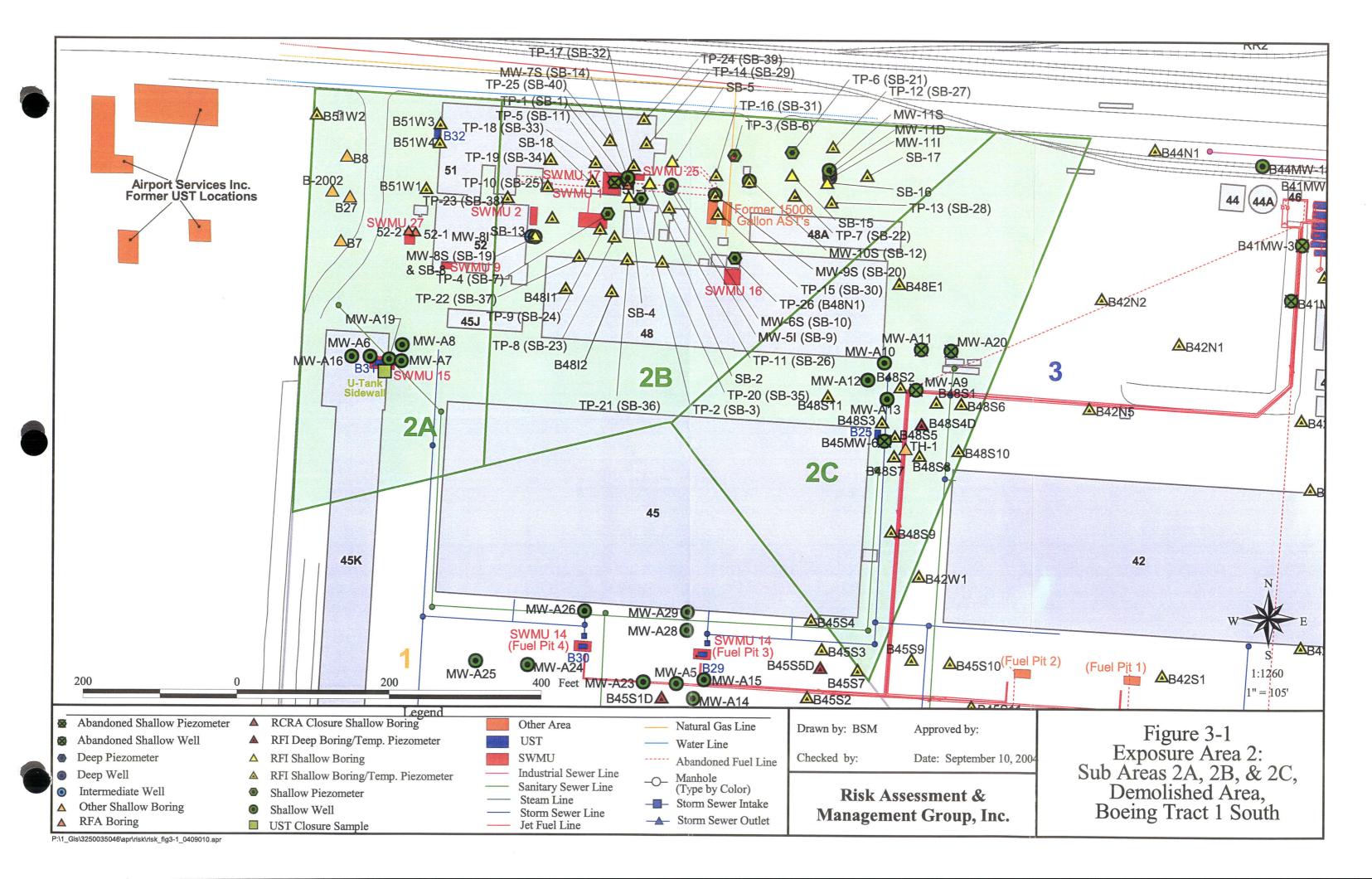
Table 3C-12(b)

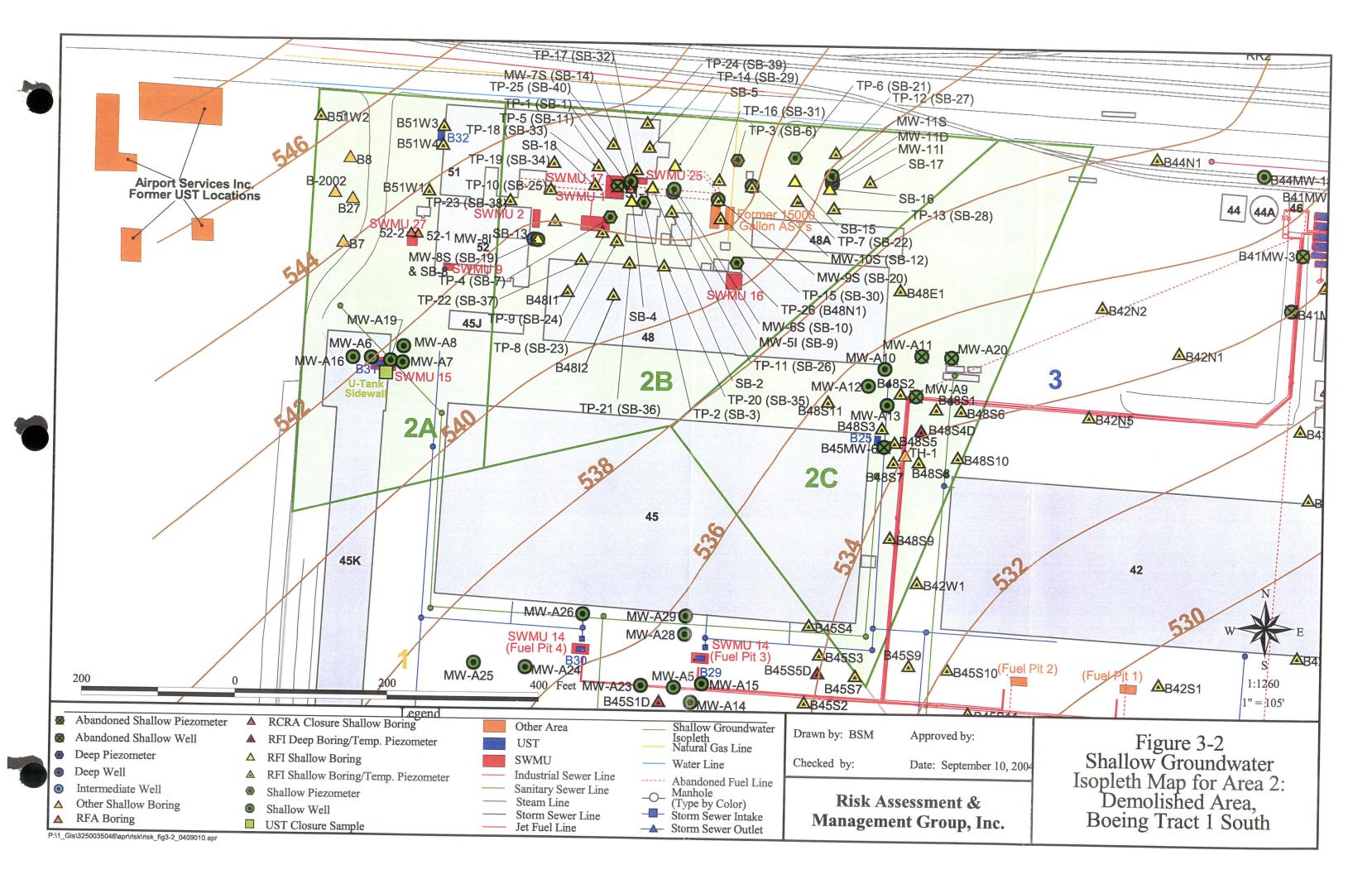
Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

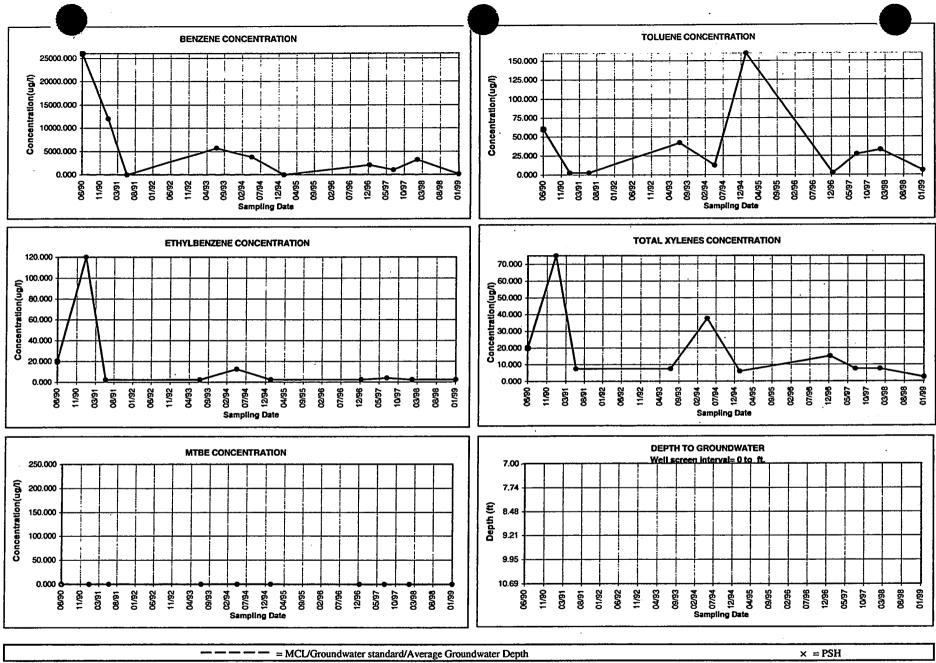
Sub-area 2C: Demolished Area, Boeing Tract 1, St. Louls, Missouri

COCs	Average Soil Conc.	Dermai Cont	act with Soil	Accidental In	gestion of Soil	Outdoor Inhalation of Vapors and Particulates from Soil		Average GW Conc.	Dermal Contact with Groundwater		Outdoor Inhalation of Vapors from Groundwate		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	но	IELCR	HQ	IELCR	HQ	(ug/L)	IELCR	HQ	IELCR	НQ	<u> </u>	
Benzene	102	1.48E-11	1.19E-05	1.64E-11	1.32E-05	8.40E-11	1.19E-04	203	3.91E-08	3.14E-02	4.83E-12	6.86E-06	3.92E-08	3.16E-02
Ethylbenzene	172	NA	6.01E-07	NA	6.14E-07	NA	5.37E-07		_				NA	1.75E-06
Methylene chloride	5.8	2.17E-13	3.37E-08	2.41E-13	3.75E-08	3.61E-13	1:79E-08	_					8.19E-13	8.91E-08
Toluene	762	NA	1.33E-07	NA	1.48E-06	NA	8.38E-06	_		1			NA	9.99E-06
Xylenes, Total	415	NA	2.41E-09	NA	2.01E-08	NA	1.65E-06			-			NA	1.67E-06
Organics Total Risk	1 115	1.50E-11	1.27E-05	1.67E-11	1.54E-05	8.43E-11	1.30E-04		3.91E-08	3.14E-02	4.83E-12	6.86E-06	3.92E-08	3.16E-02
TPH-GRO	97,167	NA	NA	NA	4.42E-04	NA	5.72E-04	73,658	NA	NA	NA	7.08E-03	NA	8.09E-03
TPH-DRO	177,313	NA	3.91E-04	NA	1.19E-03	. NA	3.40E-04	513	NA	NA	NA	1.59E-03	NA	3.51E-03
TPH-ORO	15,167	NA NA	3.86E-05	NA	9.94E-05	NA	3.13E-06	429	NA	NA	NA	3.52E-03	NA	3.66E-03
TPH Total Risk	1 15,107	NA.	4.30E-04	NA	1.73E-03	NA	9.16E-04		NA.	NA	NA	1.22E-02	NA	1.53E-02
CUMULATIVE RISK		1.50E-11	4.42E-04	1.67E-11	1.75E-03	8.43E-11	1.05E-03		3.91E-08	3.14E-02	4.83E-12	1.22E-02	3.92E-08	4.68E-02

NA: Not available


-: Risk evaluation was not performed.


HI: Hazard index


ug/kg: Micrograms per kilogram ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Diesel range organic ORO: Oil range organic

Note: PSH readings are plotted as the maximum value ever detected in the range. The point is plotted as "X" but not connected to adjacent points.

ND is assumed as zero concentration. The point is connected to the preceding and the following point by dotted line

Figure 3-3 Groundwater Data Collected at MW-A13 Sub-area 2A: Demolished Area, Boeing Tract 1, St. Louis, Missouri

ATTACHMENT 3-A

ECOLOGICAL RISK ASSESSMENT – AREA 2 DEMOLISHED AREA TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

	res. Colawater Creek is located 2,500 feet from the eage of Area 2.
2.	Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?
	No.
3.	Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?
	No, the site is paved.
4.	Has a process (operational) discharge or storm water permit not been issued for the site?
	Site-wide, there is a storm water permit.
5.	Is the site located in a known Karst environment (see Reference map)?
	No.
6.	Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.
	No.
7.	Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?
	No.
8.	Are commercially or recreationally important species (fauna or flora) on or within a 1/2 mile radius of the site?
	No.

1.

ATTACHMENT 3-B

ECOLOGICAL RISK ASSESSMENT – AREA 2 DEMOLISHED AREA TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

la. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater? Yes. Are contaminants associated with the site mobile in groundwater? lb. Yes. lc. Does groundwater from the site discharge into to ecological receptor habitat? Yes, eventually. 1. Could contaminants associated with the site reach ecological receptors via groundwater? No, groundwater impact is delineated within the boundary of the area, and off-site migration is not anticipated. 2a. Is NAPL present at the site? Yes. 2b. Is NAPL migrating? No. 2c. Could NAPL discharge occur where ecological receptors are found? No. 2. Could contaminants from the site reach ecological receptors via migration of NAPL? No.

3a. Are contaminants present in surface soils?

Yes.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

Yes, leaching of these contaminants to the groundwater is possible, however erosion of surface soils is unlikely as the site is paved.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the site is paved.

4a. Are contaminants present in surface soil or on the surface of the ground?

Yes.

4b. Are potential ecological receptors on the site?

No, the site is a large industrial site, almost entirely covered by either buildings or pavement.

4. Could contaminants reach ecological receptors via direct contact?

No.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the site is entirely paved.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the site is a large industrial site, almost entirely covered by either buildings or pavement.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

Yes.

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, there are no plants on-site, the site is entirely paved.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No.

6d. Do contaminants found on the site bioaccumulate?

Yes, some metals.

6.	Could	contaminants	reach	ecological	receptors	via	ingestion	of	either	soil,	plants,
	animal	s, or contamina	ınts dir	ectly?							-

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

4.1 INTRODUCTION

The Retained Area (Area 3) is located within the southern portion of the Facility, adjacent to and south of the Norfolk and Western Railroad Company railroad tracks and Banshee Road (Figure 4-1). This Area is bounded on the west by Areas 1 and 2, on the south by the Airport runway, and on the east by Areas 4 and 9. This section will describe the chemicals found here, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

4.2 DESCRIPTION OF AREA

The Retained Area is approximately 2,500 feet long by 1,200 feet wide (Figure 4-1). Within this Area are nine buildings, and a large parking lot. The Area is currently paved. Under future construction plans, the majority of the current buildings are due to be retained and the Area will continue to be paved. For the purposes of this risk evaluation, Area 3 was further subdivided into eight Sub-areas; 3A to 3H (Figure 4-1). A brief description of the Sub-areas follows:

- Sub-area 3A: This Sub-area is trapezoidal and located in the northwestern portion of Area 3 and covers about 5.25 acres. It extends from Banshee Road on the north to the northern edge of Building 42 on the south, and from Area 2C on the west to the middle of Building 41 on the east. This Sub-area contains the Building 41 tankfarm and the northern portion of the pipeline that extends from the Building 41 tank farm to the Fuel Pits #1, 2, 3, and 4. Also, included in this Sub-area are building/structures #44, #44A, #46, and #49, and along the northern perimeter are railroad spurs and an industrial sewer line. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs, TPH, and metals.
- <u>Sub-area 3B</u>: This Sub-area is rectangular and located on the west side of the southern portion of Building #2 and covers about 0.68 acres. This Sub-area is bounded on the north by Sub-area 3D, on the west and south by Sub-area 3C, and on the east by Building #2. This Sub-area contains the previous Aviation Gas Refueling Station and past UST #B68. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs and TPH.
- Sub-area 3C: This Sub-area is a 7-sided polygon in the southwestern portion of Area 3 and covers about 11.91 acres. This Sub-area is bounded on the north by Sub-areas 2A and 2B, on the west by Sub-area 2C and Area 1, on the south by the Airport runway, and on the east by other portions of Area 3. This Sub-area contains Buildings #3, #42, #43, and #45H, Fuel Pits #1 and #2, the previous Building #43 tankfarm and past USTs #B33 B37, and associated pipelines connecting Fuel Pits #1 and #2 to the Building #41 and #43 tank farms, and connecting the two tankfarms together. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs, TPH, and metals.

4.8.2 Sub-area 3B

Tables 4B-8(a) and 4B-8(b) present the representative concentrations for soil, and Table 4B-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.8.3 Sub-area 3C

Tables 4C-8(a) and 4C-8(b) present the representative concentrations for soil, and Table 4C-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. Following are the constituents and the samples for which this ratio exceeds 10:

GROUNDWATER						
COCs	Locations					
Benzene	B42S5W					
TPH-DRO	B42S5W					

Benzene was detected at concentrations below the acceptable HQ of 1 and the acceptable IELCR of 1 x 10^{-5} , refer Tables 4C-10(a) and 4C-10(b). Thus, the target risk will not exceed unacceptable levels. However, to be conservative, we have identified those constituents whose concentrations are within two orders of magnitude of acceptable risk (i.e., those chemicals with an IELCR > 1 x 10^{-7} and/or HQ > 0.01 for any receptor).

Based on this comparison, two constituents in groundwater, benzene and TPH-DRO, in the vicinity of B42S5W are within two orders of magnitude of acceptable risk.

4.8.4 Sub-area 3D

Tables 4D-8(a) and 4D-8(b) present the representative concentrations for soil, and Table 4D-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.8.5 Sub-area 3E

Tables 4E-8(a) and 4E-8(b) present the representative concentrations for soil, and Table 4E-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.8.6 Sub-area 3F

Tables 4F-8(a) and 4F-8(b) present the representative concentrations for soil, and Table 4F-9 presents the representative concentrations for groundwater. The ratio of the maximum detected

concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.8.7 Sub-area 3G

Tables 4G-8(a) and 4G-8(b) present the representative concentrations for soil, and Table 4G-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.8.8 Sub-area 3H

Tables 4H-8(a) and 4H-8(b) present the representative concentrations for soil, and Table 4H-9 presents the representative concentrations for groundwater. The ratio of the maximum detected concentration to average concentration is also presented. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

4.9 CALCULATION OF RISK

Series of Tables 4-10(a) and 4-10(b) present the results for the non-residential worker and construction worker, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

4.9.1 Sub-area 3A

4.9.1.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4A-10(a), the cumulative IELCR is 7.9×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4A-10(a), the cumulative HI for all COCs and all routes of exposure is 2.6, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of TPH-DRO from

groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

4.9.1.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4A-10(b), the cumulative IELCR is 4.52×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4A-10(b), the cumulative HI is 0.055, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.2 Sub-area 3B

4.9.2.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4B-10(a), the cumulative IELCR is 3.35×10^{-9} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4B-10(a), the cumulative HI for all COCs and all routes of exposure is 0.31, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.2.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4B-10(b), the cumulative IELCR is 4.66×10^{-10} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4B-10(b), the cumulative HI is 0.0071, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.3 Sub-area 3C

4.9.3.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4C-10(a), the cumulative IELCR is 2.0×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4C-10(a), the cumulative HI for all COCs and all routes of exposure is 77, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of TPH-DRO and TPH-ORO from groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

4.9.3.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4C-10(b), the cumulative IELCR is 2.34×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4C-10(b), the cumulative HI is 1.29, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributor to HI is HQ for indoor inhalation of TPH-DRO from groundwater. This is 0.95, i.e., the contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

4.9.4 Sub-area 3D

4.9.4.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4D-10(a), the cumulative IELCR is 2.93×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4D-10(a), the cumulative HI for all COCs and all routes of exposure is 0.075, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.4.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4D-10(b), the cumulative IELCR is 1.17×10^{-7} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4D-10(b), the cumulative HI is 0.048, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.5 Sub-area 3E

4.9.5.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4E-10(a), the cumulative IELCR is 4.31×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4E-10(a), the cumulative HI for all COCs and all routes of exposure is 10, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of aliphatics >nC12 to nC16 and aliphatics >nC16 to nC21 from groundwater. These are 0.93 and 8.8, respectively; therefore, the contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

4.9.5.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4E-10(b), the cumulative IELCR is 8.02×10^{-10} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4E-10(b), the cumulative HI is 0.12, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.6 Sub-area 3F

4.9.6.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4F-10(a), the cumulative IELCR is not available.

Non-carcinogenic Risk:

As shown in Table 4F-10(a), the cumulative HI for all COCs and all routes of exposure is 0.86, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.6.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4F-10(b), the cumulative IELCR is not available.

Non-carcinogenic Risk:

As shown in Table 4F-10(b), the cumulative HI is 0.0082, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.7 Sub-area 3G

4.9.7.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4G-10(a), the cumulative IELCR is 6.02×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4G-10(a), the cumulative HI for all COCs and all routes of exposure is 2.8, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of aliphatics >nC21 to nC35 from groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

4.9.7.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4G-10(b), the cumulative IELCR is 9.38×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4G-10(b), the cumulative HI is 0.12, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.8 Sub-area 3H

4.9.8.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 4H-10(a), the cumulative IELCR is not available.

Non-carcinogenic Risk:

As shown in Table 4H-10(a), the cumulative HI for all COCs and all routes of exposure is 0.7, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.9.8.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 4H-10(b), the cumulative IELCR is 6.35×10^{-13} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 4H-10(b), the cumulative HI is 0.0058, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

4.10 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek, which flows north about 550 feet to the northeast of Area 3. There are no known unpermitted conduits present that could carry impacts from Area 3 to Coldwater Creek. Considering the geology, groundwater flow characteristics and the chemical types and concentrations of impacts in Area 3, it is not likely that migration of impacts from Area 3 to Coldwater Creek will occur. The Tier 1 ecological screening

checklists have been completed for this Area, and are presented as Attachment 4-A and Attachment 4-B. These checklists identified no potential ecological receptors or issues.

4.11 CONCLUSIONS

Carcinogenic and non-carcinogenic risks to the non-residential worker and construction worker were calculated for each Sub-area. Key conclusions of the risk evaluation are:

Sub-area 3A

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from TPH-DRO in groundwater. The calculated carcinogenic risk for the non-residential worker was below the acceptable target risk.

The calculated risks for all COCs and all potentially complete routes of exposure for the construction worker are below the regulatory acceptable level.

Sub-area 3B

The calculated risks for all the COCs and all potentially complete routes of exposure for the non-residential worker and the construction worker are below the acceptable target risks.

Sub-area 3C

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from TPH-DRO in groundwater.

The cumulative non-carcinogenic risk for the construction worker exceeded the target risk. The primary contributor to the risk was outdoor inhalation of TPH-DRO from groundwater.

The calculated carcinogenic risk for the non-residential worker and the construction worker was below the acceptable target risk.

Sub-area 3D

The calculated risks for all the COCs and all potentially complete routes of exposure for the non-residential worker and the construction worker are below the acceptable target risks.

Sub-area 3E

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from aliphatics >nC12 to nC16 and aliphatics >nC16 to nC21 in groundwater.

The calculated risks for all COCs and all potentially complete routes of exposure for the construction worker are below the regulatory acceptable level.

Sub-area 3F

The cumulative carcinogenic risk is not a concern for the non-residential worker and the construction worker in this Sub-area. The calculated non-carcinogenic risks for all COCs and all potentially complete routes of exposure for the non-residential worker and the construction worker are below the regulatory acceptable level.

Sub-area 3G

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from aliphatics >nC12 to nC35 in groundwater.

The calculated risks for all COCs and all potentially complete routes of exposure for the construction worker are below the regulatory acceptable level.

Sub-area 3H

The cumulative carcinogenic risk is not a concern for the non-residential worker and the construction worker in this Sub-area. The calculated non-carcinogenic risks for all COCs and all potentially complete routes of exposure for the non-residential worker and the construction worker are below the regulatory acceptable level.

Table 4-1
Summary of Underground Storage Tanks (USTs) Present Historically within Area 3: Retained Area
Boeing Tract 1, St. Louis, Missouri

Sub-area	UST Number	Location	Volume (Gallons)	Contents	Construction Materials		Status	Comments
3A	BI	Building 41	4000	T-979 Solvent	Single Wall Steel	1947	Removed 1981	Excavated
3A	B2	Building 41	4000	Lacquer Thinner	Single Wall Steel	1947	Removed 1981	Excavated
3A	В3	Building 41	8000	Aviation Gas	Single Wall Steel	1947	Removed 1981	Excavated
3A	B4	Building 41	8000	Gasoline	Single Wall Steel	1947	Removed 1981	Excavated
3A	B5	Building 41	4000	JP-5	Single Wall Steel	1981	Removed 1989	Excavated
3A	B6	Building 41	15000	JP-4	Single Wall Steel	1947	Removed 1957	Excavated
3A	B7	Building 41	15000	ЛР-4	Single Wall Steel	1947	Removed 1957	Excavated
3A	B8	Building 41	15000	JP-4	Single Wall Steel	1948	Removed 1989	Excavated
. 3A	B9	Building 41	15000	JP-4	Single Wall Steel	1948	Removed 1989	Excavated
3A	B10	Building 41	15000	JP-4	Single Wall Steel	1957	Removed 1989	Excavated
3A	Bli	Building 41	15000	JP-4	Single Wall Steel	1957	Removed 1989	Excavated
3A	B12	Building 41	8000	Gasoline	Fiberglass / Plastic	1981	Removed 1989	Excavated
3A	B13	Building 41	8000	JP-5	Fiberglass / Plastic	1981	Removed 1989	Excavated
3A	B14	Flight Ops / A-41	30000	Jet Fuel	Double Wall Fiberglass	1989	Active	
3A	B15	Flight Ops / B-41	30000	Jet Fuel	Double Wall Fiberglass	1989	Active	
3A	B16	Flight Ops / C-41	30000	Jet Fuel	Double Wall Fiberglass	1989	Active	
3A	B17	Flight Ops / D-41	30000	Jet Fuel	Double Wall Fiberglass	1989	Active	
3A	B18	Company Vehicles / E-41	8000	Gasoline	Double Wall Fiberglass	1989	Active	
3A	B19	Flight Ops / F-41	8000	Water	Double Wall Fiberglass	1989	Current / Not in use	
3B	B68	Building 42	Unknown	Aviation Gas	Single Wall Fiberglass	Unknown	. Rémoved Date Unknown	Excavated
3C	B33	Bldg. 43 Fuel Farm	20000	Jet Fuel	Single Wall Steel	1957	Removed 1991	Excavated *
3C	B34	Bldg. 43 Fuel Farm	20000	Jet Fuel	Single Wall Steel	1957	Removed 1991	Excavated *
3C	B35	Bldg. 43 Fuel Farm	20000	Jet Fuel	Single Wall Steel	1957	Removed 1991	Excavated *
3C	B36	Bldg. 43 Fuel Farm	20000	Jet Fuel	Single Wall Steel	1957	Removed 1991	Excavated *
3C	B37	Bldg. 43 Fuel Farm	20000	Jet Fuel	Single Wall Steel	1957	Removed 1991	Excavated *
3E	B24	Building 2	1000	Gasoline / Diesel	Single Wall Steel	1942	Removed 1989	Excavated
3F	B20	Building 1	500	Gasoline	Single Wall Steel	1956	Removed 1961	Excavated
3F	B21	Building 1	500	Gasoline	Single Wall Steel	1961	Removed 1972	Excavated
3G	B22	Building 1	6000	Diesel	Single Wall Steel	1972	Removed 1980	Excavated
3G	B23	Building 1	5000	Gasoline	Single Wall Steel	1941	Removed 1989	Excavated
3H	B41	Building 5	15000	Fuel Oil	Single Wall Steel	1941	Removed 1988	Excavated
3H	B42	Building 5	15000	Fuel Oil	Single Wall Steel	1941	Removed 1988	Excavated
3H	B43	Building 5	6000	Fuel Oil	Single Wall Steel	1941	Removed 1988	Excavated

^{*:} During excavation, 799 cubic yards of soil were also removed.

Table 4-2
Soil Boring Information for Area 3: Retained Area
Boeing Tract 1, St. Louis, Missouri

Sub Area	Boring	Date Drilled	Sub Area	Boring	Date Drilled
3A	B41N1	11/8/2002	3C	B45S9	11/19/2002
3A	B41S1	11/7/2002	3D	2-10024	11/1/1994
3A	B41S3D	11/7/2002	3D	B2I1	11/8/2002
3A	B42N1	7/1/2003	3D	B2I2	6/30/2003
3A	B42N2	7/23/2003	3D	B2N1	11/11/2002
3A	B42N3	7/23/2003	3D	B2N2	11/11/2002
3A	B42N4	7/23/2003	3D	B2N3	11/12/2002
3A	B42N5	7/23/2003	3D	B2N4	11/13/2002
3A	B44N1	11/8/2002	3D	B2N6	7/24/2003
3B	B42E1	7/1/2003	3D	B2N7	7/24/2003
3B	B42E2	7/22/2003	3D	B2W1	11/8/2002
3B	B42E3	7/22/2003	3D	B41E1	11/12/2002
3C	B42S1	11/19/2002	3D	B41S2	11/7/2002
3C	B42S2	6/30/2003	3D	B41S4	11/13/2002
3C	B42S3	7/22/2003	3E	B2E1	7/1/2003
3C	B42S4	7/22/2003	3E	B2E2	7/24/2003
3C	B42S5	7/22/2003	3E	B2N5	11/13/2002
3C	B42S6	7/22/2003	3F	B1W1	7/1/2003
3C	B42S7	7/23/2003	3F	B1W2	7/24/2003
3C	B42W1	6/30/2003	3G	B2S1	7/1/2003
3C	B45S10	11/19/2002	3G	B2S2	7/24/2003
3C	B45S11	6/30/2003	3H	B4E1	11/21/2002
3C	B45S12	6/30/2003	3H	B4E2D	11/22/2002
3C	B45S8	11/19/2002	3H	B4E3	7/24/2003

Table 4-3

Monitoring Well Information within Area 3: Retained Area
Boeing Tract 1, St. Louis, Missouri

Sub-area	Monitoring Well	Diameter (inches)	Screened Interval (ft bgs)	Total Depth (feet)	Installation Date	Status	# of Times Sampled
3A	B41MW-18	2	2-12	12	11/8/1988	Active	1
3A	B41MW-4	2	2-12	12	10/26/1988	Inactive	1
3C	MW-A4	2	2-12	12	7/13/1989	Inactive	1
3D	B41MW-5	2	2-12	12	10/26/1988	Active	2
3D	B41MW-7	2	2-12	12	10/28/1988	Active	1
3H	B4MW-10	2	2-12	12	11/22/1988	Active	1*
3H	B4MW-9	2	10-19.8	19.8	11/2/1988	Active	0
3H	B5MW-22	2	5-14.6	14.6	11/10/1988	Active	2

NA: Not available

ft bgs: Feet below ground surface

^{*} Sampled once at installation for TRPH only, Burns and Mac report 1989. Not used due to lab method.

Soil Samples Used in Average Concentration Calculations in Area 3: Retained Area Boeing Tract 1, St. Louis, Missouri

					Boeing Tract 1, St. 1	AULIS, IVIISSOULI			T	
	Volatile Organic Compounds					ar Aromatic carbons	Polychic Biphe		Me	als
	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker
	D4460D 4	B41N1-8	B41S3D-4	B41S3D-4	B41S3D-4	B41N1-8			B42N3-4	B42N2-12
	B41S3D-4 B42N3-4	B41S3D-4	D41030-4	B42N1-9	54.005 4	B41S1-6		7		B42N3-4
	<u> </u>	B42N2-12	 	B42N5-6		B41S3D-4	>~<			B42N4-8
		B42N3-4								B42N5-6
ЗА		B42N4-8								B44N1-9
		B42N5-6								
		B44N1-9								
									<u> </u>	
	l				75-1-27				B42E3-4	B42E2-8
	B42E3-4	B42E1-5	B42E3-4	B42E1-5					B42E3-4	B42E3-4
9.2		B42E2-8.		B42E2-8						D42E3-4
3B		B42E3-4:		B42E3-4						
		a service and an artist	<u> </u>							
									N	
	•	B42S2-5	<u> </u>	B42S2-5						B42S3-9
		B42S5-8		B42S5-8					4	B42S4-6
		B42S6-5		B42S6-5						B42S5-8
3C		B42S7-8		B42W1-5				>-<		B42S6-5
3U		B45S10-6		B45S10-6						B42S7-8
		B45S11-6	i	B45S11-6	115			>-<:		l
		12-2011-0	 	B45S12-6						
			 	B45S8-6		1				
	2-10024 0-2	2-10024, 0-2	B2N7-6	B2N7-6		B41E1-10			2-10024 (0-2)	2-10024 (0-2)
			B2W1-6	B2W1-6.			*** > = : = **		B2N6-6	B211-8
	B2N4-6	B2I1-8		D244.1-0.		1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			B2N7-6	B2N1-8
•	B2W1-6	B2N3-8							B2W1-6	B2N2-8
3Ď		B2N4-6							1021110	B2N3-8
		B2W1-6			5. Page 10. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.					
	-4.1									B2N6-6
										B2N7-6
		in the second of	1. 12.22.23.4		Broke Broke	for the state of the	2 - K. (5)			B2W1-6
	B2E1-7	B2E1-7	B2E1-7	B2E1-7					B2E2-8	B2E2-8
	B2E2-8	B2E2-8	B2E2-8	B2E2-8						
3E	DZCZ-0	D2C2-0	DELE-U	J	1-2			`_:>~:-		
						-				
, ,			1. 44 may 1	Table 1	***************************************	1003-44				B1W2-8
٠.										
3F	8		A Company of the Comp			-			-	-
7					· · · · · · · · · · · · · · · · · · ·				+	
٠,٠,									0000 7	B0C2.7
	B2S2-7	B2S2-7	B2S2-7	B2S2-7					B2S2-7	B2S2-7
				l			>-		·	
3G		<u> </u>					>~<	>-<	.	ļ
										
		B4E1-14		B4E1-14						B4E3-18
	· · · · · · · · · · · · · · · · · · ·			B4E2D-10					J	<u> </u>
3H		B4E3-18								
				B4E3-18						

Note: - analysis type not performed

Table 4A-5(a)

Soil Constituents Average Concentrations for VOCs in Sub-area 3A: Retained Area Roeing Tract 1. St. Louis, Missouri

		Д	oemg 1	ract 1, s	L LOUIS	, Missoi						
	VOCs (ug/kg)											
Sample ID	1,2,4-TRIMETHYLBENZENE	1,3,5-TRIMETHYLBENZENE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	M,P-XYLENE	METHYLENE CHLORIDE	N-PROPYLBENZENE	P-ISOPROPYLTOLUENE	SEC-BUTYLBENZENE	TOLUENE	XYLENES, TOTAL
Non- Residential Worker												
B41S3D-4	51	192	18		29	27	2.5	2.5		2.5	26	NA
B42N3-4	2.5	2.5	1.75	3.05	2.5	2.5	5.4	2.5	2.5	2.5	3.1	6.7
Average Concentration - Only Samples With VOC Detections	26.75	97.25	9.875	6.53	15.75	14.75	3.95		59.25		14.55	6.70
Construction Worker		e de la composición d La composición de la	. r <u>elige te</u> s				المالية الموادية والمالية الموادية					
B41N1-8	2.5	2.5	186	2.5	11	21	2.5					
B41S3D-4	51	192	18	10	29	27	2.5		116		26	NA
B42N2-12	2.5	2.5	1.75	1.75	2.5	. 2.5	5.3		2.5		2.8	
B42N3-4	2.5	2.5	1.75	3.05	2.5	2.5	5.4		2.5		3.1	6.7
B42N4-8	2.5	2.5	1.75	1.75	2.5	2.5	5.6		2.5		2.55	
B42N5-6	12.5	12.5	8.75	51.75	80	12.5	29		12.5		17.75	
B44N1-9	2.5	2.5	41	2.5	2.5	11	2.5	13	7.1	7.2	2.5	NA
Average Concentration - Only Samples With VOC Detections	10.857	31.00	37	10.471	18.571	11.286	7.54	19.357	20.8	26.171	8.17	19.65

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

^{* -} Hand auger samples from below Building 220 floor slab

Table 4A-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3A: Retained Area

Non-Residential Worker Boeing Tract 1, St. Louis, Missouri

Doeing Tract 1, 50		
		Overall
Constituent	B41S3D-4	Area
Fractions	D-1155D	Average
,		(ug/kg)
TPH - DRO		TPH - DRO
11/7/2002	24,000	
11/8/2002	NA	
7/1/2003	NA	
7/23/2003	NA	
AVERAGE TPH - DRO	24,000	24,000
TPH - GRO		TPH - GRO
7/1/2003	NA	
7/23/2003	NA	
AVERAGE TPH - GRO	ente de la companya d La companya de la co	
TPH - ORO		TPH - ORO
11/7/2002	2,500	
111112002	_,	73
11/8/2002	NA	
11/8/2002	NA	

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 4A-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3A: Retained Area, Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B41S3D-4	B42N1-9	B42N5-6	Overall Area Average (ug/kg)
TPH - DRO			,	TPH - DRO
11/7/2002	24,000	NA	NA	
11/8/2002	NA	NA	NA	·
7/1/2003	NA	2,500	NA	٠ .
7/23/2003	NA	NA	9,510	
AVERAGE TPH - DRO	24,000	2,500	9,510	12,003
TPH - GRO				TPH - GRO
7/1/2003	NA	7,000	NA	
7/23/2003	NA	NA	6,540	
AVERAGE TPH - GRO		7,000	6,540	6,770
TPH - ORO				TPH - ORO
11/7/2002	2,500	NA	NA NA	
	2,500 NA	NA NA	NA NA	
11/7/2002				
11/7/2002 11/8/2002	NA	NA	NA	

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 4A-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 3A:
Retained Area, Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

			Metals (ug/kg)		
Sample ID	ARSENIC	BARIUM	снкойций	. ЕА D	MERCURY
B42N3-4	NA	NA	NA	8,690	NA
Average Concentration - Only Samples With Metals Detections				8,690	

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 4A-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 3A:
Retained Area, Construction Worker
Boeing Tract 1, St. Louis, Missouri

	5	St. Louis,	*********						
	Metals (ug/kg)								
Sample ID			UN		¥				
	ARSENIC	BARIUM	CHROMIUN	LEAD	MERCURY				
B42N2-12	NA	NA	NA	11,200	NA				
B42N3-4	NA	NA	NA	8,690	NA				
B42N4-8	_ NA	NA	NA	8,460	NA				
B42N5-6	NA	NA	NA	7,120	NA				
B44N1-9	2,000	110,000	13,000	10,000	94				
Average Concentration - Only Samples With Metals Detections	2,000	110,000	13,000	9,094	94				

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 4B-5(a)
Soil Constituents Average Concentrations for VOCs in Sub-area 3B: Retained Area
Roeing Tract 1. St. Louis, Missouri

Boeing Tract 1, St. Louis, Missouri												
		VOCs (ug/kg)										
Sample ID	ACETONE	BENZENE	CARBON DISULFIDE	ETHYLBENZENE	ISOPROPYL BENZENE	N-PROPYLBENZENE	SEC-BUTYLBENZENE	TOLUENE	XYLENES, TOTAL			
Non- Residential Worker	e e e e e e e e e e e e e e e e e e e				er e							
B42E3-4	19	54.75	3	14.25	4	2.9	5.7	5.55	58			
Average Concentration - Only Samples With VOC Detections	19	54.75	3	14.25	4	2.9	5.7	5.55	58			
Construction Worker		er de la	4	e per certain		egist of the equi		*:				
B42E1-5	NA	1,170	NA	25	NA	NA	NA	398				
B42E2-8	10	18.65		56.25	2.5	2.5	9.7	15.25				
B42E3-4	19	54.75	3	14.25	4	2.9	5.7	5,55	58			
Average Concentration - Only Samples With VOC Detections	14.5	414.47	4	31.833	3.25	2.7	7.7	139.6	282.33			

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

^{* -} Hand auger samples from below Building 220 floor slab

Table 4B-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3B: Retained Area Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B42E3-4	Overall Area Average (ug/kg)
TPH - DRO		TPH - DRO
7/1/2003	NA	
7/22/2003	2,080.5	
AVERAGE TPH - DRO	- 2,080.5	2,081
TPH - GRO		TPH - GRO
7/1/2003	NA	
7/22/2003	29,200	
AVERAGE TPH - GRO	29,200	29,200
TPH - ORO		TPH - ORO
7/1/2003	NA	
7/22/2003	3,121	,
AVERAGE TPH - ORO	3,121	3,121

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4B-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3B: Retained Area, Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B42E1-5	B42E2-8	B42E3-4	Overall Area Average (ug/kg)
TPH - DRO				TPH - DRO
7/1/2003	2,500.0	NA	NA	-
7/22/2003	NA	29,960.0	2,080.5	·
AVERAGE TPH - DRO	2,500.0	29,960.0	2,080.5	11,514
TPH - GRO				TPH - GRO
7/1/2003	311,000	NA	NA	
7/22/2003	NA	11,800	29,200	
AVERAGE TPH - GRO	311,000	11,800	29,200	117,333
TPH - ORO			· · · · · · · · · · · · · · · · · · ·	TPH - ORO
7/1/2003	2,500	NA	NA	
7/22/2003	NA	3,169	3,121	
AVERAGE TPH - ORO	2,500	3,169	3,121	2,930

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4B-5(c)

Soil Constituents Average Concentrations for Metals in Sub-area 3B:

Retained Area, Non-Residential Worker
Roeing Tract 1. St. Louis, Missouri

Boeing Tract 1, St. Louis, IV	11220011
	Metals (ug/kg)
Sample ID	
	LEAD
B42E3-4	14,600
Average Concentration -	
Only Samples With	14,600
Metals Detections	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 4B-5(c)

Soil Constituents Average Concentrations for Metals in Sub-area 3B:

Retained Area, Construction Worker Boeing Tract 1, St. Louis, Missouri

	Metals (ug/kg)
Sample ID	
	LEAD
B42E2-8	10,200
B42E3-4	14,600
Average Concentration - Only Samples With Metals Detections	12,400

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 4B-7(a)
Groundwater Constituents Average Concentrations for VOCs in Sub-area 3B:
Retained Area

Boeing Tract 1, St. Louis, Missouri

				VOCs (ug/l)			
Sample ID	ACETONE	ISOPROPYL BENZENE	METHYLENE CHLORIDE	NAPHTHALENE	N-PROPYLBENZENE	SEC-BUTYLBENZENE	XYLENES, TOTAL
B42E1W	NA	NA	NA	NA	NA	NA	52.
B42E2W	10	2.5	3	5	2.5	2.5	2.5
B42E3W	13	5.65	6.75	8.7	6.1	2.55	2.5
Average Concentration - Only Samples With VOC Detections	13	5.65	6.75	8.7	6.1	2.55	27.3

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Table 4C-5(a)
Soil Constituents Average Concentrations for VOCs in Sub-area 3C: Retained Area
Boeing Tract 1, St. Louis, Missouri

	· · · · · · · · · · · · · · · · · · ·	VOCs (ug/kg)														
					VC	Cs (ug/	kg)	·								
Sample ID Non- Residential Worker.	ACETONE	BENZENE	ISOPROPYL BENZENE	METHYL TERT-BUTYL ETHER	METHYLENE CHLORIDE	N-BUTYLBENZENE	N-PROPYLBENZENE	SEC-BUTYLBENZENE	T-BUTYLBENZENE	TOLUENE	XYLENES, TOTAL					
Average Concentration - Only Samples With VOC Detections				·												
Construction Worker		و المراجعة			*: • **		e ya ka	n eg Sen seskes <u>et</u> er	ng ng bilan. Sasan sa sa	· · · · · · · · · · · · · · · · · · ·						
B42S2-5	NA	76	NA	12.5	NA	NA	NA	NA								
B42S5-8	42	38		27.5		59		62								
B42S6-5	44	1.75			10	5.7		6.9								
B42S7-8	10	1.75		5.4	5.4	2.5		2.5								
B45S10-6	NA	62	NA	25	NA	NA		NA								
B45S11-6	NA	293	NA	12.5	NA	NA	NA	NA	NA	2,500	463					
Average Concentration - Only Samples With VOC Detections	32	78.75	17.333	14.317	21.8	22.4	29.667	23.8	5.6667	656.12	259.25					

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

^{* -} Hand auger samples from below Building 220 floor slab

Table 4C-5(b)

Soil Constituents Average Concentrations for TPHs

in Sub-area 3C: Retained Area Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

Constituent None Fractions	Overall Area Average (ug/kg)
TPH - DRO	TPH - DRO
11/19/2002	
6/30/2003	<u>'</u>
7/22/2003]] ·
7/23/2003	
AVERAGE TPH - DRO	
TPH - GRO	TPH - GRO
11/19/2002	
6/30/2003]
7/22/2003	
7/23/2003	
AVERAGE TPH - GRO	
TPH - ORO	TPH - ORO
11/19/2002	·
6/30/2003	
7/22/2003]
7/23/2003]
AVERAGE TPH-ORO	

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4C-5(b)
Soil Constituents Average Concentrations for TPHs in Sub-area 3C: Retained Area, Construction Worker
Boeing Tract 1. St. Louis, Missouri

Constituent Fractions	B42S2-5	B42S5-8	B42S6-5	B42W1-5	B45S10-6	B45S11-6	B45S12-6	B45S8-6	Overall Area Average (ug/kg)
TPH - DRO									TPH - DRO
11/19/2002	NA	NA	NA	NA	2,500	NA	NA	2,500	
6/30/2003	925,000	NA	NA	57,000	NA	972,000	127,000	NA	
7/22/2003	NA	5,320	399,000	NA	NA	NA	NA	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - DRO	925,000	5,320	399,000	57,000	2,500	972,000	127,000	2,500	311,290
TPH - GRO	ganto de provincia de la comunicación de la comunic	e fetti i i i i i i i i i i i i i i i i i i		r ser i i i i i i i i i i i i i i i i i i i					TPH - GRO
11/19/2002	NA	NA	NA	NA	103,000	NA	NA	21,000	
6/30/2003	54,000	NA	NA	2,500	NA	154,000	2,500	NA	
7/22/2003	NA	38,100	3,700	NA	NA	NA	NA	NA	
7/23/2003	NA	, NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - GRO	54,000	38,100	3,700	2,500	103,000	154,000	2,500	21,000	47,350
TPH - ORO									TPH - ORO
11/19/2002	NA	NA	NA	NA	2,500	NA	NA	2,500	
6/30/2003	41,000	NA	· NA	37,000	NA	20,000	2,500	NA	
7/22/2003	NA	3,167	157,650	NA	NA	NA	NA	NA	
7/23/2003	NA	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO	41,000	3,167	157,650	37,000	2,500	20,000	2,500	2,500	33,290

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4C-5(c)
Soil Constituents Average Concentrations
for Metals in Sub-area 3C:
Retained Area, Construction Worker
Boeing Tract 1, St. Louis, Missouri

Doeing Tract 1, 56 Louis, 1	
	Metals (ug/kg)
Sample ID	
	LEAD
B42S3-9	11,600
B42S4-6	9,400
B42S5-8	8,800
B42S6-5	12,000
B42S7-8	10,900
Average Concentration - Only Samples With Metals Detections	10,540

ug/kg - micrograms per kilogram
Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.
Non Residential Worker - above groundwater table in the area
Construction Worker - above a depth of 20 feet bgs
NA - Not Analyzed

Table

Soil Constituents Average Concentrations for VOCs in Sub-area 3D: Retained Area

Boeing Tract 1, St. Louis, Missouri

					<u> </u>		,	VOC	's (ug/k	g)							
Sample ID	1,2,4-TRIMETHYL BENZENE	1,5,5-TRIMETHYLBENZENE	ACETONE	BENZENE	CHLOROETHANE	ETHYLBENZENE	ISOPROPYL BENZENE	M,P-XYLENE	METHYLENE CHLORIDE	N-BUTYLBENZENE	N-PROPYLBENZENE	O-XYLENE	P-ISOPROPYL:TOLUENE	SEC-BUTYLBENZENE	TERT-BUTYLBENZENE	TETRACHLOROETHENE	XYLENES, TOTAL
Non- Residential Worker																	
2-10024 0-2	47,000	ND	7.5	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12	12
B2N4-6	0.5	0.5	NA	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.4	NA
B2W1-6	2.5	36	NA	21	6.7	2.5	31	41	2.5	14	30	12	36	127	35	2.5	NA
Average Concentration - Only Samples With VOC Detections	15,668	18.25		10.75	3.60		15.75	20.75		7.25	15.25	6.25	18.25	63.75	17.75	5.30	12.00
Construction Worker																	
2-10024 0-2	47,000	ND	7.5		ND	NA	NA	NA	· NA	NA	NA	NA	NA	NA	NA	12	12
B2I1-8	2.5	66	NA		2.5	29	292	43	2.5	80	2.5	2.5	268	2.5	73	2.5	NA
B2N3-8	0.5	0.5	NA		0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5		0.5	0.5	1.9	NA
B2N4-6	0.5	0.5	NA	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.4	NA
B2N6-6	2.5	2.5	10			175		2.5	2.8	2.5	2.5	2.5	2.5		2.5 2.5	2.5 2.5	2.5
B2N7-6	2.5	2.5	13		2.5	1,75	2.5	2.5	3,2	2.5	2.5	25	2.5	2.5	<u> </u>	2.5	2.5 NA
B2W1-6	2.5	36	NA:	21	6.7	2.5	31	41	2.5	14	30	12	36	127	33	2.5	Аид
Average Concentration - Only Samples With VOC Detections	9401.2	25.75		6.13	2.55	8.13	81	21.25		23.75	8.38	3.88	76.25	32.625	27.25	4.06	12

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except somme and/or methylma chlorida detented in the sample

MACTEC

^{* -} Hand auger samples from below Building 220 floor slab

Table 4D-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3D: Retained Area

Non-Residential Worker and Construction Worker Roeing Tract 1. St. Louis, Missouri

Doeing 11	act I, St. Lou	115, 1711550411	
Constituent Fractions	B2N7-6	B2W1-6	Overáll Area Average (ug/kg)
TPH - DRO		, g	TPH - DRO
11/7/2002	NA	NA	
11/8/2002	NA	47,000	
11/12/2002	· NA	NA	
11/13/2002	NA	NA	
6/30/2003	NA	NA	
7/24/2003	2,540	NA	
AVERAGE TPH - DRO	2,540	47,000	24,770
TPH - GRO			TPH - GRO
6/30/2003	NA	NA	
7/24/2003	500	NA	1
AVERAGE TPH - GRO	500		500
TPH - ORO			TPH - ORO
11/7/2002	NA	NA	
11/8/2002	NA	2,500	
11/12/2002	NA	NA	
11/13/2002	NA	NA	
6/30/2003	NA	. NA	
7/24/2003	8,720	NA	
AVERAGE TPH - ORO	8,720	2,500	5,610

Notes:

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Soil Constituents Average Concentrations for Metals in Sub-area 3D: Retained Area, Non-Residential Worker

		_						Does	ig tract i	, St. Louis, Missou	••									
		Metals (ug/kg)																		
Sample ID	ALUMINUM:	ARSENIC	BARIUM	BERYLLIUM	САБМІСМ	CALCIUM	снкоміим	COBALT	COPPER	IRON	LEAD	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER	NUIGOS	тнасый	ZINC
2-10024 (0-2)	8,300,000	25,200	85,200	806	243.5	23,700,000	14,400	6,940	15,000	18,200,000		740,600			1,230,900			128,000	12,800	
B2N6-6	NA		164,000		200	NA	5,900	NA	8,950	NA NA	6,460	305,000	50	6,440					2,550	
B2N7-6	NA	8,810	109,000	385	1,080	NA	30,900	NA	16,000	NA	9,970	186,000	50	11,100	NA	5,200			2,550	
B2W1-6	NA	1,400	120,000	NA	125	NA	12,000	NA	NA.	NA.	6,800	NA.	10	NA	NA	250	125	NA	NA	NA
Average Concentration - Only Samples With Metals Detections	8,300,000	9,700	104,550	470	412	23,700,900	15,800	6,940	13,317	18,200,000	10,833	410,333	36	12,247	1,230,000	2,336	275	128,000	5,967	39,892

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 4D-5(c)
Seil Constituents Average Concentrations for Metals in Sub-area 3D: Retained Area, Construction Worker

								Boel	ng Tract I	, St. Louis, Missou	<u>ri</u>									
		Metals (up/kg)																		
Sample ID	YTOMINOM .	ARSENIC	SARIUM	BERYLLIUM	САБМІСМ	CALCIUM	СНКОМІ СМ	COBALT	COPPER	RON	LEAD	MANGANESE	MERCURY	NICKEL	POTASSIUM	SELENIUM	SILVER	жолас	THALLIUM	Zinc
2-10024 (0-2)	8,309,000	25,200	85,208	806	243.5	23,790,860	14,400	6,940	15,000	18,200,000	20,100	740,000	33.8		1,230,000	1,545		128,000	12,800	
B2[1-8	NA	8900	92,000	NA	125	NA NA	18,000			NA					ŅA					
B2N1-8	. NA	250	63,000	NA.			6,900								NA.					
B2N2-8	NA	39,000	74,000	NA	125	NA NA	7,900								NA					
B2N3-8	NA.	3,400	83,000	NA.	125	NA.									NA					
B2N6-6	NA	3,390	104,000	218	200	NA.			8,950	NA		305,000			NA					
B2N7-6	NA	8,810	109,000	385	1,080			NA	16,000	NA		186,000			NA NA					
B2W1-6	NA	1,400	120,000	NA.	125	NA.	12,000	NA	NA	NA	6,800	NA	10	NA	NA	250	125	NA.	NA	N/
Average Concentration - Only Samples With Metals Detections	8,300,000	11,294	91,275	470	269	23,700,000	13,625	6,940	13,317	18,200,000	9,016	410,333	25	12,247	1,230,000	1,293	200	128,000	5,967	39,892

ndwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 4D-5(d) **Soil Constituents Average Concentrations** for PAHs in Sub-area 3D: Retained Area **Construction Worker**

Boeing Tract 1. St. Louis, Missouri

Duenig Hact 1, St. Louis, Missouri							
	PAH (ug/kg)						
Sample ID	BENZO(A)PYRENE						
B41E1-10	85						
Average Concentration - Only Samples With PAH Detections	85						

Notes:

ug/kg - micrograms per kilogram Groundwater table is at a depth of 7 feet below ground surface (bgs) for area. Non Residential Worker - above groundwater table in the area Construction Worker - above a depth of 20 feet bgs PAH - Polynuclear aromatic hydrocarbon

Table 4D-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3D: Retained Area

Boeing Tract 1, St. Louis, Missouri

				3 00/11	5 - 1 - 1 - 1	-,	VO	Cs (ug	/1)						
Sample ID	1,1-DICHLOROETHANE	1,1-DICHLOROETHENE	,4-DIOXANE	ACETONE	BENZENE	CHLOROETHANE	CIS-1,2-DICHLOROETHENE	METHYL ETHYL KETONE (MEK)	METHYL ISOBUTYL KETONE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TRANS-1,2-DICHLOROETHENE	TRICHLOROETHENE	TRICHLOROFLUOROMETHANE	VINYL CHLORIDE
B2I1W	2.5	2.5	NA	NA	2.5	2.5	2.5	NA	NA	2.5	2.5	2.5	2.5	2.5	5.6
B212W	2.5	2.5			2.5	2.5	2.5	2.5	5	7.2	2,5			2.5	2.5
B2N3W	1.5			NA	1.5	1.5	42	NA	NA	1.5		12		1.5	
B2N4W	0.5	0.5		NA	0.5	0.5	19	NA	NA	0.5			2.5	0.5	0.5
B2N6W	2.5	2.5		10	2.45	2.5	2.5	2.5		3	2.5			2.5	
B2N7W	2.5	2.5		15	1.75	2.5	2.5	8.8	2.9	2.6				2.5	
B2W1W	2.5	2.5	NA	NA	6.3	7.3	2.5	NA	NA	2.5				17	2.5
B41E1W	0.5	0.5	NA	NA	0.5	0.5	1.2	NA	NA	0.5				0.5	
B41MW-5	104	8.3	36	17.5	1.5	1.5	4.45	13.75	15	6.25	3.75	1.5	2.45	1.5	7.9
Average Concentration - Only Samples With VOC Detections	14.56	2.60	13.67	14.17	2.13	2.35	9.58	8.35	7.63	2.42	6.16	3.21	3.33	3.56	2.94

ug/i - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Table 4E-5(a)
Soil Constituents Average Concentrations for VOCs in Sub-area 3E: Retained Area
Boeing Tract 1. St. Louis, Missouri

	Boeing Tract 1, St. Louis, Missouri											
						VOCs ((ug/kg)					
Sample ID	ACETONE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	METHYL TERT-BUTYL ETHER	METHYLENE CHLORIDE	NAPHTHALENE	N-BUTYLBENZENE	N-PROPYLBENZENE	SEC.BUTYLBENZENE	TOLUENE	XYLENES, TOTAL
Non- Residential Worker											· · · · · · · · · · · · · · · · · · ·	
B2E1-7	NA	1,340		NA		NA	NA	NA	NA	NA	719	586
B2E2-8	56.5	67.5	63.375	28	18.75	33	20	71.5	115	31.5	34	137.5
Average Concentration - Only Samples With VOC Detections	56.5	703.75	185.19	28	134.38	33	20	71.5	115	31.5	376.5	361.75
Construction Worker									and seems of the second			
B2E1-7	NA	1,340	307	NA	250	NA	NA	NA	NA	NA		
B2E2-8	56.5		63.375	28	18.75	33	20	71.5	115	31.5	34	137.5
Average Concentration - Only Samples With VOC Detections	56.5	703.75	185.19	28	134.38	33	20	71.5	115	31.5	376.5	361.75

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

^{* -} Hand auger samples from below Building 220 floor slab

Table 4E-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3E: Retained Area

Non-Residential Worker and Construction Worker Boeing Tract 1. St. Louis, Missouri

Constituent Fractions	B2E1-7	B2E2-8	Overall Area Average (ug/kg)
TPH - DRO			TPH - DRO
7/1/2003	2,500	NA	
7/24/2003	NA	2,125	
AVERAGE TPH - DRO	2,500	2,125	2,312
TPH - GRO		-	TPH - GRO
7/1/2003	496,000	NA	
7/24/2003	NA	53,100	, i
AVERAGE TPH - GRO	496,000	53,100	274,550
TPH - ORO			TPH - ORO
7/1/2003	2,500	NA	
7/24/2003	NA	3,187	
AVERAGE TPH ORO.	2,500	3,187	2,844

Notes:

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4E-5(c)
Soil Constituents Average Concentrations
for Metals in Sub-area 3E:
Retained Area
Non-Residential Worker and
Construction Worker

Boeing Tract 1, St. Louis, Missouri

	Metals (ug/kg)
Sample ID	LEAD
B2E2-8	8,100
Average Concentration - Only Samples With Metals Detections	8,100

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 4F-5(a) Soil Constituents Average Concentrations for Metals in Sub-area 3F: Retained Area, Construction Worker Boeing Tract 1, St. Louis, Missouri

Boeing Tract 1, St. Louis, Missouri						
	Metals (ug/kg)					
Sample ID						
	EAD					
B1W2-8	7485					
Average Concentration - Only Samples With Metals Detections	7,485					

Notes:

ug/kg - micrograms per kilogram
Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.
Non Residential Worker - above groundwater table in the area
Construction Worker - above a depth of 20 feet bgs
NA - Not Analyzed

Table 4G-5(a)
Soil Constituents Average Concentrations for VOCs in Sub-area 3G: Retained Area

Roeing Tract 1 St. Louis, Missouri

			DUCILL	gilaci	, St. Lou	D) 17115500						
						VOCs	(ug/kg)					
Sample ID	1,2,4-TRIMETHYLBENZENE	1,3,5-TRIMETHYLBENZENE	ACETONE	BENZENE	ETHYLBENZENE	M,P-XYLENE	METHYL TERT-BUTYL ETHER	NAPHTHALENE	O-XYLENE	P-ISOPROPYLTOLUENE	TOLUENE	XYLENES, TOTAL
Non- Residential Worker					*					***************************************		
B2S2-7	840	326.3	820	547.8	1,010	2,650	378	477.5	1,490	416.3	5,700	3,550
Average Concentration - Only Samples With VOC Detections	840	326.25	820	547.75	1,010	2,650	378	477.5	1,490	416.25	5,700	3,550
Construction Worker												
B2S2-7	840	326.3	820	547.8	1,010	2,650	378	477.5	1,490	416.3	5,700	3,550
Average Concentration - Only Samples With VOC Detections	840	326.25	820	547.75	1,010	2,650	378	477.5	1,490	416	5,700	3,550

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

^{* -} Hand auger samples from below Building 220 floor slab

Table 4G-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3G: Retained Area

Non-Residential Worker and Construction Worker Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B2S2-7	Overall Area Average (ug/kg)
TPH - DRO		TPH - DRO
7/1/2003	NA	
7/24/2003	85,750	
AVERAGE TPH - DRO	85,750	85,750
TPH - GRO		TPH - GRO
7/1/2003	NA	
7/24/2003	3,280	
AVERAGE TPH - GRO	3,280	3,280
TPH - ORO		TPH - ORO
7/1/2003	NA	· · · · · · · · · · · · · · · · · · ·
7/24/2003	1,470,000	
AVERAGE TPH - ORO	1,470,000	1,470,000

Notes:

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4G-5(c)
Soil Constituents Average Concentrations
for Metals in Sub-area 3G:
Retained Area
Non-Residential Worker and

Construction Worker Boeing Tract 1, St. Louis, Missouri

	
	Metals (ug/kg)
	(ug/kg)
Sample ID	
.4	e
	LEAD
B2S2-7	11,655
Average Concentration -	
Only Samples With	11,655
Metals Detections	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 7 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 4H-5(a) Soil Constituents Average Concentrations for VOCs in Sub-area 3H: Retained Area Boeing Tract 1, St. Louis, Missouri

		VOCs ((ug/kg)	
Sample ID	ACETONE	METHYL ETHYL KETONE (MEK	METHYLENE CHLORIDE	XYLENES, TOTAL
Non- Residential Worker				
Average Concentration - Only Samples With VOC Detections				
Construction Worker	as Sony of			
B4E1-14	NA	NA	NA	9.4
B4E3-18	21	8.8	4.5	2.5
Average Concentration - Only Samples With VOC Detections	21	8.8	4.5	5.95

Notes:

ug/kg - micrograms per kilogram

* - Hand auger samples from below Building 220 floor slab

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

Table 4H-5(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 3H: Retained Area, Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B4E1-14	B4E2D-10	B4E3-18	Overall Area Average (ug/kg)
TPH - DRO	·			TPH - DRO
11/21/2002	47,000	NA	NA	
11/22/2002	NA	55,000	NA	
7/24/2003	NA	NA	6,360	
AVERAGE TPH - DRO	47,000	55,000	6,360	36,120
TPH - GRO				TPH - GRO
11/22/2002	NA	250	NA	
7/24/2003	NA	NA	500	
AVERAGE TPH - GRO		250	500	375
TPH - ORO				TPH - ORO
7/24/2003	NA	NA	3,159	
AVERAGE TPH - ORO		9	3,159	3,159

Notes

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4H-5(c)
Soil Constituents Average Concentrations
for Metals in Sub-area 3H:
Retained Area, Construction Worker

Boeing Tract 1, St. Louis, M	issouri
	Metals (ug/kg)
Sample ID	EAD
B4E3-18	3 8,630
Average Concentration - Only Samples With Metals Detections	8,630

ug/kg - micrograms per kilogram
Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.
Non Residential Worker - above groundwater table in the area
Construction Worker - above a depth of 20 feet bgs
NA - Not Analyzed

Table 4-6
Groundwater Samples Used in Average Concentration Calculations in Area 3: Retained Area
Boeing Tract 1, St. Louis, Missouri

Polychlorinated Biphenyls	Metals
	B42N2W
	B42N3W
	B42N4W
	B42N5W
	B44N1W
	B42E2W
	B42E3W
	<u>-</u>
	
	
	-
	-
-	_
	-
	-
	B2I1W
	B2N1W
	B2N2W
	B2N3W
	B2N6W
	B2N7W
	B2W1W
	B2E2W
	-
	B4E3W
	B5MW-22W
•	

Note: - analysis type not performed

September 2004 MACTEC

Table 4A-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3A: Retained Area

Roeing Tract 1, St. Louis, Missouri

		<u> </u>		Cilig II	act 1, 0	a Bouley	W11220.0							
							VOCs	(ug/l)					 	
Sample ID	1,2,4-TRIMETHYLBENZENE	BENZENE	CIS-1,2-DICHLOROETHENE	ETHYLBENZENE	ISOPROPYL BENZENE	M,P-XYLENE	METHYL TERT-BUTYL ETHEF	N-PROPYLBENZENE	P-ISOPROPYLTOLUENE	SEC-BUTYLBENZENE	TOLUENE	TRANS-1,2-DICHLOROETHEN	VINYL CHLORIDE	XYLENES, TOTAL
B41N1W	13	135	2.5	2.5	24	31	NA	117	68	41				
B42N5W	2.5		760	11.25	22	2.5	14.5	25	2.5	20	4.4	31	12	14
Average Concentration - Only Samples With VOC Detections	7.75	69.06	381.25	6.88	23.00	16.75	14.50	71.00	35.25	30.50	3.45	16.75	7.25	14.00

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

Table 4A-7(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 3A: Retained Area
Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B42N2W	B42N3W	B42N4W	B42N5W	B42N5W - 2004	Overall Area Average (ug/l)
TPH-DRO					,	TPH-DRO
11/7/2002	NA	NA	NA	NA	NA	
11/8/2002	NA	NA	NA	NA		
11/14/2002	NA	NA	NA		NA	İ
7/1/2003	NA	NA				
7/23/2003	329	204	134			
4/29/2004	NA	·NA	NA	· NA	250	
AVERAGE	329	204	134	34,000	250	6,983
TPH-GRO						TPH-GRO
7/1/2003	NA	NA				
7/23/2003	500	500	500			
4/29/2004	Ν̈́A	NA	NA	NA	2,000	
AVERAGE	500	500	500	1,800	2,000	1,060
TPH-ORO						TPH-ORO
11/7/2002	NA					
11/8/2002	NA	NA				
11/14/2002	NA	NA				
7/1/2003	NA	NA	NA			
7/23/2003	75	150				
4/29/2004	NA	NA				
AVERAGE	75	150	75	6,695	250	1,449

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

September 2004 MACTEC

Table 4A-7(c)
Groundwater Constituents Average Concentrations for Metals
in Sub-area 3A: Retained Area
Boeing Tract 1, St. Louis, Missouri

		Metals	(ug/l)	
Sample ID	ARSENIC	BARIUM	CHROMIUM	LEAD
B42N2W	NA	ΝA	NA	22
B42N3W	NA	NA	NA	22
B42N4W	NA	NA	NA	22
B42N5W	NA	NA	NA	22
B44N1W	100	960	64	110
Average Concentration - Only Samples With Metals Detections	100	960	64	40

ug/I - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 4B-7(a)
Groundwater Constituents Average Concentrations for VOCs in Sub-area 3B:
Retained Area

Boeing Tract 1, St. Louis, Missouri

20021	S IIIICE	2,000	Juis, IVII				
				VOCs (ug/l)	*		
Sample ID	ACETONE	ISOPROPYL BENZENE	METHYLENE CHLORIDE	NAPHTHALENE	N-PROPYL BENZENE	SEC-BUTYLBENZENE	XYLENES, TOTAL
B42E1W	NĄ	' NA	NA	NA	NA	NA	52.1
B42E2W	10	2.5	3	. 5	2.5	2.5	2.5
B42E3W	13	5.65	6.75	8.7	6.1	2.55	2.5
Average Concentration - Only Samples With VOC Detections	13	5.65	6.75	8.7	6.1	2.55	27.3

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Table 4B-7(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 3B:

Retained Area

Boeing Tract 1,	St. Louis.	Missouri
-----------------	------------	----------

Constituent Fraction by Sample Event	B42E1W	B42E1W - 2004	B42E2W	B42E3W	Overall Area Average (ug/l)
TPH-DRO					TPH-DRO
7/1/2003	1,240	NA	NA	NA	
7/23/2003	NA	NA	197	NA	•
7/24/2003	NA	NA	NA	427	
4/30/2004	NA	250	NA	NA	
AVERAGE	1,240	250	197	427	529
TPH-GRO					TPH-GRO
7/1/2003	11,310	NA	NA	NA	
7/23/2003	NA	NA	500		
7/24/2003	NA	NA	NA		
4/30/2004	NA	1,000	NA		
AVERAGE	11,310	1,000	500	500	3,328
TPH-ORO					TPH-ORO
7/1/2003	500	NA	. NA	NA	
7/23/2003	NA	NA	259		
7/24/2003	NA	NA	NA		11
4/30/2004	NA	250	NA	NA	
AVERAGE	500	250	259	75	271

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4B-7(c) Groundwater Constituents Average Concentrations for Metals in Sub-area 3B: Retained Area Roeing Tract 1, St. Louis, Missouri

Boeing Tract 1, St. Louis, 1	11000011
	Metals (ug/l)
Sample ID	
	LEAD
B42E2W	22
B42E3W	46
Average Concentration - Only Samples With Metals Detections	34

Notes:

ug/l - micrograms per liter NA - Not Analyzed

Bold indicates a detection

Table 4C-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3C: Retained Area
Roeing Tract 1, St. Louis, Missouri

		Boeing Tract 1, St. Louis, Missouri															
		VOCs (ug/l)															
Sample ID	1,1,1-TRICHLOROETHANE	1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHAN	1,1-DICHEOROETHANE	1,1:DICHLOROETHENE	BENZENE	CARBON TETRACHLORIDE	СНLОRОFORM	CIS-1,2-DICHLOROETHENE	ETHYLBENZENE	ISOPROPYL BENZENE	METHYL TERT-BUTYL ETHER	METHYLENE CHLORIDE	N-BUTYLBENZENE	N-PROPYLBENZENE	SEC-BUTYLBENZENE	TOLUENE	XYLENES; TOTAL
B42S3W	2.5		2.5	2.5			93	2.5					2.5				
B42S4W	2.3			2.5	1.75			8.6		2.5			2.5				
B42S5W	62.5		62.5	62.5	891.25	62.5	62.5	62.5	56.25	1100	197.5	250					
B42S6W	13.75							13.75		15.25				25.75			
B42S7W	2.5		2.5	2.5	1.75	2.5		2.5	7.25	2.5							
B42W1W	NA	NA	NA	NA	50	NA		NA		NA			NA		NA	395	
B45S10W	NA	NA	NA	ÑA	2.5		NA	NA	2.5	NA							2.5
MW-A4W	2.5	2.5	2.9	2.5	2.5	2.5	2.5	2.5	2.5	2.5	5	5.5	2.5	2.5	2.5	2.5	NA
Average Concentration - Only Samples With VOC Detections	14.34	14.94	14.68	14.36	119.86	14.74	29.46	15.39	16.24	187.5	34.91	56.75	207.63	222.63	172.29	106.78	490.6

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

Table 4C-7(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 3C: Retained Area

Boeing Tract 1. St. Louis, Missouri

Constituent						Doeing	i i acc i, ou	Louis, Miss					B45S8W		Overall Area
Fraction by Sample Event	B42S2W	B42S3W	B42S4W	B42S5W	B42S5W - 2004	B42S6W	B42S7W	B42W1W	B42W1W - 2004	B45S10W	B45S11W	B45S8W	- 2004	B45S9W	Average (ug/l)
TPH-DRO		·													TPH-DRO
11/19/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	500	NA	500	NA	500	•
11/20/2002	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	
6/30/2003	12,600	NA	NA	NA	NA	NA	NA	91,090	NA	NA	98,170	NA	NA	NA	
7/22/2003	NA	NA	NA	2,920,000	NA	NA	. NA	NA	NA	NA	NA	NA	NA	NA	
7/23/2003	NA	154	175	NA	NA	657	1,230	· NA	NA	NA	NA	NA	NA:	· NA	
4/30/2004	NA	NA	NA	NA	NA	NA	NA	NA	250	NA	NA	NA	NA	NA	
5/4/2004	NA	NA	NA	NA	250	NA	NA	NA	NA	NA	NA	NA	250	NA	
AVERAGE	12,600	154.	175	2,920,000	250	657	1,230	91,090	250	500	98,170	500	Alexander (Contraction of the Contraction of the Co	500	240,467
TPH-GRO													4		TPH-GRO
11/19/2002	NA	NA	NA	NA	NA	NA	. NA	NA	NA	17,440	. NA	268,300			
11/20/2002	NA	NA	NA	NA	NA	NA	NA		NA.	NA	NA	NA		NA	
6/30/2003	1,010	NA	NA	NA	NA	NA	NA			NA	10,570	NA.	NA	NA.	
7/22/2003	NA	NA	NA	364,000	NA	3,450	NA			NA	NA	NA NA	NA	NA	
7/23/2003	NA	500	500	NA	NA	500	500			NA	NA	NA	NA	NA	
4/30/2004	NA	NA	NA	NA	NA	NA	NA				NA NA	NA.	NA NA	NA	
5/4/2004	NA	NA	NA	NA	900	NA	NA	NA	NA	NA	NA	NA	250		
AVERAGE	1,010	500	500	364,000	900	1,975	500	64,560	600	17,440	10,570	268,300	tura.	10,820	57,052
TPH-ORO	TO COLLAND HE TO			Taring 1										-00	TPH-ORO
11/19/2002	NA	NA	NA	NA	NA	NA	NA					500			
6/30/2003	2,950	NA	NA	NA	NA	NA	NA				500	NA			
7/22/2003	NA	NA	NA	375,000	NA	NA	NA				NA.	NA			(1
7/23/2003	NA	75	75	NA	NA	353	872				NA.	NA			
4/30/2004	NA	NA	NA	NA	NA	NA	NA				NA	NA	NA 050		
5/4/2004	NA	NA	NA	NA	250	NA	NA		NA		NA	NA	250		
AVERAGE	2,950	75	75	375,000	250	353	872	2,570	250.	500	500	500		500	29,569

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4D-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3D: Retained Area

Boeing Tract 1. St. Louis, Missouri

				Docin	6 Truct	1, St. 1.			/I)						
		VOCs (ug/l)													
Sample ID	1,1-DICHLOROETHANE	1,1-DICHLOROETHENE	1,4-DIOXANE	ACETONE	BENZENE	CHLOROETHANE	CIS-1,2-DICHLOROETHENE	METHYL ETHYL KETONE (MEK)	METHYL ISOBUTYL KETONE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TRANS-1,2-DICHLOROETHENE	TRICHLOROETHENE	TRICHLOROFLUOROMETHANE	VINYL CHLORIDE
B2I1W	2.5	2.5	NA	NA	2.5	2.5	2.5	NA	NA	. 2.5	2.5	2.5	2.5		5.6
B2I2W	2.5	2.5	2.5	10	2.5	2.5	2.5	2.5	.5	7.2	2.5	2.5	2.5		2.5
B2N3W	1.5	1.5	. NA	· NA	1.5	1.5	42	NA	NA	1.5	22	12	10.5		1.5
B2N4W	0.5		NA	NA	0.5	0.5	19	NA	NA	0.5	13		2.5		0.5
B2N6W	2.5	2.5	2.5	10	2.45	2.5	2.5	2.5	5	3	2.5	2.5	2.5		2.5
B2N7W	2.5	2.5	2.5	15	1.75	2.5		8.8	2.9	2.6	2.5		2.5		2.5
B2W1W	2.5	2.5	NA	NA	6.3	7.3		. NA	NA	2.5	2.5		2.5		2.5
B41E1W	0.5	0.5	NA	NA	0.5	0.5		NA	NA	0.5	0.5		1.2	0.5	0.5
B41MW-5	104	8.3	36	17.5	1.5	1.5	4.45	13.75	15	6.25	3.75	1.5	2.45	1.5	7.9
Average Concentration - Only Samples With VOC Detections	14.56	2.60	13.67	14.17	2.13	2.35	9.58	8.35	7.63	2.42	6.16	3.21	3.33	3.56	2.94

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Table 4D-7(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 3D: Retained Area

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B2N6W	B2N7W	B41MW-5	Overall Area Average (ug/l)
TPH-DRO	TPH-DRO			
11/1/2002	NA	NA	180	
11/7/2002	NA	NA	NA	
11/12/2002	NA	NA	NA	
11/13/2002	NA	NĄ	NA	
6/30/2003	NA	NA	NA	
7/24/2003	181	208	NA	
AVERAGE	181	208	180	190
TPH-GRO				TPH-GRO
6/30/2003	NA	NA	NA	
7/24/2003	500	500	NA	
AVERAGE	500	500	est at near a second	500
TPH-ORO				TPH-ORO
11/7/2002	NA	NA	NA	
11/12/2002	NA	NA	NA	
11/13/2002	NA	NA	NA	
6/30/2003	NA	NA	NA	·
7/24/2003	75	75	NA	}
AVERAGE	75	75		75.

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 4D-7(c)

Groundwater Constituents Average Concentrations for Metals in Sub-area 3D: Retained Area
Boeing Tract 1, St. Louis, Missouri

Doeing Tract 1, St. Louis, Missouri											
	Metals (ug/l)										
Sample ID	ARSENIC	ВАВІОМ	САБМІИМ	СНВОМІÚМ	COPPER	LEAD	MANGANESE	MERCURY	ZINC		
B2I1W	5	500	2.5	32	NA	13	NA	0.1	NA		
B2N1W	5	1300	2.5	40	NA	79	NA	0.33			
B2N2W	34	600	2.5	42	NA		NA	0.1	NA		
B2N3W	98	10000	2.5	320	. NA		NA	0.1	NA		
B2N6W	15	727	2	2.5	4	22	3870	0.1	5		
B2N7W	15	219	43		6		441	0.1	28		
B2W1W	5	500	2.5	10	NA NA	2.5	NA	0.1	NA		
Average Concentration - Only Samples With Metals Detections	25.286	1,978	8.21	67.357	5	41.071	2,156	0.13	16.5		

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 4E-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3E:
Retained Area

Boeing Tract 1, St. Louis, Missouri VOCs (ug/l) ,2,4-TRIMETHYLBENZENE ,3,5-TRIMETHYLBENZENE N-PROPYLBENZENE XYLENES, TOTAL Sample ID ETHYLBENZENE VAPHTHALENE M,P-XYLENE TOLUENE CETONE NA NA NA 5.5 12.8 B2E1W NA NA NA 380 250 4,570 930 2,500 620 540 2,476.67 5,300 B2E2W **Average Concentration -**2,288 1,244.7 930 380 5,300 127.6 2,500 540 **Only Samples With** 620 **VOC Detections**

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

Table 4E-7(b) Groundwater Constituents Average Concentrations for TPHs in Sub-area 3E: Retained Area Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B2E2W	B2E2W - 2004	Overall Area Average (ug/l)
TPH-DRO			TPH-DRO
7/1/2003	NA	NA	
7/24/2003	99,800	NA	
4/29/2004	NA	250	
AVERAGE	99,800	250	50,025
TPH-GRO			TPH-GRO
7/1/2003	NA	NA	· · · · · · · · · · · · · · · · · · ·
7/24/2003	50,000	NA	
4/29/2004	NA	9,000	
AVERAGE	50,000	9,000	29,500
TPH-ORO			TPH-ORO
7/1/2003	NA	NA	
7/24/2003	7,500	NA	
4/29/2004	NA	2,200	
AVERAGE	7,500	2,200	4,850

Notes:

ug/I - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 4E-7(c) Groundwater Constituents Average Concentrations for Metals in Sub-area 3E: Retained Area Boeing Tract 1. St. Louis, Missouri

Dueing Tract 1, St. Louis, N	11030011
	Metals (ug/l)
Sample ID	AD.
B2E2W	யு 71
Average Concentration -	
Only Samples With	71
Metals Detections	

Notes:

ug/I - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 4F-7(a)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 3F: Retained Area

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B1W2W	Overall Area Average (ug/l)
TPH-DRO		TPH-DRO
7/1/2003	NA	
7/25/2003	514	
AVERAGE	514	514
TPH-GRO		TPH-GRO
7/1/2003	NA	
7/25/2003	500	
AVERAGE	500	500
TPH-ORO		TPH-ORO
7/1/2003	NA	
7/25/2003	1,543	
AVERAGE	1,543	1,543

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

September 2004

Table 4G-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3G: Retained Area
Boeing Tract 1, St. Louis, Missouri

					, , , , , , , , , , , , , , , , , , ,			VOCs	(ug/l)							
Sample ID	1,2,4-TRIMETHYLBENZENE	1,3,5-TRIMETHYLBENZENE	ACETONE	BENZENE	ETHYLBENZENE	ISOPROPYL BENZENE	M,P-XYLENE	METHYL ETHYL KETONE (MEK)	METHYL TERT-BUTYL ETHER	METHWLENE CHLORIDE	NAPHTHALENE	N-PROPYLBENZENE	O-XYLENE	P-ISOPROPYLTOLUENE	TOLUENE	XYLENES, TOTAL
B2S1W	NA	NA	NA	2.5	2.5	NA	NA	NA	14.6	NA	NA	NA				
B2S2W	5.5	3.1	34	965	125.5	2.1	36	10	58.6	2.3	18	3.7	22	3.3	496	349
Average Concentration - Only Samples With VOC Detections	5.5	3.1	34	483.75	64	2.1	36	10	36.6	2:3	18	3.7	22	3.3	249.25	175.75

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Table 4G-7(b)
Groundwater Constituents Average Concentrations
for TPHs in Sub-area 3G: Retained Area
Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B2S2W	B2S2W - 2004	Overall Area Average (ug/l)
TPH-DRO	_		TPH-DRO
7/1/2003	NA	NA	
7/24/2003	3,360	NA	1
4/30/2004	NA	640	
AVERAGE	3,360	640	2,000
TPH-GRO			TPH-GRO
7/1/2003	NA	NA	
7/24/2003	6,680	NA	
4/30/2004	NA	3,400	
AVERAGE	6,680	3,400	5,040
TPH-ORO			TPH-ORO
7/1/2003	NA	NA	
7/24/2003	3,780	NA	
4/30/2004	NA	2,300	
AVERAGE	3,780	2,300	3,040

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 4H-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 3H: Retained Area

Boeing Tract 1, St. Louis, Missouri

		VOCs	(ug/l)	
Sample ID	1,2-DICHLOROBENZENE	CARBON DISULFIDE	METHYLENE CHLORIDE	TOLUENE
B4E3W	2.5	2.1	10	2.35
B5MW-22W	3.2	5	3.9	2.5
Average Concentration - Only Samples With VOC Detections	2.85	3,55	6.95	2.43

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Table 4H-7(b) Groundwater Constituents Average Concentrations for TPHs in Sub-area 3H: Retained Area

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B4E1W	B4E3W	B5MW-22W	Overall Area Average (ug/l)
TPH-DRO				TPH-DRO
11/21/2002	3,500	NA	NA	
11/22/2002	NA	NA	NA	ļ
6/27/2003	NA	NA	520	
7/24/2003	NA	3,540	NA	
AVERAGE	3,500	3,540	520	2,520
TPH-GRO				TPH-GRO
11/22/2002	NA	NA	NA	
6/27/2003	NA	NA	50	
7/24/2003	NA	500	NA	
AVERAGE		500	50	275
TPH-ORO			-	TPH-ORO
6/27/2003	NA	NA	50	
7/24/2003	NA	375	NA	
AVERAGE		375	50	213

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

September 2004

Table 4H-7(c)

Groundwater Constituents Average Concentrations for Metals in Sub-area 3H: Retained Area

Boeing Tract 1, St. Louis, Missouri

		Cin 5 1 1 C		Louis, M						
	Metals (ug/l)									
Sample ID	ARSENIC	BARIUM	СНВОМІИМ	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC	
B4E3W	NA	NA	NA	NA	22	NA	NA	NA	NA	
B5MW-22W	80	1910	14	17	68	8860	0.5	23	378	
Average Concentration - Only Samples With Metals Detections	80	1,910	14	17	45	8,860	0.50	23	378	

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 4H-7(d) Groundwater Constituents Average Concentrations for PAHs in Sub-area 3H: Retained Area Boeing Tract 1. St. Louis, Missouri

Boeing Tract 1, St. Louis,	MISSOULI
	PAHs (ug/l)
Sample ID	ACENAPHTHENE
B5MW-22W	7.8
Average Concentration - Only Samples With PAH Detections	7.8

Notes:

ug/l - micrograms per liter

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Bold indicates a detection

Table 4A-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3A: Retained Area
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	;)				<u> </u>		
1,2,4-Trimethylbenzene	. 2	1	1.91	51	. 27	NA	N/A
1,3,5-Trimethylbenzene	2	1	1.97	192	97	NA	N/A
Benzene	2	1	1.82	18	10	NA	N/A
Ethylbenzene	2	2	1.53	10	6.5	NA	N/A
Isopropylbenzene	2	1	1.84	29	16	NA	N/A
m.p-Xylene	2	1	1.83	27	: 15	NA	N/A
Methylene chloride	2	1	1.37	5.4	4.0	NA	N/A
p-Isopropyltoluene	2	1	1.96	116	59	NA	N/A
Toluene	2	.2	1.79	26	15	NA	N/A
Xylenes, Total	1	1	1.00	6.7	6.7	NA	N/A
Polynuclear Aromatic Hydrocabons	(PAHs)						
None	1	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TP)	H)						4
TPH DRO	2.	1	1.00	24,000	24,000	NA NA	N/A
TPH GRO	1	0	N/A	ND	. N/A	NA	N/A
TPH ORO	2	0	N/A	ND	2,500	NA	N/A
Total Metals							
Lead	1	1	1.00	8,690	8,690	21,800	N

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4A-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3A: Retained Area

Reging Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
1,2,4-Trimethylbenzene	9	1	4.70	51	11	NA	N/A
1,3,5-Trimethylbenzene	9	1	6.19	192	31	NA.	N/A
Benzene	10	3	5.03	186	37	NA NA	N/A
Ethylbenzene	10	3	8.69	91	10	NA ·	N/A
Isopropylbenzene	9	3	4.31	80	19	NA	N/A
m.p-Xylene	9	3	2.39	27	11	ŅA	N/A
Methylene chloride	9	4	3.84	29.	7.5	NA	N/A
n-Propylbenzene	9	2	5.68	110	19	NA	N/A
p-Isopropyltoluene	9	2	5.58	116	21	NA	N/A
sec-Butylbenzene	9	3	3.48	91	26	NA	N/A
Toluene	10	5	3.18	. 26	8.2	NA	N/A
Xylenes, Total	5	3	3.26	64	20	NA	N/A
Polynuclear Aromatic Hydrocabons (P.	AHs)						
None	3	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)	100						
TPH DRO	9	2	2.00	24,000	12,003	NA NA	N/A
TPH GRO	5	2	1.03	7,000	6,770	· NA	N/A
TPH ORO	9	0	N/A	ND	2,714	NA	N/A_
Total Metals		<u> </u>		The second second second			
Arsenic	1	1	1.00	2,000	2,000	9,200	N
Barium	1	1	1.00	110,000	110,000	725,000	N
Chromium	1 1	1	1.00	13,000	13,000	58,000	N
Lead	5	5	1.23	11,200	9,094	21,800	N
Mercury	1 1	1	1	94	94	39	Y

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4B-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3B: Retained Area
Boeing Tract 1, St. Louis, Missouri

	T	· ' ·	Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)					<u> </u>		
Acetone	i	1	1.00	19	19	NA	N/A
Benzene	1	1	1.95	107	55	NA	N/A
Carbon Disulfide	1	1	1.00	3.0	3.0	NA	N/A
Ethylbenzene	1	1	1.82	26	14	NA	N/A
Isopropylbenzene	1	1.	1.00	4.0	4.0	NA	N/A
n-Propylbenzene	1	1	1.00	2.9	2.9	NA	N/A
sec-Butylbenzene	1 1	1	1.00	5.7	5.7	NA	N/A
Toluene	1	1	1.55	8.6	5.6	NA	N/A
Xylenes, Total	1	1	1.00	58	58	NA	N/A
Total Petroleum Hydrocarbons (TPH)	·! · · · · · · · · · · · · · · · · · ·						
TPH DRO	1	0	N/A	ND	2,081	NA	N/A
TPH GRO	1 1	1	1.00	29,200	29,200	NA	N/A
TPH ORO	1 1	0	N/A	ND	3,121	NA	N/A
	-!			<u> </u>		and the second s	
Total Metals Lead	1 1	1	1.00	14,600	14,600	21,800	N

ug/kg - micrograms per kilogram

ORO - Oil range organic

· N/A - Not applicable

DRO - Diesel range organic
GRO - Gasoline range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

Table 4B-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3B: Retained Area

Boeing Tract 1, St. Louis, Missouri

	1		Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)	-						
Acetone	2	1	1.31	19	15	NA	N/A
Benzene .	3	3	2.82	1,170	414	NA	N/A
Carbon Disulfide	2	I.	0.75	3.0	4.0	NA	N/A
Ethylbenzene	3	2	3.46	110	32	NA	· N/A
Isopropylbenzene	2	1	1.23	4.0	3.3 .	NA	N/A
n-Propylbenzene	2	ī	1.07	2.9	2.7	NA	N/A
sec-Butylbenzene	2	2	1.26	10	7.7	NA	N/A
Toluene	3	3	2.85	398	140	NA	N/A
Xylenes, Total	3	3	2.59	731	. 282	NA	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	3	1	2.60	29,960	11,514	NA	N/A
TPH GRO	3	3	2.65	311,000	117,333	NA	N/A
TPH ORO	3	0	N/A	ND	2,930	NA	N/A
Total Metals	es Carrenge						
Lead	2	2	1.18	14,600	12,400	21,800	N

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4C-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3C: Retained Area
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	4	0	N/A	ND	N/A	NA	N/A
TPH GRO	4	0	N/A	· ND	N/A	NA	N/A
TPH ORO	4	0	N/A	ND	N/A	NA	N/A

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4C-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3C: Retained Area

Boeing Tract 1, St. Louis, Missouri

	T		Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)					· · · · · · · · · · · · · · · · · · ·		
Acetone	5	2	1.38	44	32	NA	N/A
Benzene	13	4	3.72	293	79	NA	N/A
Isopropylbenzene	5	1	2.71	47	17	NA	N/A
Methyl ter-butyl ether	13.	2	2.10	30	14	NA	N/A
Methylene chloride	5	1	0.25	5.4	22	NA	N/A
n-Butylbenzene	5	2	2.63	- 59	22	NA	N/A
n-Propylbenzene	5	1	2.83	84	30	NA	N/A·
sec-Butylbenzene	5	2	2.61	62	24	. NA	N/A
tert-Butylbenzene	5	1	2.12	12	5.7	NA	N/A
Toluene	13	6	3.81	2,500	656	NA	N/A
Xylenes, Total	13	5	1.98	513	259	NA	N/A
Total Petroleum Hydrocarbons (TPH))			and the second s			
TPH DRO	13	6	3.12	972,000	311,290	NA	N/A
TPH GRO	13	6	3.25	154,000	47,350	NA	N/A
TPH ORO	12	3	1.23	41,000	33,290	NA	N/A
Total Metals	•				· · · · · · · · · · · · · · · · · · ·		
Lead	T 5	5	1.14	12,000	10,540	21,800	N

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Tab

Soil Constituents of Concern Summary for Non-Lential Worker for Sub-area 3D: Retained Area

Roeing Tract 1. St. Louis, Missouri

			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC							21/4
1,2,4-Trimethylbenzene	. 8	1	3.00	47,000	15,668	NA NA	N/A
1,3,5-Trimethylbenzene	7	1	1.97	36	18	NA	N/A
Benzene	7	1	1.95	21	11	NA	N/A
Chloroethane	7	1	1.86	. 6.7	3.6	NA	N/A
Isopropylbenzene	7	1	1.97	31	16	NA	N/A
m.p-Xylene	7	1	1.98	41	21	NA NA	N/A
n-Butylbenzene	7	1	1.93	14	7.3	NA	N/A
n-Propylbenzene	7	1	1.97	30	.15	NA NA	N/A
o-Xylene	7	1	1.92	. 12	6.3	NA	N/A
p-Isopropyltoluene	7	1	1.97	36	18	NA .	N/A
sec-Butylbenzene	7	1	1.99	127	64	NA	N/A
tert-Butylbenzene	7	1	1.97	35	18	NA	N/A
Tetrachloroethene	8	1	0.26	1.4	5.3	NA	N/A
Xylenes, Total	4	1	1.00	12	12	NA	N/A
Polynuclear Aromatic Hydrocabon	s (PAHs)		A STATE OF THE STA				
Noné	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TI	PH)		Committee William				3 . 3
TPH DRO	6	2	1.90	47,000	24,770	NA	N/A
TPH GRO	3	0	N/A	ND	500	NA	N/A
TPH ORO	6	1	1.55	8,720	5,610	NA	N/A
Total Metals			一种人们的特殊				
Aluminum	1	1	1.00	8,300,000	8,300,000	41,000,000	N
Arsenic	4	4	2.60	25,200	9,700	9,200	Y
Barium	4	4	1.15	120,000	104,550	725,000	N
Beryllium	3	3	1.72	806	470	800	Y
Cadmium -	4	1	2.62	1,080	412	<1,000	Y
Calcium	1	l	1.00	23,700,000	23,700,000	3,300,000	Y
Chromium	4	4	1.96	30,900	15,800	58,000	N
Cobalt	1	1	1.00	6,940	6,940	10,000	N
Copper	3	3	1.20	16,000	13,317	13,000	Y
Iron	1	1	1.00	18,200,000	18,200,000	21,000,000	N
Lead	4	4	1.86	20,100	10,833	21,800	N
Manganese	2	2	1.80	740,000	410,333	740,000	N
Mercury	4	1	0.94	33.8	36	39	N
Nickel	3	1	1.57	19,200	12,247	14,000	Y
Potassium	1	1	1.00	1,230,000	1,230,000	14,000,000	N
Selenium	4	1	2.23	5,200	2,336	260	Y
Silver	4	1	1.70	469	275	<700	N
Sodium	i	1	1.00	128,000	128,000	5,300,000	N
Thallium	3	1	2.15	12,800	5,967	<100	Y
Zinc	3	2	2.34	93,300	39,892	49,000	Y

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3D: Retained Area Roeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concentr	ation	—	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOC:		,		4 500	0.401	NA	N/A	
1,2,4-Trimethylbenzene	13	1	0.50	4,700	9,401	· NA	N/A	
1,3,5-Trimethylbenzene	12	2	2.56	66	6.1	NA NA	N/A	
Benzene	12	1	3.43	21	2.6	NA NA	N/A	
Chloroethane	12	1	2.63	6.7	8.1	NA NA	N/A	
Ethylbenzene	12	1	3.57			NA NA	N/A	
Isopropylbenzene	12	2	3.60	292	81	NA NA	N/A	
m.p-Xylene	12	2	2.02	43	21	NA NA	N/A	
n-Butylbenzene	12	2	3.37	80	24	NA NA	N/A	
n-Propylbenzene	12	1	3.58	30	8.4	NA NA	N/A	
o-Xylene	12	1	3.10	12	3.9.	NA NA	N/A N/A	
p-Isopropyltoluene	12	2	3.51	268	76 33	NA NA	N/A N/A	
sec-Butylbenzene	12	· 1	3.89	127	27	NA NA	N/A	
tert-Butylbenzene	12	2	2.68	73		NA NA	N/A	
Tetrachloroethene	13	2	0.47	1.9	4.1	NA NA	N/A	
Xylenes, Total	4	1 1	1.00	12	12	NA NA	IVA	
Polynuclear Aromatic Hydrocabons						NA.	N/A	
Benzo(a)pyrene	4	<u> </u>	1.00	85	85	I NA	17/4	
Total Petroleum Hydrocarbons (TP				1 47.000		NA NA	N/A	
TPH DRO	9	2	1.90	47,000	24,770 500	NA NA	N/A	
TPH GRO	5	0	N/A	ND 0.700	5,610	NA NA	N/A	
TPH ORO	7	1	1.55	8,720	1 3,010	<u> </u>	- 10/15	
Total Metals	: <u>,</u>	· · ·		T 0 700 000	8,300,000	41,000,000	N	
Aluminum		1	. 1.00	8,300,000		9,200	Y	
Arsenic	8	7	3.45	39,000	11;294 91,275	725,000	N	
Barium	8	8	1.31	120,000	470	800	Ÿ	
Beryllium	3	3	1.72	806	269	<1,000	Ý	
Cadmium	8	1 .	4.02	1,080		3,300,000	Ŷ	
Calcium	1	11	1.00	23,700,000	23,700,000	58.000	N	
Chromium	. 8	8	2.27	30,900	13,625	10,000	N	
Cobalt	1	1	1.00	6,940	6,940	13,000	Y	
Copper	3	3	1.20	16,000	13,317		N	
Iron	1	1.	1.00	18,200,000	18,200,000	21,000,000	N	
Lead .	8	8	2.23	20,100	9,016	740.000	N	
Manganese	3	3	1.80	740,000	410,333	740,000	N	
Mercury	8	2	1.33	33.8	25		Y	
Nickel	3	3	1.57	19,200	12,247	14,000	N	
Potassium	1	1	1.00	1,230,000	1,230,000	14,000,000	Y	
Selenium	8	l l	4.02	5,200	1,293	260		
Silver	8	1	2.34	469	200	<700	N	
Sodium	1	1	1.00	128,000	128,000	5,300,000	N	
Thallium	3	i	2.15	12,800	5,967	<100	Y	
Zinc	3	2	2.34	93,300	39,892	49,000	Y	

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4E-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3E: Retained Area
Boeing Tract 1, St. Louis, Missouri

	1		Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)			:				
Acetone	2	2	1.42	80	57	NA	N/A
Benzene	4	3	1.90	1,340	704	NA	N/A
Ethylbenzene	4	4	1.66	307	185	NA_	N/A
Isopropylbenzene	3	2	1.04	29	28	NA	N/A
Methyl ter-butyl ether	3	1	0.15	20	134	NA	N/A
Methylene chloride	3	1	0.48	16	33	NA ·	N/A
Naphthalene	3	1	0.75	15	20	NA	N/A
n-Butylbenzene	3	2	1.27	91	72	NA	N/A
n-Propylbenzene	3	. 2	1.04	120	. 115	NA	N/A
sec-Butylbenzene	3	2	1.37	43	32	NA	N/A
Toluene	4	3	1.91	719	377	NA	N/A
Xylenes, Total	3	3	1.62	586	362	NA	N/A
Total Petroleum Hydrocarbons (TPH)						
TPH DRO	2	0	N/A	ND	2,312	NA	N/A
TPH GRO	2	2	1.81	496,000	274,550	NA NA	N/A
TPH ORO	2	0	N/A	ND	2,844	NA	N/A
Total Metals						F	
Lead	l i	1	1.00	8,100	8,100	21,800	N

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4E-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3E: Retained Area

Boeing Tract 1, St. Louis, Missouri

<u> </u>	1		Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)			,				
Acetone	2	2	1.42	80	57	NA NA	N/A
Benzene	- 4	3	1.90	1,340	704	NA	N/A
Ethylbenzene	4	4	1.66	307	185	NA	N/A
Isopropylbenzene	3	2	1.04	29	28	NA	N/A
Methyl ter-butyl ether	3	. 1 -	0.15	20	134	NA	N/A
Methylene chloride	3	1	0.48	16	33	NA	N/A
Naphthalene	3	1	0.75	15	20	NA	N/A
n-Butylbenzene	3	2	1.27	91	72	NA	N/A
n-Propylbenzene	3	2	1.04	120	115	NA	N/A
sec-Butylbenzene	3	2	1.37	43	32	NA	N/A
Toluene	4	3	1.91	719	377	NA	N/A
Xylenes, Total	3	3	1.62	586	362	NA	N/A
Total Petroleum Hydrocarbons (TPH)			The second second second second second second second second second second second second second second second s	ne de la companya de		<u> </u>	
TPH DRO	2	0	N/A	ND	2,312	NA NA	N/A
TPH GRO	2	2	1.81	496,000	274,550	NA	N/A
TPH ORO	2	0	N/A	ND	2,844	NA	N/A
Total Metals	en in the second			A property of the second secon			
Lead	1	1	1.00	8,100	8,100	21,800	N

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4F-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3F: Retained Area
Boeing Tract 1, St. Louis, Missouri

	1	1	Ratio of Max		Concentration			
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOCs)			·				1	
None	1	0	N/A	ND	N/A	NA	N/A	
Total Petroleum Hydrocarbons (TPH)		No. 19 Personal Control				. <u> </u>		
	1 2		N/A	ND	N/A	NA	N/A	
TPH DRO		- 0			N/A	NA	N/A	
TPH GRO	2	. 0	N/A	ND			N/A	
TPH ORO	2	0	N/A	ND	N/A	NA NA	14/17	

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4F-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3F: Retained Area

Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
None	2	0	N/A	ND	N/A	NA	N/A
Total Petroleum Hydrocarbons (TPH)	•						
TPH DRO	2	0	N/A	ND	N/A	NA	N/A
TPH GRO	2	0	N/A	. ND	N/A	NA	N/A
TPH ORO	2	0	N/A	ND	N/A	NA	N/A
Total Metals			# * * * * * * * * * * * * * * * * * * *	and the second section of the section of the sectio			
Lead	2	2	1.17	8,780	7,485	21,800	N

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4G-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3G: Retained Area
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
1,2,4-Trimethylbenzene	2	2	1.43	1,200	840	NA	N/A
1,3,5-Trimethylbenzene	2	1	1.04	340	326	NA	N/A
Acetone	2	2	1.00	820	820	NA	N/A
Benzene	5 `	4	1.71	939	548	NA	N/A
Ethylbenzene	5	4	1.19	1,200	1,010	NA	N/A
m.p-Xylene	2	2	1.43	3,800	2,650	NA	N/A
Methyl ter-butyl ether	3	2	0.48	180	378	NA	N/A
Naphthalene	2	1	0.69	330	478	NA	N/A
o-Xylene	2	2	1.34	2,000	1,490	NA	N/A
p-Isopropyltoluene	2	1	1.25	520	416	NA ·	N/A
Toluene	5	4	1.33	7,600	5,700	NA	N/A
Xylenes, Total	3	2	1.01	3,600	. 3,550	NA	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	2	1	1.00	85,750	85,750	NA ·	N/A
TPH GRO	.2	1	1.00	3,280	3,280	NA	N/A
TPH ORO	2	1	1.00	1,470,000	1,470,000	, NA	N/A
Total Metals		1. 18					
Lead	2	-2	1.15	13,400	11,655	21,800	N

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4G-8(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 3G: Retained Area
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	s)						
1,2,4-Trimethylbenzene	2	2	1.43	1,200	840	NA	N/A
1,3,5-Trimethylbenzene	2	1	1.04	340	326	NA	N/A
Acetone	2	2	1.00	820	820	NA	N/A
Benzene	5	4	1.71	939	548	NA	N/A
Ethylbenzene	5	4	1.19	1,200	1,010	NA	N/A
m.p-Xylene	2	. 2	1.43	3,800	2,650	NA	N/A
Methyl ter-butyl ether	3	2	0.48	180	378	NA	N/A
Naphthalene	2	1	0.69	330	478	NA	N/A
o-Xylene	2	2	1.34	2,000	1,490	NA.	N/A
p-Isopropyltoluene	2	1	1.25	520	416	NA NA	N/A
Toluene	5	4	1.33	7,600	5,700	NA	. N/A
Xylenes, Total	3	2	1.01	3,600	3,550	NA	N/A
Total Petroleum Hydrocarbons (TP	H)			A STATE OF THE STA			
TPH DRO	2	1	1.00	85,750	85,750	NA	N/A
TPH GRO	2	1	1.00	3,280	3,280	NA	N/A
TPH ORO	2	1	1.00	1,470,000	1,470,000	NA NA	N/A
Total Metals							
Lead	2	2	1.15	13,400	11,655	21,800	N ·

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4H-8(a)

Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 3H: Retained Area

Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration				
Constituents of Concern	# of Samples	# of Detects	Detected to	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Total Petroleum Hydrocarbons (TPH)					·			
	0	0	N/A	· ND	N/A	NA ·	N/A	
TPH DRO	0	0	N/A	ND	N/A	NA	N/A	
TPH GRO	0	0			N/A	NA	N/A	
TPH ORO	0	0	N/A	ND	14/1		<u>اا</u>	

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4H-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 3H: Retained Area

Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	s)						
Acetone	1	1	1.00	21	21	NA	N/A
Methyl ethyl ketone (MEK)	1	1	1.00	8.8	8.80	NA	N/A
Methylene chloride	1	1	1.00	4.5	4.5	NA	N/A
Xylenes, Total	3	1	1.58	9.4	6.0	NA	N/A
Total Petroleum Hydrocarbons (TP	H)			•			
TPH DRO	3	3	1.52	55,000	36,120	NA	N/A
TPH GRO	2	0	N/A	ND	375	. NA	N/A
TPH ORO	1	0	N/A	ND	3,159	NA	N/A
Total Metals				· · · ·		ta a sa a	<u> </u>
Lead	1	1	1.00	8,630	8,630	21,800	N

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Table 4A-9
Groundwater Constituents of Concern Summary for Sub-area 3A: Retained Area
Boeing Tract 1. St. Louis. Missouri

	T	· · · · · · · · · · · · · · · · · · ·	eing Tract 1, St. Loui		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)	•		· · · · · · · · · · · · · · · · · · ·				
1,2,4-Trimethylbenzene	9	1	1.68	13	7.8	2.6	Y
Benzene	14	2	1.95	135	69	5	Y
cis-1,2-Dichloroethene	9	1.	1.99	760	381	70	Y
Ethylbenzene	14	1	2.91	20	6.9	700	. N
Isopropylbenzene ·	9	· 2	1.04	. 24	23	4,000	N
m.p-Xylene	. 9	1	1.85	31	17	185	N
Methyl ter-butyl ether	9	1	1.66	24	15	146	N
n-Propylbenzene	9	2	1.65	117	71	5.3	Y
p-Isopropyltoluene	9	1	1.93	68	35	107	N_
sec-Butylbenzene	9	1	1.34	41	31	48.6	N
Toluene	14	1	1.83	6.3	3.5	1,000	N
trans-1,2-Dichloroethene	9_	1	1.85	31	17	100	N
Vinyl chloride	9	1	1.66	12	7.3	2	Y
Xylenes, Total	5	1	1.00	14	14	10,000	N
Polynuclear Aromatic Hydrocabons (I	AHs)			· · · · · · · · · · · · · · · · · · ·			
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)		· · · · · · · · · · · · · · · · · · ·	•				<u> </u>
TPH DRO	11	5	4.87	34,000	6,983	NA	N/A
TPH GRO	6	2	1.89	2,000	1,060	NA	N/A
TPH ORO	11	2	4.62	6,695	1,449	NA	N/A
Total Metals							<u> </u>
Arsenic	1	1	1.00	100	100	10	Y
Barium	1	1	1.00	960	960	2,000	N
Chromium	1	1	1.00	64	64	100	N
Lead	5	1	2.78	110	40	15	Y

ug/L - micrograms per liter

DRO - Diesel range organic

.ORO - Oil range organic

NA: Not available

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4B-9 Groundwater Constituents of Concern Summary for Sub-area 3B: Retained Area Boeing Tract 1, St. Louis, Missouri

					Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
Acetone	3	2	1.23	16	13	121	N
Isopropylbenzene	3	2	1.38	7.8	5.7	4,000	N
Methylene chloride	3	_ 2	0.52	3.5	6.8	49.1	N
Naphthalene	3	2	1.15	10	8.7	100	N
n-Propylbenzene	3	2	1.41	8.6	6.1	5.3	Y
sec-Butylbenzene	3	1	1.02	2.6	2.6	48.6	N
Xylenes, Total	3	1	1.91	- 52	27	10,000	N
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	4	3	2.35	1,240	529	NA	N/A
TPH GRO	4.	2	3.40	11,310	3,328	NA	N/A
TPH ORO	4	1	0.96	259	271	NA	N/A
Totāl Metals							
Lead	2	1	1.35	46	34	15	<u>Y</u>

ug/L - micrograms per liter

DRO - Diesel range organic

NA: Not available

GRO - Gasoline range organic

ORO - Oil range organic

ND - Not detected

N/A - Not applicable

Table 4C-9
Groundwater Constituents of Concern Summary for Sub-area 3C: Retained Area
Boeing Tract 1. St. Louis. Missouri

	8 0000000000000000000000000000000000000	Doc	ing 1ract 1, St. Lou	113, 1411330ULI			
			Ratio of Max		Concent	N 4000000000000000000000000000000000000	ı
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
1,1,1-Trichloroethane	8	1	. 0.15	2.1	14	200	N
1,1,2-Trichloro-1,2,2-Trifluoroethane	8	1	0.39	5.9	15	12.3	N
1,1-Dichloroethane	8	3	0.27	4.0	15	157	N
1,1-Dichloroethene	8	1	0.16	2.3	14	7.0	N
Benzene	23	1	14.35	1,720	120	5	Y
Carbon Tetrachloride	8	1	0.32	4.7	15	5	N
Chloroform	8	1	0.32	9.3	29	400	N
cis-1,2-Dichloroethene	8	2	0.58	8.9	15	70	N
Ethylbenzene	23	2	0.74	12	16	700 ·	N
Isopropylbenzene	8	2	5.87	1,100	188	4,000	N .
Methyl ter-butyl ether	23	2	7.73	270	35	146	Y
Methylene chloride	8	1	0.10	5.5	57	49.1	N
n-Butylbenzene	8	1	5.78	1,200	208	48.6	Y
n-Propylbenzene	8	2	5.84	1,300	223	5.3	Y
sec-Butylbenzene	8	2	5.80	1,000	172	48.6	Y
Toluene	23	4	7.49	800	107	1,000	N
Xylenes, Total	15	4	6.32	3,100	491	10,000	N
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	15	6	12.14	2,920,000	240,467	NA	N/A
TPH GRO	16	. 9.	6.38	364,000	57,052	NA	N/A
TPH ORO	14	3	0.10	2,950	29,569	NA	N/A
Total Metals							
None	3	0	N/A	ND	N/A	N/A	N/A

Notes:

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Groundwater Constituents of Concern Summary for Sub-area 3D: Retained Area

Boeing Tract 1, St. Louis, Missouri

	T T		ing Tract 1, St. Lou		Concentr	ation	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
1,1-Dichloroethane	17	2	7.55	110	15	157	N
1,1-Dichloroethene	17	2	3.85	10	3	7.0	Y
1,4-Dioxane	4	1	2.63	36	14	300	N
Acetone	6	1	1.06	15	14	121	N
Benzene	20	2	2.96	6.3	2.1	5	Y
Chloroethane	. 17	1	3.11	7.3	2.4	48.8	N
cis-1,2-Dichloroethene	17	5	4.70	45	10	70	N
Methyl ethyl ketone (MEK)	6	1	1.05	8.8	8.4	4,000	N
Methyl isobutyl ketone	6	1	0.38	2.9	7.6	32.7	N
Methylene chloride	17	3	2.98	7.2	2.4	49.1	· N
Tetrachloroethene	17	5	3.74	23	6.2	5	Y
trans-1,2-Dichloroethene	17	3	3.74	12	3.2	100	N
Trichloroethene	17	5	3.30	11	3.3	5	Y
Trichlorofluoromethane	17	1	4.77	17	3.6	2,000	N
Vinyl chloride	17	3	2.86	8.4	2.9	2	Y
Polynuclear Aromátic Hydrocábons (P.	AHs)						
None	6	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)			A STATE OF THE STA				
TPH DRO	9	3	1.10	208	190	NA	N/A
TPH GRO	3	0	N/A	ND	500	NA	N/A
TPH ORO	1	0	N/A	ND	75	NA	N/A
Total Metals							
Arsenic	7	2	3.88	98	25	10	Y
Barium	7	7	5.06	10,000	1,978	2,000	Y
Cadmium	7	1	5.23	43	8.2	5	Y
Chromium	7	6	4.75	320	67.36	100	Y
Copper	2	2	1.20	6.0	5.0	1,300	N
Lead	. 7	4 .	2.68	110	41.07	15	Y
Manganese	2	2	1.80	3,870	2,156	50	Y
Mercury	7	1	2.48	0.33	0.13	2	N
Zinc	2	1	1.70	28	17	2,000	N

Notes:

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4E-9
Groundwater Constituents of Concern Summary for Sub-area 3E: Retained Area
Boeing Tract 1, St. Louis, Missouri

		·			Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)					·		
1,2,4-Trimethylbenzene	2	1	1.00	2,500	2,500	2.6	Y
1,3,5-Trimethylbenzene	2	1	1.00	620	620	10,000	N .
Acetone	1	1	1.00	540.0	540	121	Y
Ethylbenzene	5	4	2.17	2,700	1,245	700	Y
m.p-Xylene	2	1	1.00	5,300	5,300	185	Y
Naphthalene	2	1	1.00	930	930	100	Y
n-Propylbenzene	2	1	1.00	380	380	5.3	Y
Toluene	5	1	0.04	5.2	128	1,000	N
Xylenes, Total	3	3	2.09	4,770	2,288	10,000	N
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	.3	1	2.00	99,800	50,025	NA	N/A
TPH GRO	3	1	0.31	9,000	29,500	NA	N/A
TPH ORO	3	1	0.45	2,200	4,850	NA	N/A
Total Metals		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la co	
Lead	1	1	1.00	71	71	15	Y

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4F-9
Groundwater Constituents of Concern Summary for Sub-area 3F: Retained Area
Boeing Tract 1, St. Louis, Missouri

	e Organic Compounds (VOCs) 2 0 N/A ND N/A N/A Petroleum Hydrocarbons (TPH) RO 2 1 1.00 514 514 NA RO 2 0 N/A ND 500 NA RO 2 1 1.00 1,543 1,543 NA						
Constituents of Concern	# of Samples	# of Detects	Detected to Average			Maximum Concentration Limit (MCL) or Equivalent (ug/L) N/A NA NA	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)			4	.42			,
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)			47				
TPH DRO	2	1	1.00	514	514	NA	N/A
TPH GRO	2	0	N/A	ND	500	NA	N/A
TPH ORO	2	1	1.00			NA	N/A
Total Metals			and the second of the second o	•			
None	1	. 0	N/A	N/A	N/A	N/A	N/A

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4G-9
Groundwater Constituents of Concern Summary for Sub-area 3G: Retained Area
Boeing Tract 1, St. Louis, Missouri

	**************************************				Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs	j						
1,2,4-Trimethylbenzene	1	1	1.00	5.5	5.5	2.6	Y
1,3,5-Trimethylbenzene	1	1	1.00	3.1	3.1	10,000	N
Acetone	1	1	1.00	34	34	121	N
Benzene	3	2	2.63	1,270	484	5	Y
Ethylbenzene	3	2	3.33	213	64	700	N
Isopropylbenzene	1	1	1.00	2.1	2.1	4,000	. N
m.p-Xylene	1	1	1.00	36	36	185	N
Methyl ethyl ketone (MEK)	1	1	1.00	10	10	4,000	N
Methyl ter-butyl ether	3	3	1.64	. 60.2	37	. 146	N
Methylene chloride	1	1	1.00	2.3	2.3	49.1	N
Naphthalene	1	1	1.00	18	18	100	N
n-Propylbenzene	1	1	1.00	3.7	3.7	5.3	N
o-Xylene	1	1	1.00	22	22	185.0	N.
p-Isopropyltoluene	1	1	1.00	3.3	3.3	. 107	N
Toluene	3	2	2.58	642	249	1,000	N
Xylenes, Total	2	1	1.99	349	176	10,000	N
Total Petroleum Hydrocarbons (TPH)						
TPH DRO	3	2	1.68	3,360	2,000	NA	N/A
TPH GRO	3	1	1.33	6,680	5,040	NA	N/A
TPH ORO	3	1	1.24	3,780	3,040	NA	N/A
Total Metals							
None	1	0	N/A	ND	N/A	N/A	N/A

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 4H-9
Groundwater Constituents of Concern Summary for Sub-area 3H: Retained Area
Roeing Tract 1. St. Louis, Missouri

. :		1			Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VC	Cs)				***		
1,2-Dichlorobenzene	4	3	1.30	3.7	2.9	600	N_
Carbon Disulfide	2	1	0.59	2.1	3.6	201	N
Methylene chloride	3	1	0.76	5.3	7.0	49.1	N
Toluene	6	1	0.91	2.2	2.4	1,000	N
Polynuclear Aromatic Hydrocabo	ns (PAHs)						
Acenaphthene	1	1	1.00	7.8	7.8	2,000	N
Total Petroleum Hydrocarbons (1	PH)						
TPH DRO	4	3	1.40	3,540	2,520	NA	N/A
TPH GRO	3	0	N/A	ND	275	NA	N/A
TPH ORO	2	0	N/A	ND	213	NA	N/A .
Total Metals				•		and the second of	
Arsenic	1	1	1.00	80	80	10	Y
Barium	1	1	1.00	1,910	1,910	2,000	N·
Chromium	1	1	1.00	14	14	. 100	N
Copper	1	1	1.00	17	17	1,300	N
Lead	2	1	1.51	68	45	15	Y
Manganese	1	1 .	1.00	8,860	8,860	50	Y
Mercury	1	1	1.00	0.5	0.5	2	N
Nickel	1	1	1.00	23	23	100	N
Zinc	1	1	1.00	378	378	2,000	N

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

MACTEC

Table 4A-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 3A: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of a Subsurface oil	Average GW Conc. (ug/L)	Vapor Groun	halation of s from dwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ		
1,2,4-Trimethylbenzene	27	NA	1.50E-06	7.8	NA	6.86E-05	NA	7.01E-05
1,3,5-Trimethylbenzene	97	NA	3.48E-05				NA	3.48E-05
Benzene	10	6.27E-10	3.56E-05	69	1.15E-08	1.15E-03	1.22E-08	1.19E-03
cis-1,2-Dichloroethene				381	NA	3.97E-04	NA	3.97E-04
Ethylbenzene	6.5	NA	2.78E-08				NA	2.78E-08
Isopropylbenzene	16	NA	1.54E-06				NA	1.54E-06
m,p-Xylene	15	NA	2.42E-07	<u></u>			· NA	2.42E-07
Methylene chloride	4.0	2.46E-11	4.86E-08		+		2.46E-11	4.86E-08
n-Propylbenzene				71	NA_	4.47E-05	NA	4.47E-05
p-lsopropyltoluene	59	NA	1.50E-07		**		NA	1.50E-07
Toluene	15	NA	3.09E-07		***		NA	3.09E-07
Vinyl chloride	<u>:</u>			7.3	6.68E-08	6.68E-03.	6.68E-08	6.68E-03
Xylenes, Total	6.7	NA	3.20E-08				NA.	3.20E-08
Organics Total Risk		6.52E-10	7.43E-05		7.84E-08	8.35E-03	7.90E-08	8.42E-03
TPH-GRO				1,060	NA	7.83E-03	NA	7.83E-03
TPH-DRO	24,000	NA	2.43E-05	6,983	NA	1.68E+00	NA	1.68E+00
TPH-ORO	2,500	NA	6.40E-08	1,449	NA	9.23E-01	NA	9.23E-01
TPH Total Risk		NA	2.44E-05		NA	2.61E+00	NA	2.61E+00
Arsenic				100	NA	NA	NA	NA
Metals Total Risk		NA	NA		NA	NA *	NA	NA
CUMULATIVE RISK		6.52E-10	9.87E-05		7.84E-08	2.62E+00	7.90E-08	2.62E+00

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3A: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental Se	Ingestion of		halation of Particulates Soil	Average GW Conc. (ug/L)	Dermal Co Groun	dwater	Outdoor In Vapors from	Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
1,2,4-Trimethylbenzene	11	NA	7.57E-08	NA	8.41E-08	NA	1.61E-06	7.8	NA	NA	NA NA	1.64E-06	NA NA	3.41E-06
1,3,5-Trimethylbenzene	31	NA	2.16E-07	NA .	2.40E-07	NA	1.15E-05						NA	1.20E-05
Benzene	37	5.35E-12	4.30E-06	5.94E-12	4.78E-06	3.03E-11	4.31E-05	69	1.33E-08	1.07E-02	1.21E-11	1.72E-05	1.34E-08	1.08E-02
cis-1,2-Dichloroethene		-	-	1	1		_	381	NA	NA	NA	1.34E-05	NA	1.34E-05
Ethylbenzene ·	10	NA	3.65E-08	NA	3.73E-08	NA .	3.27E-08		-				NA	1.07E-07
Isopropylbenzene	19	NA	6.48E-08	NA	7.20E-08	NA	4.50E-07	·		ı			NA	5.87E-07
m,p-Xylene	11	NA	6.56E-09	NA	2.19E-09	NA	1.07E-07		_				NA	1.15E-07
Methylene chloride	7.5	2.82E-13	4.38E-08	3.13E-13	4.87E-08	4.70E-13	2.33E-08	-					1.07E-12	1.16E-07
n-Propylbenzene	19	. NA	6.75E-06	NA	7.50E-06	NA	3.55E-07	71	NA	NA	NA	9.52E-07	NA	1.56E-05
p-Isopropyltoluene	21	NA	2.42E-07	NA	8.06E-08	NA	9.22E-08	-	1	-			NA	4.15E-07
sec-Butylbenzene	26	NA	7.61E-07	· NA	2.54E-07	NA	3.73E-07	_	_			_	NA	1.39E-06
Toluene	8.2	NA	1.42E-09	NA	1.58E-08	NA	8,98E-08		-		_		NA	1.07E-07
Vinyl chloride					_			7.3	3.18E-08	3.91E-04	4.45E-11	3.64E-07	3.18E-08	3.91E-04
Xylenes, Total	20	NA	3.43E-09	NA	3.50E-09	NA	7.82E-08				_		NA _	8.51E-08
Organics Total Risk		5.63E-12	1.25E-05	6.25E-12	1.31E-05	3.08E-11	5.78E-05		4.51E-08	1.11E-02	5.66E-11	3.36E-05	4.52E-08	1.12E-02
TPH-GRO	6,770	NA	NA	NA	3.08E-05	NA	3.99E-05	1,060	NA	NA	NA	1.30E-04	NA	2.00E-04
TPH-DRO	12,003	NA	2.65E-05	NA	8.05E-05	NA	2.30E-05	6,983	NA	NA	NA	2.76E-02	NA	2.77E-02
TPH-ORO	2,714	NA	6.91E-06	NA	1.78E-05	NA	5,60E-07	1,449	NA	NA _	NA	1.52E-02	NA	1.52E-02
TPH Total Risk		NA	3.34E-05	NA	1.29E-04	NA	6.35E-05		NA	NA	NA	4.28E-02	NA	4.31E-02
Arsenic	·		1	_			_	100	NA	NA	NA	NA	NA	NA
Mercury	94	NA	3.64E-07	NA	1.82E-05	NA	4.39E-04		-				NA	4.58E-04
Metals Total Risk		NA	3.64E-07	NA	1.82E-05	NA	4.39E-04		NA	NA	NA.	NA	NA	4.58E-04
CUMULATIVE RISK		5.63E-12_	4.63E-05	6.25E-12	1.60E-04	3.08E-11	5.60E-04		4.51E-08	1.11E-02	5.66E-11	4.29E-02	4.52E-08_	5.47E-02
V-4														

Notes:

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

Table 4B-10(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3B: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Indoor In Vapors from Se	halation of	Average GW Conc. (ug/L)	Indoor In	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
•	(ug/kg)	IELCR	HQ		IELCR	HQ		
Acetone	19	NA	2.15E-07				NA	2.15E-07
Benzene	55	3.35E-09	1.90E-04				3.35E-09	1.90E-04
Carbon disulfide	3.0	NA	6.85E-07				NA	6.85E-07
Ethylbenzene	14	NA	6.07E-08		_		NA	6.07E-08
Isopropylbenzene	4.0	NA	3.90E-07	-		***	NA	3.90E-07
n-Propylbenzene	2.9	NA	5.88E-08	6.1	NA	3.84E-06	NA	3.90E-06
sec-Butylbenzene	5.7	NA	6.99E-08				NA	6.99E-08
Toluene	5.6	NA	1.16E-07				NA	1.16E-07
Xylenes, Total	58	NA	2.77E-07				NA	2.77E-07
Organics Total Risk		3.35E-09	1.92E-04		NA	3.84E-06	3.35E-09	1.96E-04
Aliphatics > nC6 to nC8 (TX1006)		_		2,219	NA	1.57E-03	· NA	1.57E-03
Aliphatics > nC8 to nC10 (TX1006)	_			555	NA	1.15E-02	NA	1.15E-02
Aromatics > nC8 to nC10 (TX1006)	_			555	NA	3.63E-04	NA	3.63E-04
TPH-GRO	29,200	NA	2.99E-04	3,328	NA	1.35E-02	NA.	1.38E-02
Aliphatics > nC10 to nC12 (TX1006)				88	NA	2.75E-03	NA	2.75E-03
Aliphatics > nC12 to nC16 (TX1006)			_	88	NA	1.19E-02	NA	1.19E-02
Aliphatics > nC16 to nC21 (TX1006)	_			88	. NA	1.12E-01	NA	1.12E-01
Aromatics > nC10 to nC12 (TX1006)	_	-		88	NA	1.78E-05	NA	1.78E-05
Aromatics > nC12 to nC16 (TX1006)		_		88	NA	7.08E-06	NA	7.08E-06
Aromatics > nC16 to nC21 (TX1006)				88	NA	1.89E-06	NA	1.89E-06
TPH-DRO	2,081	NA	2.11E-06	529	NA	1.27E-01	NA	1.27E-01
Aliphatics > nC21 to nC35 (TX1006)			-	136	NA	1.73E-01	NA	1.73E-01
Aromatics > nC21 to nC35 (TX1006)				136	NA	3.31E-07	NA	3.31E-07
TPH-ORO	3,121	NA	7.99E-08	271	NA	1.73E-01	NA	1.73E-01
TPH Total Risk	<u> </u>	NA	3.02E-04		NA	3.13E-01	NA	3.13E-01
CUMULATIVE RISK		3.35E-09	4.94E-04		NA	3.13E-01	3.35E-09	3.14E-01

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3B: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental Sc	٠ ,	Outdoor In Vapors and from	Particulates	Average GW Conc. (ug/L)	Dermal Co Groun	dwater	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		2022.05
Acetone	15	NA	5.06E-08	NA	5.34E-08	NA	1.26E-07						NA .	2.30E-07
Benzene	414	5.99E-11	4.82E-05	6.65E-11	5.35E-05	3.40E-10	4.82E-04						4.66E-10	5.84E-04
Carbon disulfide	4.0	NA	1.39E-08	NA	1.55E-08	NA	1.10E-07				=		NA	1.39E-07
Ethylbenzene	32	NA	1.11E-07	NA	1.13E-07	NA	9.93E-08		<u> </u>		<u></u>		NA	3.24E-07
Isopropylbenzene	3.3	NA	1.13E-08	NA	1.26E-08	NA	7.88E-08						NA_	1.03E-07
n-Propylbenzene	2.7	NA	9.42E-07	NA	1.05E-06	NA	4.95E-08	6.1	NA -	NA	NA	8.18E-08	NA	2.12E-06
sec-Butylbenzene	7.7	NA	2.24E-07	NA	7.46E-08	NA	1.10E-07						NA	4.08E-07
Toluene	140	NA	2.43E-08	NA	2.70E-07	NA	1.53E-06		-				· NA	1.83E-06
Xylenes, Total	282	NA	4.92E-08	NA	5.03E-08	NA	1.12E-06						NA	1.22E-06
Organics Total Risk		5.99E-11	4.96E-05	6.65E-11	5.52E-05	3.40E-10	4.86E-04		NA	NA	NA.	8.18E-08	4.66E-10	5.91E-04
Aliphatics > nC6 to nC8 (TX1006)							_	2,219	NA	NA	NA	2.59E-05	NA NA	2.59E-05
Aliphatics > nC8 to nC10 (TX1006)		_						555	NA NA	NA	. NA	1.90E-04	NA	1.90E-04
Aromatics > nC8 to nC10 (TX1006)		_	_					555	NA	NA NA	NA_	7.48E-06	NA .	7.48E-06
TPH-GRO	117,333	NA.	NA	NA	5.33E-04	NA	6.91E-04	3,328	. NA	NA	NA	2.23E-04	NA NA	1.45E-03
Aliphatics > nC10 to nC12 (TX1006)	_							88	NA	NA	NA	4.52E-05	NA .	4.52E-05
Aliphatics > nC12 to nC16 (TX1006)			_					88	NA NA	NA _	NA	1.96E-04	NA NA	1.96E-04
Aliphatics > nC16 to nC21 (TX1006)				***				88	NA NA	NA NA	NA	1.85E-03	NA NA	1.85E-03
Aromatics > nC10 to nC12 (TX1006)								88	NA_	NA	NA	5.45E-07	NA NA	5.45E-07
Aromatics > nC12 to nC16 (TX1006)								88	NA NA	NA .	NA	3.77E-07	NA NA	3.77E-07
Aromatics > nC16 to nC21 (TX1006)								88	NA	NA NA	NA NA	2.87E-07	NA .	2.87E-07
TPH-DRO	11,514	NA.	2.54E-05	NA	7.72E-05	NA NA	2.21E-05	529	NA	NA	NA	2.09E-03	NA	2.21E-03
Aliphatics > nC21 to nC35 (TX1006)				_				136	NA	NA	NA NA	2.84E-03	NA .	2.84E-03
Aromatics > nC21 to nC35 (TX1006)							-	136	NA NA	NA	NA NA	2.61E-07	NA .	2.61E-07
TPH-ORO	2,930	NA	7.46E-06	NA	1.92E-05	NA	6.05E-07	271	NA NA	NA_	NA NA	2.84E-03	NA.	2.86E-03
TPH Total Risk		NA	3.29E-05	NA	6.30E-04	NA	7.14E-04	<u> </u>	NA	NA NA	NA NA	5.15E-03	NA .	6.52E-03
CUMULATIVE RISK		5.99E-11	8.25E-05	6.65E-11	6.85E-04	3.40E-10	1.20E-03		NA	NA_	NA_	5.15E-03	4.66E-10	7.11E-03

Notes:

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4C-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3C: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of n Subsurface oil	Average GW Conc. (ug/L)	Vapors from	nalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ]	IELCR	HQ		
Benzene				120	2.00E-08	2.00E-03	2.00E-08	2.00E-03
Methyl tert-butyl ether				35	7.68E-12	7.68E-07	7.68E-12	7.68E-07
n-Butylbenzene				· 208	NA	1.63E-04	NA	1.63E-04
n-Propylbenzene				223	NA	1:40E-04	NA	1:40E-04
sec-Butylbenzene				172	NA	1.91E-04	NA	1.91E-04
Organics Total Risk		NA	NA		2.00E-08	2.50E-03	2.00E-08	2.50E-03
TPH-GRO				57,052	. NA	4.22E-01	NA	4.22E-01
TPH-DRO				240,467	NA	5.77E+01	NA	5.77E+01
TPH-ORO				29,569	NA	1.88E+01	NA	1.88E+01
TPH Total Risk		NA	NA		NA	7.70E+01	NA	7.70E+01
CUMULATIVE RISK		NA	NA		2.00E-08	7.70E+01	2.00E-08	7.70E+01

Notes:

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3C: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental So	-	Vapors and	halation of Particulates Soil	Average GW Conc. (ug/L)			Outdoor In Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	ВQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
Acetone	32	NA	1.12E-07	NA	1.18E-07	NA	2.77E-07						NA	5.07E-07
Benzene	79	1.14E-11	9.15E-06	1.26E-11	1.02E-05	6.46E-11	9.17E-05	120	2.31E-08	1.86E-02	2.10E-11	2.98E-05	2.32E-08	1.87E-02
Isopropylbenzene	17	NA	6.04E-08	NA	6.72E-08	NA	4.20E-07						NA	5.48E-07
Methylene chloride	22	8.15E-13	1.27E-07	9.05E-13	1.41E-07	1.36E-12	6.72E-08						3.08E-12	3.35E-07
Methyl tert-butyl ether	14	2.35E-13	5.81E-09	2.62E-13	6.45E-09	9.05E-14	2.11E-08	35	1.64E-10	4.04E-06	3.44E-14	8.00E-09	1.65E-10	4.09E-06
n-Butylbenzene	22	NA	6.51E-07	NA	2.17E-07	NA	2.37E-07	208	NA	NA	NA	3.31E-06	NA	4.41E-06
n-Propylbenzene	30	NA	1.03E-05	NA	1.15E-05	NA	5.44E-07	223	NA	NA	NA	2.99E-06	NA	2.54E-05
sec-Butylbenzene	24	NA	6.92E-07	NA	2.31E-07	NA	3.39E-07	172	NA	NA	NA	3.65E-06	NA	4.91E-06
t-Butylbenzene	5.7	NA	1.65E-07	NA .	5.49E-08	NA	6.64E-08						NA	2.86E-07
Toluene	656	NA	1.14E-07	NA	1.27E-06	NA	7.21E-06		-				NA	8.59E-06
Xylenes, Total	259	NA	4.52E-08	NA	4.62E-08	NA	1.03E-06						NA	1.12E-06
Organics Total Risk		1.24E-11	2.15E-05	1.38E-11	2.38E-05	6.60E-11	1.02E-04		2.33E-08	1.86E-02	2.10E-11	3.98E-05	2.34E-08	1.88E-02
TPH-GRO	47,350	NA	NA	NA	2.15E-04	NA	2.79E-04	57,052	NA	NA	NA	6.99E-03	NA	7.48E-03
TPH-DRO	311,290	NA	6.87E-04	NA	2.09E-03	NA	5.97E-04	240,467	NA	NA	NA	9.49E-01	NA	9.52E-01
TPH-ORO	33,290	NA	8.48E-05	NA	2.18E-04	NA	6.87E-06	29,569	NA	NA	NA	3.09E-01	NA	3.10E-01
TPH Total Risk		NA	7.71E-04	NA	2.52E-03	NA	8.83E-04		NA	NA	NA	1.27E+00	NA	1.27E+00
CUMULATIVE RISK		1.24E-11	7.93E-04	1.38E-11	2.54E-03	6.60E-11	9.85E-04		2.33E-08	1.86E-02	2.10E-11	1.27E+00	2.34E-08	1.29E+00

Notes:

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4D-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 3D: Retained Area, Boeing Tract 1, St. Louis, Missouri

	A 5-11	Indoor In	halation of		Indoor Inl	nalation of		
205	Average Soil Conc.	Vapors from	n Subsurface	Average GW	Vapor	s from	Sum of	Sum of HQ
COCs	Conc.	S	oil	Conc. (ug/L)	Groun	dwater	IELCR	(HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ		
1,1-Dichloroethene				2.6	8.83E-09	8.83E-04	8.83E-09	8.83E-04
1,2,4-Trimethylbenzene	15,668	NA	3.20E-05				NA	3.20E-05
1,3,5-Trimethylbenzene	18	NA	2.38E-07				NA	2.38E-07
Benzene	11	2.39E-11	1.36E-06	2.1	2.43E-10	2.43E-05	2.67E-10	2.57E-05
Chloroethane	3.6	5.61E-12	1.87E-09				5.61E-12	1.87E-09
Isopropylbenzene	16	NA	5.59E-08				NA_	5.59E-08
m,p-Xylene	21	NA	1.24E-08				NA	1.24E-08
n-Butylbenzene	7.3 .	NA	1.25E-08				NA	1.25E-08
n-Propylbenzene	15	NA	1.12E-08		1	•••	NA	1.12E-08
o-Xylene	6.3	NA	4.00E-11				NA	4.00E-11
p-Isopropyltoluene	18	NA	1.69E-09				NA	1.69E-09
sec-Butylbenzene	64	NA	2.84E-08				NA	2.84E-08
tert-Butylbenzene	18	NA	5.35E-09		***		NA	5.35E-09
Tetrachloroethene	5.3	8.83E-13	1.07E-08	6.2	1.33E-10	1.33E-05	1.34E-10	1.33E-05
Trichloroethene				3.3	1.30E-10	1.30E-05	1.30E-10	1.30E-05
Vinyl chloride			-	2.9	1.99E-08	1.99E-03	1.99E-08	1.99E-03
Xylenes, Total	12	NA	2.09E-09	-	***		NA	2.09E-09
Organics Total Risk		3.04E-11	3.37E-05		2.92E-08	2.92E-03	2.93E-08	2.96E-03
TPH-GRO	500	NA	1.86E-07	500	NA	2.72E-03	NA	2.72E-03
TPH-DRO	24,770	NA	9.12E-07	190	NA	3.36E-02	NA	3.36E-02
TPH-ORO	5,610	NA	5.22E-09	75	NA	3.52E-02	NA	3.52E-02
TPH Total Risk		NA	1.10E-06		NA	7.16E-02	NA	7.16E-02
Arsenic	9,700	NA	NA	25	NA	NA	NA	NA
Barium				1,978	NA	NA	NA ·	NA
Beryllium	470	NA	NA				NA	NA
Cadmium	412	NA	NA	8.2	NA	NA	NA	NA
Chromium				67	NA	NA	NA	NA
Copper	13,317	NA	NA				NA	NA
Manganese				2,156	. NA	NA	NA	NA
Nickel	12,247	NA	NA				NA .	, NA
Selenium	2,336	NA	NA				NA	NA
Thallium	5,967	NA	NA	***	_	-	NA	NA
Zinc	39,892	NA	NA				NA	NA
Metals Total Risk		NA	NA		NA	NA	NA	NA
CUMULATIVE RISK		3.04E-11	3.48E-05		2.92E-08	7.45E-02	2.93E-08	7.45E-02

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4D-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 3D: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cons	tact with Soil	Accidental S	-	Vapors and	ihalation of Particulates i Soil	Average GW Conc. (ug/L)	Dermal Co Groun		Outdoor In Vapors from		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	· HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
.1-Dichloroethene				_				2:6	3.95E-09	5.12E-05	4.05E-12	2.84E-08	3.95E-09	5.12E-05 1.53E-03
.2.4-Trimethylbenzene	9,401	NA	6.56E-05	NA	7.29E-05	NA	1.39E-03						NA NA	
.3.5-Trimethylbenzene	26	NA	1.80E-07	NA	2.00E-07	NA	9.59E-06						NA	9.97E-06
Benzene	6.1	8.85E-13	7.12E-07	9.83E-13	7.91E-07	5.02E-12	7.13E-06	2,1	4.09E-10	3.29E-04	1.67E-13	2.38E-07	4.16E-10	3.38E-04
Chloroethane	2.6	1.23E-13	7.41E-09	4.09E-14	2.47E-09	5.53E-13	4.61E-09		-				7.17E-13	1.45E-08
Ethylbenzene	8.1	NA	2.83E-08	NA	2.90E-08	NA	2.53E-08						NA	8.26E-08
sopropylbenzene	81	NA	2.82E-07	NA	3.14E-07	NA	1.96E-06						NA	2.56E-06
n,p-Xylene	21	NA	1.24E-08	. NA	4.12E-09	NA	2.01E-07		-				NA	2.17E-07
1-Butylbenzene	24	NA	6.90E-07	NA	2.30E-07	NA	6.66E-07	_				***	NA	1.59E-06
1-Propylbenzene	8.4	NA	2.92E-06	NA	3.25E-06	NA	1.53E-07	_					NA	6.32E-06
-Xylene	3.9	NA	2.25E-09	NA	7.51E-10	NA	3.79E-09						NA.	6.79E-09
-Isopropyltoluene	76	NA	8.86E-07	NA	2.95E-07	NA	3.38E-07	_	-				NA	1.52E-06
ec-Butylbenzene	33	NA	9.48E-07	NA	3.16E-07	NA	4.65E-07	I					NA	1.73E-06
ert-Butylbenzene	27	NA	7.92E-07	NA	2.64E-07	NA	3.19E-07	l <u> </u>					NA	1.38E-06
Tetrachloroethene	4.1	1.05E-13	1.42E-08	1.17E-12	1.57E-07	2.41E-13	7.27E-08	6.2	4.86E-09	6.54E-04	6.50E-14	1.96E-08	4.86E-09	6.55E-04
Frichloroethene				-				3.3	1.85E-10	1.97E-04	7.29E-14	8.56E-08	1.86E-10	1.97E-04
Vinyl chloride			-					2.9	1.29E-08	1.58E-04	8.06E-12	6.59E-08	1.29E-08	1.58E-04
Xylenes, Total	12	NA	2.09E-09	NA	2.14E-09	NA	4.78E-08						NA NA	5.20E-08
Benzo(a)pyrene	85	1.34E-09	NA	2.92E-09	NA .	7.84E-12	NA					1.000	4.27E-09	NA 2.95E-03
Organics Total Risk		1.34E-09	7.30E-05	2.92E-09	7.87E-05	1.37E-11	1.41E-03		2.23E-08	1.39E-03	1.24E-11	4.37E-07	2.66E-08	3.26E-05
TPH-GRO	500	NA	NA	NA	2.27E-06	NA	2.95E-06	500	NA	NA .	NA	2.74E-05	NA NA	6.04E-04
IPH-DRO	24,770	NA	5.46E-05	NA	1.66E-04	NA	4.75E-05	190	NA	NA NA	NA	3.35E-04		4.03E-04
TPH-ORO	5,610	NA	1.43E-05	NA	3.68E-05	NA	1.16E-06	75	NA	NA	NA	3.51E-04	NA NA	1.04E-03
TPH Total Risk		NA .	6.89E-05	NA	2.05E-04	NA	5.16E-05	<u> </u>	NA	NA	NA.	7.14E-04 NA	NA 8.95E-08	1.04E-03
Arsenic ·	11,294	2.81E-10	4.38E-05	8.91E-08	1.39E-02	1.48E-10	2.31E-06	25	NA	NA	NA NA	NA NA	8.93E-08 NA	1.39E-02 NA
3arium								1,978	NA	NA	NA		4.51E-10	3.64E-06
3eryllium	470	3.35E-10	2.73E-06	1.12E-10	9.10E-07	3.45E-12	5.04E-09				 	NA NA	1.48E-12	2.14E-04
Cadmium	269	NA	6.24E-06	NA NA	2.08E-04	1.48E-12	3.29E-08	8.2	NA .	NA _	NA NA		NA	NA
Chromium		<u> </u>						67	NA	NA	NA	NA NA	NA NA	1.36E-04
Соррег	13,317	NA	3.87E-06	NA NA	1.29E-04	NA	2.85E-06	-			 	 	NA NA	1.30E-04 NA
Manganese							ļ 	2,156	NA	NA	NA NA	NA		3.72E-05
Nickel	12,247	NA	3.56E-07	NA	2.37E-05	9.00E-12	1.31E-05	1			 -		9.00E-12	3.72E-03 1.58E-04
Selenium	1,293	NA	3.01E-05	NA	1.00E-04	NA	2.77E-05	-	<u> </u>		 -		NA NA	2.98E-02
Thallium	5,967	NA	8.67E-04	NA	2.89E-02	NA	4.57E-06				 			
Zinc	39,892	NA	1.55E-06	NA	1.29E-05	NA	8.14E-09	·			-		NA OOR OO	1.44E-05
Metals Total Risk		6.17E-10	9.56E-04	8.92E-08	4.32E-02	1.62E-10	5.06E-05	ļ	NA	NA	NA	NA	9.00E-08	4.42E-02
CUMULATIVE RISK		1.96E-09	1.10E-03	9.21E-08	4.35E-02	1.76E-10	1.51E-03	1	2.23E-08	1.39E-03	1.24E-11	7.14E-04	1.17E-07	4.82E-02

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4E-10(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3E: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Indeor Ini Vapors fren Se	Subsurface	Average GW Conc. (ug/L)	Vapor Groun	halation of s from dwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	· HQ		
1,2,4-Trimethylbenzene				2,500	NA	1.93E-02	NA NA	1.93E-02
Acetone	57	NA	6.36E-07	540	NA	1.43E-06	NA	2.07E-06
Benzene	704	4.29E-08	2.44E-03				4.29E-08	2.44E-03
Ethylbenzene	185	NA	7.85E-07	1,245	NA	7.12E-05	NA .	7.19E-05
Isopropyibeazene	28	NA	2.72E-06				NA	2.72E-06
Methyl tert-butyl ether	134	4.04E-11	3.75E-07		-	_	4.04E-11	3.75E-07
Methylene chloride	33	2.04E-10	4.05E-07		. 4		2.04E-10	4.05E-07
m,p-Xylene				5,300	NA	6.41E-04	NA	6.41E-04
Naphthalene	20	NA	2.67E-07	930	NA.	1.14E-03	NA	1.14E-03
n-Butylbenzene	72	NA	4.81E-07			_	NA	4.81E-07
n-Propylicenzene	115	NA	2.32E-06	380	NA	2.05E-04	NA	2.08E-04
sec-Butylbenzene	32	NA	3.84E-07		***	<u> </u>	NA.	3.84E-07
Toluene	377	NA	7.81E-06				NA	7.81E-06
Xylenes, total	362	NA	1.72E-06				NA	1.72E-06
Organics Tetal Risk		4.31E-08	2.45E-03		NA	2.14E-02	4.31E-08	2.38E-02
Aliphatics > nC6 to nC8 (TX1006)				4,917	NA	2.87E-03	NA	2.87E-03
Aliphatics > nC8 to nC10 (TX1006)			-	4,917	NA	8.43E-02	NA NA	8.43E-02
Aromatics > nC8 to nC10 (TX1006)				19,667	NA	1.10E-02	NA NA	1.10E-02
TPH-GRO	274,550	NA	2.80E-03	29,500	NA	9.82E-82	NA.	1.01E-61
Aliphatics > nC10 to nC12 (TX1006)				8,338	NA	2.14E-01	NA	2.14E-01
Aliphatics > nC12 to nC16 (TX1006)				8,338	NA .	9.29E-01	NA	9.29E-01
Aliphatics > nC16 to nC21 (TX1006)				8,338	NA	8.75E+00	NA	8.75E+00
Aromatics > nC10 to nC12 (TX1006)				8,338	NA .	1.51E-03	. NA	1.51E-03
Aromatics > nC12 to nC16 (TX1006)			-	8,338	NA	6.28E-04	NA	6.28E-04
Aromatics > nC16 to nC21 (TX1006)				8,338	NA	1.75E-04	NA	1.75E-04
TPH-DRO	2,312	NA.	2.33E-06	50,025	NA	9.90E+00	NA	9.90E+00
Aliphatics > nC21 to nC35 (TX1006)	-	_	_	373	NA	3.92E-01	NA	3.92E-01
Aromatics > pC21 to pC35 (TX1006)				4,477	NA	1.09E-05	NA	1.09E-05
TPH-ORO	2,844	NA	7.25E-08	4,850	NA	3.92E-01	NA.	3.92E-01
TPH Tetal Risk		NA	2.81E-03		NA	1.04E+01	NA	1.04E+01
CUMULATIVE RISK		4.31E-08	5.26E-03		NA	1.04E+01	4.31E-08	1.04E+01
Notes:								

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic ORO: Oil range organic

ug/kg: Micrograms per kilogram ug/L: Micrograms per liter

Table 4E-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 3E: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	tact with Soil	Accidental Se	Ingestion of		halation of Particulates Soil	Average GW Conc. (ug/L)		dwater	Vapors from	ibalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
1.2.4-Trimethylbenzene			_					2,500	NA	NA	NA NA	2.35E-04	NA ·	2.35E-04 1.24E-06
Acetone	57	NA	1.97E-07	NA	2.08E-07	NA NA	4.89E-07	540	NA	NA	NA NA	3.43E-07	NA TOOK IN	9.92E-04
Benzene	704	1.02E-10	8.18E-05	1.13E-10	9.09E-05	5.77E-10	8.19E-04						7.92E-10	
Ethylbenzene	185	NA	6.46E-07	NA	6.60E-07	NA	5.78E-07	1,245	NA_	2.04E-02	NA	8.34E-07	NA NA	2.04E-02
Isopropylbenzene	28	NA	9.76E-08	NA	1.08E-07	NA	6.79E-07						NA	8.85E-07
Methylene chloride	33	1.23E-12	1.92E-07	1.37E-12	2.13E-07	2.06E-12	1.02E-07						4.66E-12	5.07E-07
Methyl tert-butyl ether	134	2.21E-12	5.45E-08	2.45E-12	6.05E-08	8.50E-13	1.98E-07						5.51E-12	3.13E-07
m,p-Xylene	_				_			5,300	NA	4.69E-03	NA NA	7.76E-06	NA	4.70E-03
Naphthalene	20	NA	3.49E-07	NA	3.87E-07	NA	2.03E-06	930	NA	NA	NA.	6.79E-05	NA	7.06E-05
n-Butylbenzene	. 72	NA	. 2.08E-06	NA	6.93E-07	NA	7.57E-07			<u> </u>			NA	3.53E-06
n-Propylbenzene	115	NA	4.01E-05	NA	4.46E-05	NA	2.11E-06	380	NA	NA	NA	2.26E-06	NA	8.90E-05
sec-Butylbenzene	32	NA	9.15E-07	NA	3.05E-07	NA	4.49E-07		-				' NA	1.67E-06
Toluene	377	NA	6.56E-08	NA	7.29E-07	NA	4.14E-06		-				NA	4.93E-06
Xylenes, Total	362	NA	6.31E-08	NA	6.45E-08	NA	1.44E-06						NA	1.57E-06
Organics Total Risk		1.05E-10	1.27E-04	1.17E-10	1.39E-04	5.80E-10	8.32E-04		. NA	2.51E-02	NA.	3.14E-04	8.02E-10	2.65E-02
Aliphatics > nC6 to nC8 (TX1006)		· _						4,917	NA	NA	NA	2.54E-05	NA NA	2.54E-05
Aliphatics > nC8 to nC10 (TX1006)					_	_	_	4,917	NA	NA	NA	7.47E-04	NA NA	7.47E-04
Aromatics > nC8 to nC10 (TX1006)							-	19,667	NA	NA	NA.	1.18E-04	NA NA	1.18E-04
TPH-GRO	274,550	NA	NA	NA	1.25E-03	NA	1.62E-03	29,500	NA	NA.	NA	8.90E-04	NA	3.76E-03
Aliphatics > nC10 to nC12 (TX1006)						_		8,338	NA	NA	NA	1.90E-03	NA.	1.90E-03
Aliphatics > nC12 to nC16 (TX1006)								8,338	NA.	NA	NA	8.22E-03	NA	8.22E-03
Aliphatics > nC16 to nC21 (TX1006)						_		. 8,338	NA	NA	NA	7.75E-02	NA	7.75E-02
Aromatics > nC10 to nC12 (TX1006)								8,338	NA	NA	NA	2.28E-05	NA NA	2.28E-05
Aromatics > nC12 to nC16 (TX1006)						·		8,338	NA	NA	NA	1.58E-05	NA NA	1.58E-05
Aromatics > nC16 to nC21 (TX1006)		_						8,338	NA	NA	NA NA	1.19E-05	NA NA	1.19E-05
TPH-DRO	2,312	NA	5.10E-06	NA	1.55E-05	NA	4.44E-06	50,025	NA	NA	NA	8.76E-02	NA NA	8.77E-02
Aliphatics > nC21 to nC35 (TX1006)								373	NA	NA	NA	3.47E-03	· NA	3.47E-03
Aromatics > nC21 to nC35 (TX1006)								4,477	NA.	NA	NA_	3.56E-06	NA	3.56E-06
TPH-ORO	2,844	NA	7.25E-06	NA	1.86E-05	NA	5.87E-07	4,850	NA	NA	NA	3.47E-03	NA.	3.50E-03
TPH Total Risk		NA	1.23E-05	NA	1.28E-03	NA	1.62E-03		NA	NA	NA	9.20E-02	NA	9.49E-02
CUMULATIVE RISK	 	1.05E-10	1.39E-04	1.17E-10	1.42E-03	5.80E-10	2.45E-03		NA	2.51E-02	NA	9.23E-02	8.02E-10	1.21E-01

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4F-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3F: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Indoor Int Vapors from So	Subsurface	Average GW Conc. (ug/L)	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ		
TPH-GRO				500	NA	2.86E-03	NA	2.86E-03
TPH-DRO				514	NA	9.57E-02	NA	9.57E-02
TPH-ORO				1,543	NA	7.62E-01	NA	7.62E-01
TPH Total Risk		NA	NA		NA	8.61E-01	NA	8.61E-01
CUMULATIVE RISK		NA	NA		NA	8.61E-01	NA	8.61E-01

Notes:

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3F: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	tact with Soil	Accidental Se	Ingestion of oil	Vapors and		Average GW Conc. (ug/L)	Groun	ontact with dwater		nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
i	(ug/kg)	IELCR	но	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
								500	NA	NA	NA	2.74E-05	NA	2.74E-05
TPH-GRO								514	NA	NA	NA.	9.07E-04	NA NA	9.07E-04
TPH-DRO											NA.	7.22E-03	NA	7.22E-03
TPH-ORO			-		_	l		1,543	NA	NA	INA.			
		NA.	NA	NA	NA	NA	NA		NA	NA	NA	8.16E-03	NA.	8.16E-03
TPH Total Risk								 		NA	NA	8.16E-03	NA	8.16E-03
CUMULATIVE RISK		NA	NA.	NA	NA NA	NA.	NA		NA.	NA.	17/4	0.1017-03	14/2	1 0.102 00

Notes:

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4G-18(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3G: Retained Area, Booling Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapers free	nalation of a Subsurface oil	Average GW Conc. (ug/L)	Vapers frem	ulation of Groundwater	Sum of IELCR	Som of HQ (HI)
•	(ug/kg)	IELCR	HQ		IELCR	HQ		
1,2,4-Trimethylbenzene	840	NA	2.72E-06	5.5	NA	3.55E-05	NA	3.82E-05
1,3,5-Trimethylbenzene	326	NA	6.74E-06			-	NA	6.74E-06
Acetone	820	NA	5.35E-07				NA	5.35E-07
Benzene	548	1.93E-09	1.10E-04	484	5.82E-08	5.82E-03	6.02E-08	5.93E-03
Ethylbenzene	1,010	NA	2.48E-07			-	NA	2.48E-07
m,p-Xylene	2,650	NA	2.51E-06	_			NA	2.51E-06
Methyl tert-butyl ether	378	6.57E-12	6.11E-08				6.57E-12	6.11E-08
Naphthalene	478	. NA	3.69E-07				NA	3.69E-07
o-Xylene	1,490	NA	1.51E-08		_		NA	1.51E-08
p-Isopropyltoluene	416	NA	6.09E-08	T		+	NA	6.09E-08
Toluene	5,700	NA	6.84E-06 ·	T = .			NA	6.84E-06
Xylenes, Total	3,550	NA	9.79E-07	_	-		NA	9.79E-07
Organics Total Risk		1.94E-09	1.31E-04	Ī	5.82E-08	5.86E-03	6.02E-08	5.99E-43
Aliphatics > nC6 to nC8 (TX1006)		_	-	1,680	NA	9.22E-04	NA	9.22E-04
Aliphatics > nC8 to nC10 (TX1006)			_	1,680	· NA	2.71E-02	NA	2.71E-02
Aromatics > nC8 to nC10 (TX1006)		, ***		1,680	NA	8.17E-04	NA	8.17E-04
TPH-GRO	3,280	NA	1.94E-06	5,040	NA	2.88E-02	`NA	2.88E-02
Aliphatics > nC10 to nC12 (TX1006)				222	NA	5.38E-03	NA.	5.38E-03
Aliphatics > nC12 to nC16 (TX1006)		1		889	NA	9.32E-02	NA	9.32E-02
Aliphatics > aC16 to nC21 (TX1006)			-	222	NA	2.20E-01	NA	2.20E-01
Aromatics > nC10 to nC12 (TX1006)		-	•	222	NA	3.17E-05	· NA	3.17E-05
Aromatics > nC12 to nC16 (TX1006)				222	NA	1.21E-05	, NA	1.21E-05
Aromatics > nC16 to nC21 (TX1006)				222	NA	3.12E-06	NA	3.12E-06
TPH-DRO	85,750	NA	5.00E-06	2,000	NA	3.18E-01	NA	3.18E-01
Aliphatics > nC21 to nC35 (TX1006)				2,432	NA	2.40E+00	NA	2.40E+00
Aromatics > nC21 to nC35 (TX1006)			1.	608	NA	9.59E-07	NA	9.59E-07
TPH-ORO	1,470,000	NA	2.17E-86	3,040	NA	2.40E+00	NA	. 2.40E+00
TPH Tetal Risk		NA	9.11E-06		NA	2.75E+00	.NA	2.75E+00
CUMULATIVE RISK		NA	1.40E-04		5.82E-08	2.76E+00	6.02E-08	2.76E+00

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram ug/L: Micrograms per liter

Table 4G-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3G: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Con	tact with Soil	•	Ingestion of oil	Vapors and	nhalation of Particulates a Soil	Average GW Conc. (ug/L)	Groun	ontact with dwater		nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	НQ	IELCR	HQ	[i	IELCR	HQ	IELCR	HQ		1
1,2,4-Trimethylbenzene	840	NA	5.86E-06	NA	6.51E-06	NA	1.24E-04	5.5	NA	NA	NA	5.23E-07	NA -	1.37E-04
1,3,5-Trimethylbenzene	326	NA	2.28E-06	NA	2.53E-06	NA	1.22E-04		-				NA	1.26E-04
Acetone	820	NA	2.86E-06	NA	3.02E-06	NA	7.10E-06						NA	1.30E-05
Benzene	548	7.91E-11	6.37E-05	8.79E-11	7.07E-05	4.49E-10	6.38E-04	484	9.32E-08	7.50E-02	3.81E-11	5.41E-05	9.38E-08	7.58E-02
Ethylbenzene	1,010	NA	3.52E-06	NA	3.60E-06	NA	3.15E-06						NA	1.03E-05
m,p-Xylene	2,650	NA NA	1.54E-06	NA	5.13E-07	NA	2.50E-05	-				 	NA	2.71E-05
Methyl tert-butyl ether	378	6.21E-12	1.53E-07	6.90E-12	1.70E-07	2.39E-12	5.56E-07			_			1.55E-11	8.79E-07
Naphthalene	478	NA	8.33E-06	NA	9.25E-06	NA	4.86E-05						NA NA	6.61E-05
o-Xylene	1,490	NA	8.66E-07	NA	2.89E-07	NA	1.46E-06						NA NA	2.61E-06
p-Isopropyltoluene	416	NA	4.84E-06	NA	1.61E-06	NA	1.84E-06					<u> </u>	NA.	8.30E-06
Toluene	5,700	NA	9.94E-07	NA	1.10E-05	NA	6.26E-05						NA.	7.47E-05
Xylenes, Total	3,550 ·	NA	6.19E-07	NA	6.33E-07	NA	1.41E-05						NA NA	1.54E-05
Organics Total Risk		8.53E-11	9.55E-65	9.48E-11	1.10E-04	4.51E-19	1.05E-03		9.32E-08	7.50E-02	3.81E-11	5.46E-05	9.38E-08	7.63E-02
Aliphatics > nC6 to nC8 (TX1006)							_	1,680	NA	NA	NA	8.75E-06	NA	8.75E-06
Aliphatics > nC8 to nC10 (TX1006)				_	_			1.680	NA	NA	NA	2.57E-04	NA	2.57E-04
Aromatics > nC8 to nC10 (TX1006)		_	_					1,680	NA	NA	NA	1.01E-05	NA	1.01E-05
TPH-GRO	3,280	NA	. NA	NA	1.49E-05	NA	1.93E-05	5,040	NA	NA	NA	2.76E-04	NA	3.10E-04
Aliphatics > nC10 to nC12 (TX1006)	_							222	NA	NA .	NA	5.10E-05	NA	5.10E-05
Aliphatics > nC12 to nC16 (TX1006)								889	NA	NA	NA	8.83E-04	NA	8.83E-04
Aliphatics > nC16 to nC21 (TX1006)		***	-			_		222	NA	NA	NA	2.08E-03	NA	2.08E-03
Aromatics > nCl0 to nCl2 (TX1006)								222	NA	NA	NA	6.18E-07	NA	6.18E-07
Aromatics > nC12 to nC16 (TX1006)								222	NA .	NA	NA	4.32E-07	NA	4.32E-07
Aromatics > nC16 to nC21 (TX1006)								222	NA	NA	NA	3.44E-07	NA	3.44E-07
ГРH-DRO	85,750	NA	1.89E-04	NA	5.75E-04	NA	1.65E-04	2,000	NA	NA -	NA.	3.02E-03	NA	3.94E-03
Aliphatics > nC21 to nC35 (TX1006)			_		-			2,432	NA	NA	NA.	2.28E-02	NA NA	2.28E-02
Aromatics > nC21 to nC35 (TX1006)								608	NA	. NA	NA	7.99E-07	NA	7.99E-07
TPH-ORO	1,470,000	NA	3.75E-03	NA.	9.64E-03	NA	3.04E-04	3,640	NA	NA	NA	2.28E-02	NA	3.64E-02
FPH Total Risk		NA .	3.93E-03	NA	1.02E-02	NA	4.87E-04		NA	NA	NA	2.61E-02	NA	4.07E-02
CUMULATIVE RISK		8.53E-11	4.03E-03	9.48E-11	1.03E-02	4.51E-10	1.54E-03		9.32E-08	7.50E-02	3.81E-11	2.61E-02	9.38E-08	1.17E-01

Notes:

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 4H-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 3H: Retained Area, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of n Subsurface oil	Average GW Conc. (ug/L)		halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	НQ		IELCR	HQ		
TPH-GRO				275	NA	6.42E-04	NA	6.42E-04
TPH-DRO				2,520	· NA	5.74E-01	NA	5.74E-01
TPH-ORO				213	NA	1.29E-01 ·	NA	1.29E-01
TPH Total Risk		NA	NA		NA	7.04E-01	NA	7.04E-01
Arsenic				80	NA	NA	NA	NA
Manganese				8,860	NA	NA	NA	NA
Metals Total Risk		NA	NA		NA	NA	NA	NA
CUMULATIVE RISK		NA	NA		NA	7.04E-01	NA	7.04E-01

Notes:

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

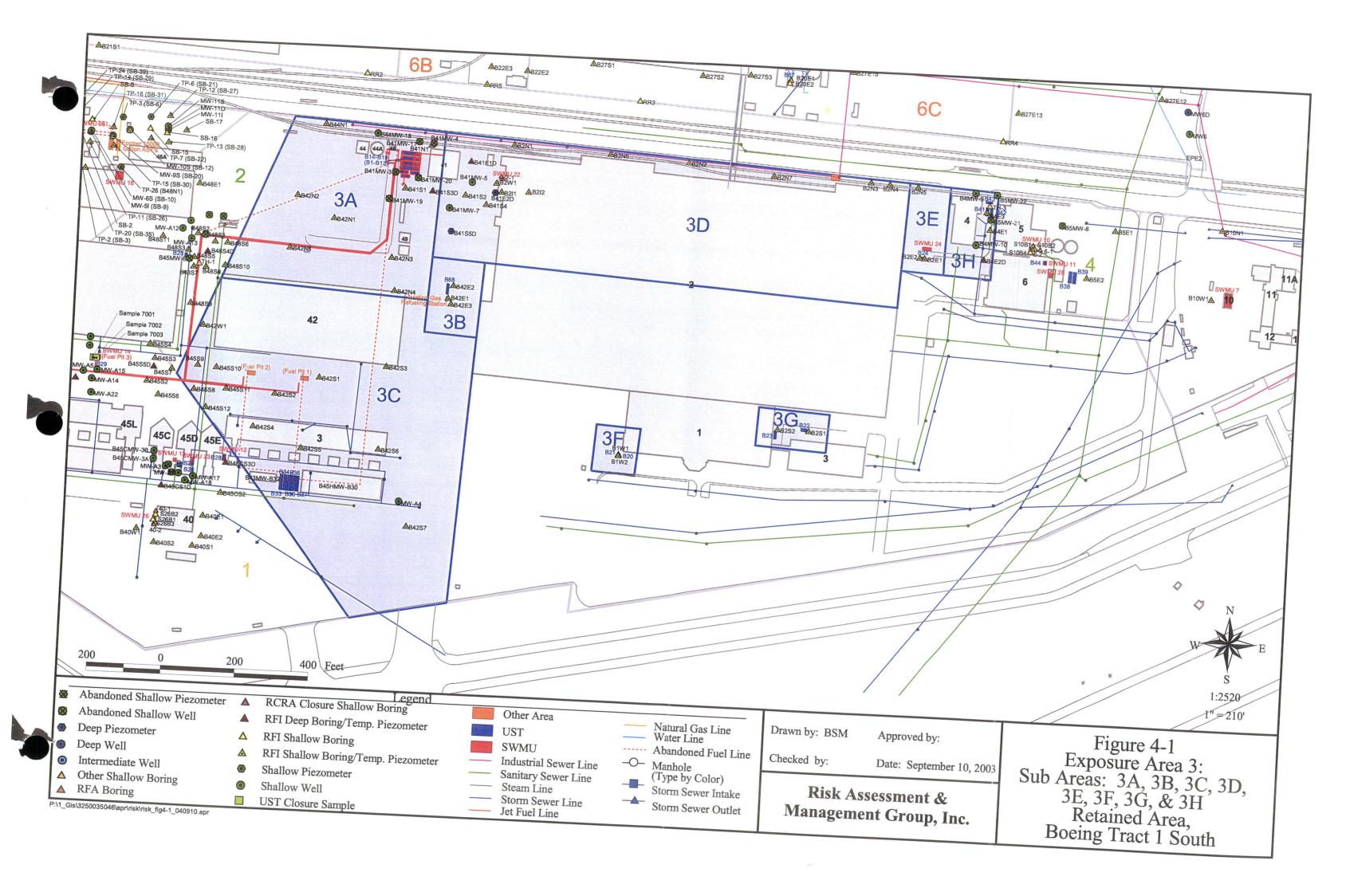
Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 3H: Retained Area, Boeing Tract 1, St. Louis, Missouri

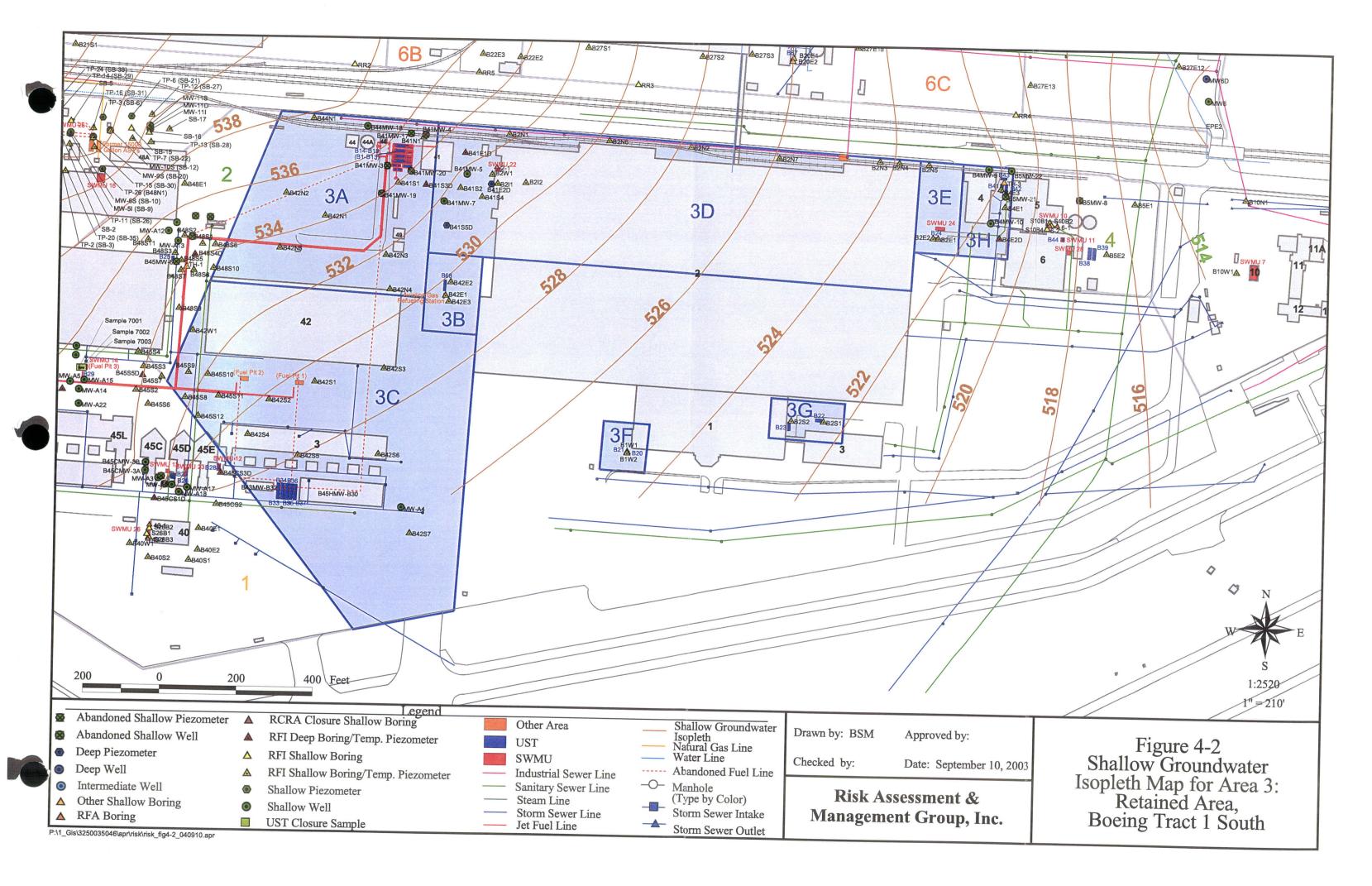
COCs	Average Soil Conc.	Average Soil	Dermal Cont	act with Soil	Accidental Sc		Outdoor In Vapors and from	Particulates	Average GW Conc. (ug/L)	Group	iwater		Groundwater	Sum of IELCR	Sum of HQ (HI)
	(matter)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ	NA	3.32E-07	
	(ug/kg)	NA NA	7.32E-08	NA	7.73E-08	NA	1.82E-07					_=-	NA NA	3.06E-08	
Acetone	21			NA.	5.68E-09	NA	1.98E-08							6.91E-08	
Methyl ethyl ketone (MEK)	8.8	NA NA	5.11E-09			2.80E-13	1.39E-08		1	-	-		6.35E-13		
Methylene chloride	4.5	1.68E-13	2.62E-08	1.87E-13	2.91E-08			 					NA	2.58E-08	
Xylenes, total	6.0	NA	1.04E-09	NA .	1.06E-09	NA	2.37E-08		NA NA	NA	NA	NA	6.35E-13	4.58E-07	
Organics Total Risk		1.68E-13	1.06E- 8 7	1.87E-13	1.13E-07	2.80E-13	2.39E-07		NA NA	NA NA	NA NA	4.98E-06	NA	8.90E-06	
TPH-GRO	375	NA	NA	NA	1.70E-06	NA	2.21E-06	275		NA NA	NA NA	4.41E-03	NA	4.81E-03	
	36,120	NA	7.97E-05	NA	2.42E-04	NA	6.93E-05	2,520	NA			9.89E-04	NA	1.02E-03	
TPH-DRO	3,159	NA	8.05E-06	NA	2.07E-05	NA	6.52E-07	213	NA NA	NA NA	NA		NA.	5.83E-03	
TPH-ORO	3,139		8.77E-05	NA	2.65E-04	NA	7.22E-05		NA	NA	NA_	5.41E-03			
TPH Total Risk		NA NA	6.77E203					80	NA	NA	NA	NA	NA	NA NA	
Arsenic					 _ = _	 		8,860	NA	NA	NA	NA	NA NA	NA	
Manganese	<u> </u>					 _	NA NA	1 0,000	NA.	NA	NA	NA	NA	NA_	
Metals Total Risk		NA	NA.	NA NA	NA	NA NA		 	NA NA	NA	NA	5.41E-03	6.35E-13	5.83E-03	
CUMULATIVE RISK		1.68E-13	8.78E-05	1.87E-13	2.65E-04	2.80E-13	7.24E-05		L NA	1/0	1 1/1				

Notes:

NA: Not available

-: Risk evaluation was not performed.


HI: Hazard index


TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic ug/kg: Micrograms per kilogram

ATTACHMENT 4-A

ECOLOGICAL RISK ASSESSMENT – AREA 3 RETAINED AREA TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1. Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

Yes, the adjacent Area 9 to the east is located above a portion of Coldwater Creek that flows through an enclosed culvert. However, Area 3 is up cross gradient about 550 feet southwest from the portion of Coldwater Creek that enters an open culvert and continues to flow north.

2. Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?

No.

3. Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?

No, the site is entirely paved.

4. Has a process (operational) discharge or storm water permit not been issued for the site?

Site-wide, there is a storm water permit.

5. Is the site located in a known Karst environment (see Reference map)?

No.

6. Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.

No.

7. Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?

No.

8. Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?

ATTACHMENT 4-B

ECOLOGICAL RISK ASSESSMENT – AREA 3 RETAINED AREA TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, groundwater has been impacted.

1b. Are contaminants associated with the site mobile in groundwater?

Yes.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Yes, Coldwater Creek is located to the east below a portion of the adjacent Area 9 in an enclosed culvert, and flows north into an open culvert about 550 feet northeast of Area 3.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

No, groundwater impact is minimal, and located primarily about 700 feet from the creek; therefore, impact to the creek from Area 3 is unlikely.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

No.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

3.	Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?
	No.
4a.	Are contaminants present in surface soil or on the surface of the ground?
	No.
4b.	Are potential ecological receptors on the site?
	No.
4.	Could contaminants reach ecological receptors via direct contact?
	No.
5a.	Are contaminants present on the site volatile?
	Yes.
5b.	Could contaminants on the site be transported in air as dust or particulate matter?
	No, the site is entirely paved, and the impact is not in the surficial soil.
5.	Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?
	No, the site is entirely paved, and the impact is not in the surficial soil.
6a.	Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?
	Yes.
6b.	Are contaminants found in soil on the site taken up by plants growing on the site?
	No, the site is entirely paved.
6c.	Do potential ecological receptors on or near the site feed on plants found on the site?
	No, the site is entirely paved.
6d.	Do contaminants found on the site bioaccumulate?
	Yes, some metals.
6.	Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

5.1 INTRODUCTION

The Power Plant, also referred to as Area 4, is located in the southeastern portion of the Facility, adjacent and south of Norfolk and Western Railroad Company railroad tracks and Banshee Road. Area 4 is bounded by Area 3 on the west and south, and by Area 9 on the east (see Figure 5-1). This section describes the constituents in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

5.2 DESCRIPTION OF AREA

The Power Plant is an area approximately 400 feet long by 300 feet wide. Within this Area, there are two main buildings and a parking lot.

5.2.1 Potential Sources within Area

The following three SWMUs were identified in this Area during the RFA investigation (SAIC, 1995):

- SWMU 10: Current 375-gallon Waste Oil AST;
- SWMU 11: Former 1,000-gallon Waste Oil UST; and
- SWMU 28: Leaking Transformer.

Three USTs (see Table 5-1) has been identified in this Area, ranging in size from 1,000 gallons to 20,000 gallons. The contents of the USTs have been fuel oil and waste oil. The 20,000-gallon fuel oil UST (B39) is the only UST currently active in this Area.

Hence, within this Area, we anticipate constituents of concern to be petroleum hydrocarbons, metals, and PCBs.

5.2.2 Soil Stratigraphy within Area

There are five soil borings within this Area, see Table 5-2 for further details of these borings. Based on the soil boring logs, the soil stratigraphy within this Area is clay, silty clay, and clayey silt from approximately 2 feet bgs to 24 feet bgs. For additional details, refer to the RFI (MACTEC, 2004). No borings deeper than 24 feet were advanced in this Area. Based on borings outside this Area, bedrock is at approximately 80 feet bgs (which consists of limestone). No karst features have been identified in this Area. To evaluate the risk to indoor inhalation, a source average depth of 3 feet (91 cm) was used (See Table 1-9).

5.2.3 Hydrogeology within Area

There are no monitoring wells located within this Area. Based on recent (since 2000) groundwater gauging data in monitoring wells outside this Area, groundwater flow within the shallow zone is to the east (see Figure 5-2) towards Coldwater Creek, which is located about 175 feet east of this Area below the surface in an enclosed culvert. Based on the soil boring logs,

shallow groundwater appears to be present at about 9 feet bgs. To evaluate the risk to indoor inhalation, an average depth to groundwater of 9 feet (365 cm) was used (See Table 1-13).

5.3 LAND USE

5.3.1 Current Land Use

The Area is owned by Boeing and is being used as a power plant. Building 5 has a basement with 18-foot ceilings. Boeing intends to retain ownership of this Area.

5.3.2 Future Land Use

This Area is anticipated to remain in use as a power plant. When and if the power plant is decommissioned, the future land use could change and risk could be re-evaluated at that point in time.

5.4 AVAILABLE DATA

The following provides an overview of the available data within the Area:

- Five soil borings have been sampled within this Area since 1998 resulting in seven individual soil samples.
- Two soil borings were completed as piezometers in this Area and have been sampled for groundwater up to two times for selected constituents during July 2003.
- Due to the lack of data in Area 4, it was decided to incorporate data from six additional sample locations from Area 3H that are located along the eastern boundary of Area 3H adjacent to Area 4. The additional samples were obtained in November 2002 and July 2003 from the following locations:
 - o Soil B4E1-14, B4E2D-10, and B4E3-18
 - o Groundwater B4E1W, B4E3W and duplicate, and B5MW-22W

5.5 CONSTITUENTS IDENTIFIED WITHIN AREA

5.5.1 Soil

Since 1998 to date, seven soil samples have been collected within Area 4 during two investigations. Also, three samples collected in November 2002 and July 2003 from Area 3H along the boundary with Area 4 were used. These were B4E1-14, B4E2D-10, B4E3-18. These samples have been analyzed for a comprehensive list of constituents that included VOCs, SVOCs, PAHs, PCBs, TPH, and metals. Typical laboratory methods that were used include SW 846 Methods 6010, 7060, 7421, 7471, 7740, 8081, 8240, 8260, 8270, 8310, OA1, and OA2. Appendix E-1 includes a comprehensive table of the laboratory data for constituents detected at least once in soil samples from Area 4. The Area 3H samples are included in Appendix D-1. Table 5-3 presents a listing of the soil samples used in the risk calculations. Evaluation of the data on Tables 5-4(a), 5-4(b), 5-4(c), and 5-4(d) indicated that the following 29 constituents were detected in at least one soil sample:

META	ALS	ORG	ANICS
Beryllium	Lead	Acetone	Benzo(g,h,i)perylene
	Mercury	Methylene chloride	Benzo(k)fluoranthene
	Nickel	Methyl ethyl ketone	Chrysene
Cadmium	Selenium	Toluene	Dibenzo(a,h)anthracene
	Zinc	Xylenes, total	Fluoranthene
		Anthracene	Indeno(1,2,3-cd)pyrene
Соррег		Benzo(a)anthracene	Phenanthrene
		Benzo(a)pyrene	Pyrene
		Benzo(b)fluoranthene	TPH

The soil data was further evaluated for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. The data for soil samples collected at or above a depth of 9 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and included barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, and zinc. Based on this elimination, the following 18 constituents were considered further:

METALS	ORG	ANICS
Arsenic Selenium	Acetone	Benzo(g,h,i)perylene
	Methylene chloride	Benzo(k)fluoranthene
	Methyl ethyl ketone	Chrysene
	Toluene	Dibenzo(a,h)anthracene
	Anthracene	Fluoranthene
	Benzo(a)anthracene	Indeno(1,2,3-cd)pyrene
	Benzo(a)pyrene	Phenanthrene
	Benzo(b)fluoranthene	Pyrene

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and included barium, beryllium, cadmium, chromium, copper, lead,

mercury, nickel, and zinc. Based on this elimination, the following 20 constituents were considered further:

METALS	ORG	ANICS
Arsenic	Acetone	Benzo(g,h,i)perylene
Selenium	Methylene cloride	Benzo(k)fluoranthene
	Methyl ethyl ketone	Chrysene
	Toluene	Dibenzo(a,h)anthracene
	Xylenes, total	Fluoranthene
	Anthracene	Indeno(1,2,3-cd)pyrene
	Benzo(a)anthracene	Phenanthrene
	Benzo(a)pyrene	Pyrene
	Benzo(b)fluoranthene	TPH

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the construction worker.

5.5.2 Groundwater

During the various investigations conducted within this Area, groundwater samples were analyzed for a comprehensive list of constituents that included VOCs, SVOCs including PAHs, PCBs, TPH, and metals using laboratory analysis SW 846 Methods 6010, 7470, 8081, 8260, 8270, OA1, and OA2. Appendix E-2 includes a comprehensive list of the analytical data for constituents detected at least once in groundwater samples for Area 4. Five additional samples including one duplicate collected in November 2002 and July 2003 from Area 3H along the boundary with Area 4 were used. Appendix D-2 provides comprehensive data for the Area 3H samples B4E1W, B4E3W, and B5MW-22W. Table 5-5 presents a listing of the groundwater samples used in the risk calculations.

Evaluation of the data on Tables 5-6(a), 5-6(b), 5-6(c), and 5-6(d) indicated that the following 29 constituents were detected in at least one groundwater sample:

METALS	ORGANI	CS/TPH
Arsenic	1,2-Dichlorobenzene	Carbazole
Barium	Acetone	Chrysene
Chromium	Carbon Disulfide	Dibenzofuran
Copper	Methylene Chloride	Diethylphthalate
Lead	Naphthalene	Di-n-butylphthalate
Manganese	Toluene	Fluoranthene
Mercury	Acenaphthene	Fluorene
Nickel	Anthracene	Phenanthrene
Zinc	Benzo(a)anthracene	Pyrene
	Benzo(b)fluoranthene	TPH(2 types)

Acetone was not considered further since it was the only VOC detected in the specific sample. The maximum detected concentration for each constituent was compared with various screening

criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. These included 1,2-dichlorobenzene, carbon disulfide, methylene chloride, naphthalene, toluene, acenaphthene, anthracene, chrysene, dibenzofuran, diethylphthalate, di-n-butylphthalate, fluoranthene, fluorene, phenanthrene, pyrene, barium, chromium, copper, mercury, nickel, and zinc. As discussed in Section 1.9.11, lead was also eliminated. The remaining six constituents are presented in the table below:

METALS	ORGANIC	CS/TPH
Arsenic	Benzo(a)anthracene	Carbazole
Manganese	Benzo(b)fluoranthene	TPH (2 types)

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for groundwater.

5.6 FREE PRODUCT

No free product has been observed within this Area.

5.7 EXPOSURE MODEL

5.7.1 Current Conditions

This Area is comprised of the power plant buildings and parking lots. Hence, the receptors under current conditions would be the non-residential worker and a visitor/maintenance worker to the Area. As the exposure duration for the visitor/maintenance worker is small relative to the on-site non-residential worker, the risk from any soil or groundwater impact will not be quantitatively evaluated for the visitor/maintenance worker.

Exhibit 5-1 presents the EM for the current non-residential worker.

EXHIBIT 5-1. EM FOR CURRENT ON-SITE NON-RESIDENTIAL WORKER							
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification					
Dermal Contact with Surficial Soil	NC	The Area is entirely paved; therefore, contact with surficial soil is unlikely.					
Ingestion of Surficial Soil	NC	The Area is entirely paved; therefore, ingestion of surficial soil is unlikely.					
Indoor Inhalation of Vapors from Subsurface Soil	С	Volatile constituents were detected in soils in this Area; therefore, this pathway is complete.					
Indoor Inhalation of Vapors from Groundwater	С	Vapors from groundwater may migrate into the buildings; hence, this pathway is complete.					
Notes: NC: Not Complete C: Complete Exposure pathways highlighted in bold indicate that these pathways are complete and will be quantitatively evaluated.							

5.7.2 Future Conditions

Under future conditions, the land use in this Area is not expected to alter; hence, the receptors will remain the same in the future. As such, they will not be quantitatively evaluated, as the comparison for the current conditions will be protective of the future non-residential worker. Groundwater concentrations are expected to decrease in the future through natural attenuation processes, further reducing the risk.

In the future, construction work could be performed within this Area; therefore, the potential future construction worker is a receptor. Exhibit 5-2 presents the EM for the construction worker.

Scenario, Receptor, and Pathways/Routes Analyzed	C or NC	Justification
Dermal Contact with Soil	С	Soil is impacted at depths less than 20 feet, which is considered the construction zone; therefore, contact is possible.
Accidental Ingestion of Soil	С	Soil is impacted at depths less than 20 feet, which is considered the construction zone; therefore, ingestion is possible.
Outdoor Inhalation of Vapors and Particulates from Soil	С	Soil is impacted within this Area, and some of the constituents identified are volatile; therefore, this pathway is complete.
Dermal Contact with Groundwater	С	A construction worker may come in contact with groundwater located at a depth of about 12 feet bgs. Therefore, this pathway is considered complete.
Outdoor Inhalation of Vapors from Groundwater	С	Vapors from groundwater may migrate upwards through the unsaturated zone and into the ambient air. Hence, this pathway is complete.

5.8 REPRESENTATIVE CONCENTRATIONS

Representative concentrations for this Area were determined to be the Area-wide average in soil and groundwater. This was chosen as the sampling activities that have been performed have all been within the areas of most impact; therefore, the mean concentration represents a conservative estimate of the overall impact to the Area. Additionally, no information is known regarding the

quantitatively evaluated.

likely future location of a building; therefore, it is prudent to identify the source areas as the representative concentration.

Tables 5-7(a), 5-7(b), and 5-8 present the soil and groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. None of the constituents exceeded a ratio of 10.

5.9 CALCULATION OF RISK

Tables 5-9(a) and 5-9(b) present the results for the non-residential worker and construction worker, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk, which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

5.9.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 5-9(a), the cumulative IELCR is 2.17×10^{-10} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 5-9(a) the cumulative HI for all COCs and all routes of exposure is 0.47, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

5.9.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 5-9(b), the cumulative IELCR is 2.6×10^{-6} that is below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 5-9(b), the cumulative HI is 0.014, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

5.10 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek. Area 4 is located approximately 175 feet west of the portion of Coldwater Creek that flows through an enclosed culvert, and about 200 feet southwest of the portion of Coldwater Creek that enters an open culvert and continues to flow north. There are no known unpermitted conduits present that could carry impacts from Area 4 to Coldwater Creek. Considering the geology, groundwater flow characteristics, and the chemical types and concentrations of impacts in Area 4, it is not likely that migration of impacts from Area 4 to Coldwater Creek will occur. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 5-A and Attachment 5-B. These checklists identified no potential ecological receptors or issues.

5.11 CONCLUSIONS

The calculated risks for all the COCs and all potentially complete routes of exposure for the non-residential worker and the construction worker are below the acceptable target risks.

Table 5-1
Summary of Underground Storage Tanks (USTs) Present Historically within Area 4: Power Plant
Boeing Tract 1, St. Louis, Missouri

UST No.	Location	Volume (Gallons)	Contents	Construction Material	Year Installed	Status	Comments
B38	Bldg. 6 (Boeing)	20,000	Fuel Oil	Coated Double Wall Steel	1989	Closed	In Place
B39	Bldg. 6 (Boeing)	20,000	Fuel Oil	Coated Double Wall Steel	1989	Active	
.B44	Bldg. 6 (Boeing)	1,000	Waste Oil	Single Wall Steel	1970	Removed 1988	Excavated

Table 5-2
Soil Boring Information for Area 4: Power Plant
Boeing Tract 1, St. Louis, Missouri

Boring	Date Drilled
B5E1	7/24/2003
B5E2	7/24/2003
S10B1	2/3/1998
S10B2	2/3/1998
S10B4	2/3/1998

Table 5-3
Soil Samples Used in Average Concentration Calculations in Area 4: Power Plant
Boeing Tract 1, St. Louis, Missouri

	Volatile Organic Compounds		ganic Petroleum		Polynuclear Aromatic Hydrocarbons		Polychlorinated Hiphenyls		Metals	
	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker
	B5E1-6	B5E1-6		B4E1-14	S10B1 4-5	S10B1 4-5			B5E1-6	B5E1-6
		B5E2-6	· · · · · · · · · · · · · · · · · · ·	B4E2D-10	S10B1 6-7	S10B1 6-7			B5E2-6	B5E2-6
		B4E1-14		B4E3-18	S10B2 3-5	S10B2 3-5			S10B1 4-5	S10B1 4-5
		B4E3-18			S10B2 5-6	S10B2 5-6			S10B1 6-7	S10B1 6-7
l i					S10B4 3-5	S10B4 3-5			S10B2 3-5	S10B2 3-5
•					 				S10B2 5-6	S10B2 5-6
									S10B4 3-5	S10B4 3-5
		·				 				B4E3-18
			 		· · · · · · · · · · · · · · · · · · ·	 				

Table 5-4(a) Soil Constituents Average Concentrations for VOCs in Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

8	VOCs (ug/kg)							
Sample ID	ACETONE	METHYL ETHYL KETONE (MEK)	METHYLENE CHLORIDE	TOLUENE	KYLENES, TOTAL			
Non- Residential Worker								
B5E1-6	10	2.5	2.5	3.1	2.5 2.5			
B5E2-6	36	7.6	2.8	2.5	2.5			
\$10B1 4-5	16	NA	NA	NA	3.1			
S10B2 3-5	51	NA	NA	NA	3.1			
S10B2 5-6	31	NA	NA	NA	3,25			
S10B4 3-5	140	NA	NA	NA	3.2			
Average Concentration - Only Samples With VOC Detections	23	5.05	2.65	2.8				
Construction Worker								
B5E1-6	10	2.5	2.5	3.1	2.5			
B5E2-6	36	7.6	2.8	2.5	2.5			
S10B1 4-5	16	NA	NA	NA.	3.1			
S10B2:3-5	51	NA	NA	NA	3 (
S10B2 5-6	31	NA.	NA	NA	3.25			
S10B4 3-5	140	NA	NA	N/A	3.2			
B4E1-14	NA	NA	NA	12.5	9.4			
B4E3-18	21	8.8	4.5	1.75	2.5			
Average Concentration - Only Samples With VOC Detections	22.33	6.3	3.27	4.96	4.23			

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except actions detected in the sample

Table 5-4(b)

Soil Constituents Average Concentrations for TPHs in Area 4: Power Plant Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B4E1-14	B4E2D-10	B4E3-18	Overall Area Average (ug/kg)
TPH - DRO				TPH - DRO
11/21/2002	47,000	NA	NA	
11/22/2002	NA	55,000	NA	
7/24/2003	NA	NA	6,360	
AVIERAGE TPH - DRO	47,000	55,000	6,360	36,120
TPH - GRO				TPH-GRO
11/22/2002	NA	250	NA	
7/24/2003	NA	NA	500	
AVERACE TPH - CRO		250	500	375
TPH - ORO				TPH - ORO
7/24/2003	NA	NA	3,159	
AVIERAGE/IPH - ORO			3,159	3,159

Notes:

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 5-4(c)
Soil Constituents Average Concentrations for Metals in Area 4: Power Plant Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

		DUCI	ig ITaci	. 1, Dt. LA	Juis, IVIIS	Jours					***************************************
Metals (ug/kg)											
Sample ID	ARSENIC	BARIUM	BERYLLIUM	САБМІИМ	СНКОМІИМ	COPPER	LEAD	MERCURY	NICKEL	SELENIUM	ZINC
B5E1-6	1,500	179,000	511	423	10,100	13,000	6,350	50	9,650		33,300
B5E2-6	NA	NA	NA			NA	8,480	NA	NA	NA	
S10B1 4-5	7,400	97,000	NA		15,000				NA	780	
S10B1 6-7	11,000	93,000	NA	315	15,000					960	
S10B2 3-5	12,000	150,000	NA	305	20,000		14,000		NA		
S10B2 5-6	10,000	130,000	NA	325	17,000					880	
S10B4 3-5	3,150	290,000	NA	315	15,000	NA.	19,000	15	NA	1,600	NA
Average Concentration - Only Samples With Metals Detections	7,508	156,500	511	332.2	15,350	13,000	13,119	48	9,650	1,262	33,300

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 5-4(c)
Soil Constituents Average Concentrations for Metals in Area 4: Power Plant Construction Worker
Boeing Tract 1: St. Louis, Missouri

		DUEL	ng Traci	1; St. L	ouis, iviis	Souri					
	Metals (ug/kg)										
Sample ID	ARSENIC	BARIUM	BERYLLIUM	САВМІЦІМ	CHROMIUM	COPPER	EEAD	MERCURY	NICKEL	SELENIUM	ZINC
B5E1-6	1,500	179,000	511	423	10,100	13,000	6,350	50	9,650	2,350	33,300
B5E2-6	NA	NA	NA	NA	NA	NA	8,480	NA	NA	NA	NA
S10B1 4-5	7,400	97,000	NA	310	15,000	NA	12,000	10	NA	780	NA
S10B1 6-7	11,000	93,000	NA	315	15,000	NA	14,000		NA	960	NA
S10B2 3-5	12,000	150,000	NA	305	20,000	NA	14,000		NA	1,000	NA
S10B2 5-6	10,000	130,000	NA	325	17,000				NA	880	NA
S10B4 3-5	3,150	290,000	NA	315	15,000	NA	19,000	15	NA	1,600	
B4E3-18	NA	NA	NA	NA	NA	NA	8,630	NA	NA	NA	NA
Average Concentration - Only Samples With Metals Detections	7,508	156,500	511	332	15,350	13,000	12,558	48	9,650	1,262	33,300

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 5-4(d)
Soil Constituents Average Concentrations for PAHs in Area 4: Power Plant
Non-Residential Worker and Construction Worker
Boeing Tract 1, St. Louis, Missouri

					1, 31. 1.01	***************************************	addinance in the				000000000000000000000000000000000000000	***************************************
	PAH (ug/kg)											
Sample ID	ANTHRACENE	BENZO(A)ANTHRACENE	BENZO(A)PYRENE	BENZO(B)ELUORANTHENE	BENZO(GHI)PERYLENE	BENZO(K)FLUORANTHENE	CHRYSENE	DIBENZO(A,H)ANTHRACENE	FLUORANTHENE	INDENO(1,2,3-CD)PYRENE	PHENANTHRENE	PYRENE
S10B1 4-5	2.075	2.075	4.43	5.03	7.79	2.075	4.35		5.46	2.075	10.6	11.6
S10B1 6-7	2.135	2.135	2.135	5.02	2.135	2.135	6.36	2.135	15.6	7.26	8.29	14.3
S10B2 3-5	2.075	2.075	6.27	8.02	9.98	2.075	4.63	30.7	14.1	2.075	15.9	17.2
S10B2 5-6	2.155	2.155	15.4	8.42	29.9	5.46	6.35		16.3	15.8	30.2	16.2
S10B4 3-5	6.46	17	9.31	115	17.5	2.125	13.9	46.5	2.125	2.125	56.7	43.4
Average Concentration - Only Samples With PAH Detections	2.98	5.09	7.51	28.30	13.46	2.77	7.12	34.87	10.72	5.87	24.34	20.54

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Table 5-5
Groundwater Samples Used in Average Concentration Calculations in Area 4: Power Plant
Boeing Tract 1. St. Louis, Missouri

	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals
	B5E2W B5E1	B5E1W	B5E1W		B5E1W
	B4E3W	B5E2W	B5E2W		B5E2W
	B5MW-22W	B4E1W	B5MW-22W		B4E3W
4		B4E3W			B5MW-22W
		B5MW-22W			

Table 5-6(a)
Groundwater Constituents Average Concentrations
for VOCs in Area 4: Power Plant
Boeing Tract 1, St. Louis, Missouri

· ·			VO (ug			
Sample ID	1,2-DICHLOROBENZENE	ACETONE	CARBON DISULFIDE	METHYLENE CHLORIDE	NAPHTHALENE	FOLUENE
B5E1W	4.08	7.8	5		5 278	2.5
B5E2W	5.80	10	5	10	4.6	2.5
B4E3W	2.5	10	2.1	10	5	2.35
B5MW-22W	3.2	17.5	5	3.9	4.25	2.5
Average Concentration - Only Samples With VOC Detections	3.8	•	4.0	8.0	4.6	2.5

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except actions detected in the sample

Table 5-6(b)

Groundwater Constituents Average Concentrations for TPHs in Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

	200	mg IIII	, Die Louis,			
Constituent Fraction by Sample Event	B5E1W	B5E2W	B4E1W	B4E3W	B5MW-22W	Overall Area Average (ug/l)
TPH-DRO						TPH-DRO
11/21/2002	NA	NA	3,500	NA	NA	
11/22/2002	NA	NA	NA	NA	NA	
6/27/2003	NA	NA	NA	NA	520	
7/24/2003	NA	611	NA	3,540		
7/29/2003	244	NA	NA	NA	NA	
AVERAGE	244	611	3,500	3,540	520	1,683
TPH-GRO						TPH-GRO
11/22/2002	NA	NA	NA	NA	NA	
6/27/2003	NA	NA	NA	NA	50	
7/24/2003	500	500	NA	500	NA	
AVERAGE	500	500		500	50	387.5
TPH-ORO						TPH-ORO
6/27/2003	NA	NA	NA	NA	50	
7/24/2003	NA	362	NA	· 375	NA	
7/29/2003	166.5	NA	NA	NA	NA	
AVERAGE	166.5	362		375	50	238,375

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 5-6(c) Groundwater Constituents Average Concentrations for Metals in Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

					Metal (ug/l)				
Sample ID	ARSENIC	BARIUM	СНКОМПИМ	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	ZINC
B5E1W	15	70	2.5	2	22	867	0.1	5	90
B5E2W	NA	NA	NA	NA	22	NA	NA	NA	NA
B4E3W	NA	NA	NA	NA	22	NA	NA	NA	NA
B5MW-22W	80	1,910	14	17	68	8,860	0.5	23	378
Average Concentration - Only Samples With Metals Detections	47.50	990	8.25	9.50	33.50	4,863.5	0.30	14	234

Notes

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 5-6(d)

Groundwater Constituents Average Concentrations for PAHs in Area 4: Power Plant
Boeing Tract 1, St. Louis, Missouri

			DUCI	ng I rac	t 1, 5L 1	Jours, 11.	1000011						****************
						P.	AH (ug/	<u>)</u>			- 1		
Sample ID	ACENAPHTHENE	ANTHRACENE	BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	CARBAZOLE	CHRYSENE	DIBENZOFURAN	DIETHYL PHTHALATE	DEN-BUTYL PHTHALATE	FLUORANTHENE	FLUORENE	PHENANTHRENE	PYRENE
B5E1W	5.56	5.56	5.56	5.56	5.56	5.56	5.56	2.70	5.56	5.56		5.56	5.56
B5E2W	3.4	5	5.7	5.3	8.3	6.7	2.2	2.9	4.6	18		18	12
B5MW-22W	7.8	5.26	5.26	5.26	5.26	5.26	5.26	5.26	5.26	5.26	5.26	5.26	5.26
Average Concentration - Only Samples With PAH Detections	5.59	5.27	5.51	5.37	6.37	5.84	4.34	3.62	5.14	9.61	4.87	9.61	7.61

ug/l - micrograms per liter

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Bold indicates a detection

Soil Constituents of Concern Summary for Non-Residential Worker for Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Acetone	7	5	6.09	140	23	NA	N/A
Methyl ethyl ketone (MEK)	2	1	1.50	7.6	5.1	NA	N/A
Methylene chloride	2	2	1.06	2.8	2.7	NA	N/A
Toluene	2	1	1.11	3.1	2.8	NA	N/A
Polynuclear Aromatic Hydrocabons (P.	AHs)						
Anthracene	7	1	2.17	6.5	3.0	NA	N/A
Benzo(a)anthracene	7	1	3.34	17	5.1	NA	N/A
Benzo(a)pyrene	7	4	2.05	15	7.5	NA	N/A
Benzo(b)fluoranthene	7	5	4.06	115	28	NA	N/A
Benzo(ghi)perylene	7	4	2.22	30	13	- NA	N/A
Benzo(k)fluoranthene	7	v. 1	1.97	5.5	2.8	NA	N/A
Chrysene	7	5	1.95	14	7.1	NA	N/A
Dibenzo(a,h)anthracene	7	4	2.41	84	35	NA	N/A
Fluoranthene	7	4	1.52	16	11	NA	N/A
Indeno(1,2,3-c,d)pyrene	7	2	2.69	16	5.9	NA	N/A
Phenanthrene	7	5	2.33	57	24	NA	N/A
Pyrene	7	. 5	2.11	43	21	NA	N/A
Polychlorinated Biphenyls (PCBs)							
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	2	0	N/A	ND	N/A	NA	N/A
TPH GRO	2	0	N/A	ND	N/A	NA	N/A
TPH ORO	2	0	N/A	ND	N/A	NA	N/A
Total Metals							
Arsenic	6	4	1.60	12,000	7,508	9,200	Y
Barium	6	6	1.85	290,000	156,500	725,000	N
Beryllium	1	1	1.00	511	511	800	N
Cadmium	6	1	1.27	423	332	<1,000	N
Chromium	6	6	1.30	20,000	15,350	58,000	N_
Copper	1	1	1.00	13,000	13,000	13,000	N
Lead	7	7	1.45	19,000	13,119	21,800	N
Mercury	6	2	0.63	30	48	39	N
Nickel	1	1	1.00	9,650	9,650	14,000	N
Selenium	6	5	1.27	1,600	1,262	260	Y
Zinc	1		1.00	33,300	33,300	49,000	N

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Soil Constituents of Concern Summary for Construction for Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

	1		Ratio of Mux	113, 111330411	Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Acetone	8	6	6.27	140	22	NA	N/A
Methyl ethyl ketone (MEK)	3	2	1.40	8.8	6.3	NA	N/A
Methylene chloride	3	3	1.38	4.5	3.3	NA	N/A
Toluene	4	1	0.63	3.1	5.0	NA	N/A
Xylenes, Total	4	1	0.59	2.5	4.2	NA	N/A
Polynuclear Aromatic Hydrocabons (P.	AHs)						
Anthracene `	7	1	2.17	6.5	3.0	NA	N/A
Benzo(a)anthracene	7	1	3.34	· 17	5.1	NA	N/A
Benzo(a)pyrene	7	4	2.05	15	7.5	NA	N/A
Benzo(b)fluoranthene	7	5	4.06	115	28	NA	N/A
Benzo(ghi)perylene	7	4	2.22	30	13	NA	N/A
Benzo(k)fluoranthene	7	1	1.97	5.5	2.8	NA	N/A
Chrysene	7	5	1.95	14	7.1	NA	N/A
Dibenzo(a,h)anthracene	7	4	2.41	84	35	NA	N/A
Fluoranthene	7	4	1.52	16	11	NA	N/A
Indeno(1,2,3-c,d)pyrene	7	2	2.69 ·	16	5.9	NA	N/A
Phenanthrene	7	5	2.33	57	24	NA	N/A
Pyrene	7	5	2.11	43	21	NA	N/A
Polychlorinated Biphenyls (PCBs)							
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	5	3	1.52	55,000	36,120	NA	N/A
TPH GRO	4	0	N/A	ND	375	NA	N/A
TPH ORO	3	0	N/A	ND	3,159	NA	N/A
Total Metals							
Arsenic	6	4	1.60	12,000	7,508	9,200	Y
Barium	6	6	1.85	290,000	156,500	725,000	N
Beryllium	1	1	1.00	511	511	800	N
Cadmium	6	ī	1.27	423	332	<1,000	N
Chromium	` 6	6	1.30	20,000	15,350	58,000	N
Copper	1	1	1.00	13,000	13,000	13,000	N
Lead	8	8	1.51	19,000	12,558	21,800	N
Mercury	6	2	0.63	30	48	39	N
Nickel	1	1	1.00	9,650	9,650	14,000	N
Selenium	6	5	1.27	1,600	1,262	260	Y
Zinc	$\frac{\tilde{1}}{1}$	1	1.00	33,300	33,300	49,000	N

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

π

ORO - Oil range organic

NA: Not available

N/A - Not applicable

GRO - Gasoline range organic

ND - Not detected

Max Detected - Maximum value of detected concentrations

Groundwater Constituents of Concern Summary for Area 4: Power Plant

Boeing Tract 1, St. Louis, Missouri

	T.		ang 1140: 1,55 250		Concenti	ation	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
1,2-Dichlorobenzene	6	3	0.97	3.7	3.8	600	N
Carbon Disulfide	4	1	0.53	2.1	4.0	201	N
Methylene chloride	4	1	0.66	5.3	8.0	49.1	N
Naphthalene	4	1	1.00	4.6	4.6	100	N
Toluene	8	1	0.88	2.2	2.5	1,000	N
Polynuclear Aromatic Hydrocabons (P	AHs)						
Acenaphthene	. 3	2	1.40	7.8	5.6	2,000	N
Anthracene	3	1	0.95	5.0	5.3	10,000	N
Benzo(a)anthracene	3	1	1.03	5.7	5.5	0.921	Y
Benzo(b)fluoranthene	3	1	0.99	5.3	5.4	0.921	Y
Carbazole	3	1	1.30	8.3	6.4 .	7.08	Y
Chrysene	3	1	1.15	6.7	5.8	92.1	N
Dibenzofuran	3	1	0.51	2.2	4.3	5.99	N
Diethylphthalate	3	2	0.80	2.9	3.6	30,000	N
Di-n-butylphthalate	3	1	0.89	4.6	5.1	1,560	N
Fluoranthene	3	1	1.87	18	9.6	626	N
Flourene	3	1	0.78	3.8	4.9	1,000	N
Phenanthrene	3	1	1.87	18	9.6	173	N
Pyrene	3	1	1.58	12	7.6	469	N
Polychlorinated Biphenyls (PCBs)							
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	6	5	2.10	3,540	1,683	NA	N/A
TPH GRO	5	0	N/A	ND	388	NA	N/A
TPH ORO	4	1	1.52	362	238	NA	N/A
Total Metals							
Arsenic	2	1	1.68	80	48	10	Y
Barium	2	2	1.93	1,910	990	2,000	N
Chromium	2	1	1.70	14	8.3	100	N
Copper	2	1	1.79	17	9.5	1,300	N
Lead	4	1	2.03	68	34	15	Y
Manganese	2	2	1.82	8,860	4,864	50	Y
Mercury	2	1	1.67	0.5	0.3	2	N
Nickel	2	1	1.64	23	14	100	N
Zinc	2	2	1.62	378	234	2,000	N

Notes:

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 5-9(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Area 4: Power Plant, Boeing Tract 1, St. Louis, Missouri

Average Soil Conc.	-		Average GW Conc. (ug/L)	nalation of Groundwater	Sum of IELCR	Sum of HQ (HI)	
(ug/kg)	IELCR	HQ	1	IELCR	HQ		
23	NA	1.40E-08			_	NA	1.40E-08
5.1	NA	5.96E-10	_			NA	5.96E-10
2.7	8.90E-13	1.76E-09		-		8.90E-13	1.76E-09
2.8	NA	3.15E-09		_		NA	3.15E-09
3.0	NA	3.49E-13				NA	3.49E-13
5.1	2.93E-16	NA	5.5	7.98E-11	7.98E-06	7.98E-11	7.98E-06
7.5	1.32E-15	NA			_	1.32E-15	NA
28	9.22E-16	NA	5.4	1.35E-10	1.35E-05	1.35E-10	1.35E-05
13	NA	1.44E-13			_	NA	1.44E-13
2.8	2.98E-18	NA				2.98E-18	NA
7.1	7.13E-18	NA				7.13E-18	NA
35	1.11E-15	NA				1.11E-15	NA
11	NA.	1.93E-13		_		NA	1.93E-13
5.9	2.29E-17	NA				2.29E-17	NA
24	NA	1.43E-11				NA	1.43E-11
21	NA	5.04E-13				NA	5.04E-13
_			6.4	1.78E-12	1.78E-07	1.78E-12	1.78E-07
	8.93E-13	1.96E-08		2.16E-10	2.16E-05	2.17E-10	2.17E-05
			388	NA	2.41E-03	NA	2.41E-03
		_	1,683	NA.	3.40E-01	NA	3.40E-01
			238	NA	1.28E-01	NA	1.28E-01
	NA	NA		NA	4.70E-01	NA	4.70E-01
7,508	NA	NA	48	NA	NA	NA	NA
	_		4,864	NA	NA	NA	NA
1,262	NA	NA				NA	NA
	NA	NA		NA	NA	NA	NA
	8.93E-13	1.96E-08		2.16E-10	4.70E-01	2.17E-10	4.70E-01
	Conc. (ug/kg) 23 5.1 2.7 2.8 3.0 5.1 7.5 28 13 2.8 7.1 35 11 5.9 24 21 7,508	Conc. (ug/kg) IELCR 23 NA 5.1 NA 2.7 8.90E-13 2.8 NA 3.0 NA 5.1 2.93E-16 7.5 1.32E-15 28 9.22E-16 13 NA 2.8 2.98E-18 7.1 7.13E-18 35 1.11E-15 11 NA 5.9 2.29E-17 24 NA 21 NA	Conc. Vapors from Subsurface Soil (ug/kg) IELCR HQ 23 NA 1.40E-08 5.1 NA 5.96E-10 2.7 8.90E-13 1.76E-09 2.8 NA 3.15E-09 3.0 NA 3.49E-13 5.1 2.93E-16 NA 7.5 1.32E-15 NA 28 9.22E-16 NA 13 NA 1.44E-13 2.8 2.98E-18 NA 7.1 7.13E-18 NA 35 1.11E-15 NA 11 NA 1.93E-13 5.9 2.29E-17 NA 24 NA 1.43E-11 21 NA 5.04E-13 NA NA NA NA NA NA 7,508 NA NA NA NA NA 1,262 NA NA	Conc. Vapors from Subsurface Soil Average GW Conc. (ug/L) (ug/kg) IELCR HQ 23 NA 1.40E-08 5.1 NA 5.96E-10 2.7 8.90E-13 1.76E-09 2.8 NA 3.15E-09 3.0 NA 3.49E-13 5.1 2.93E-16 NA 5.5 7.5 1.32E-15 NA 28 9.22E-16 NA 5.4 13 NA 1.44E-13 2.8 2.98E-18 NA 35 1.11E-15 NA 11 NA 1.93E-13 5.9 2.29E-17 NA 24 NA 1.43E-11 21 NA 5.04E-13 6.4 8.93E-13 1.96E-08 388 <tr< td=""><td>Conc. Vapors from Subsurface Soil Average GW Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Average GW Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Valor Conc. (ug</td><td> Conc. Vapors from Subsurface Soil</td><td> Vapors from Subsurface Soil Conc. (ug/kg) IELCR HQ HQ </td></tr<>	Conc. Vapors from Subsurface Soil Average GW Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Average GW Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Vapors from Subsurface Conc. (ug/L) Valor Conc. (ug	Conc. Vapors from Subsurface Soil	Vapors from Subsurface Soil Conc. (ug/kg) IELCR HQ HQ

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

Table 5-9(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Futue Construction Worker

Area 4: Power Plant, Boeing Tract 1, St. Louis, Missouri

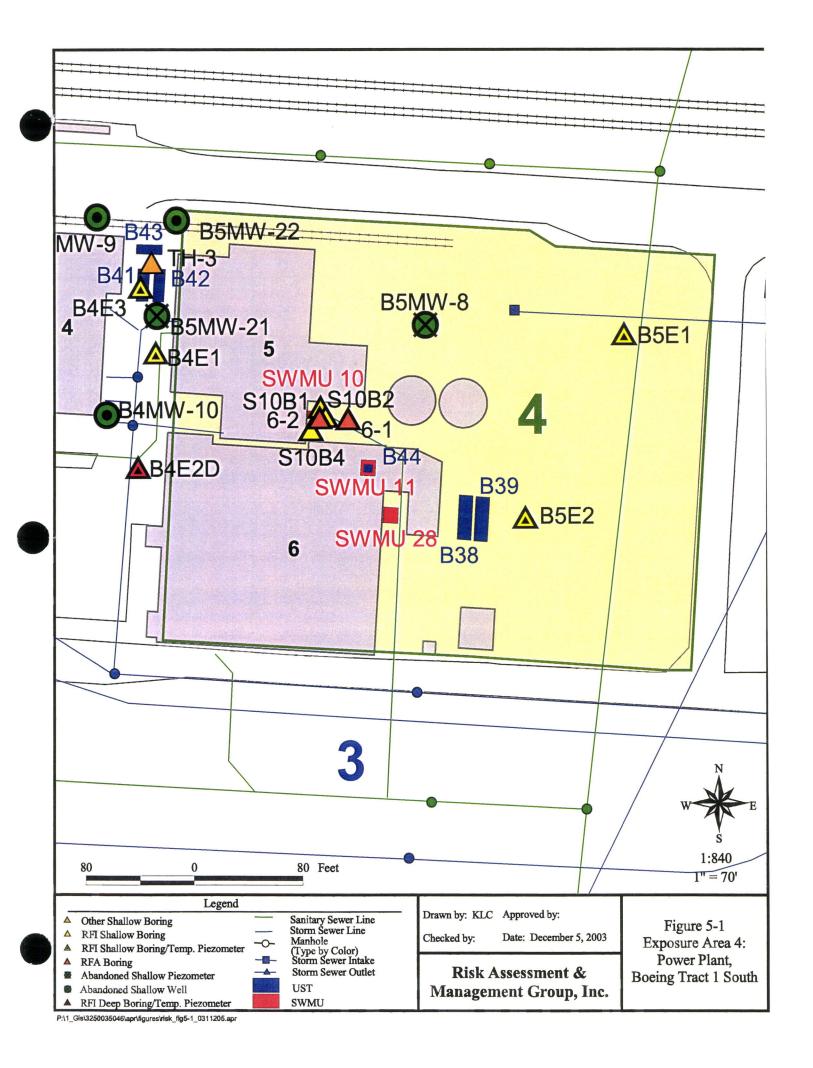
COCs	Average Soil Conc.	Dermal Con	tact with Soil	i .	Ingestion of	Vapors and	nhalation of Particulates 1 Soil	Average GW Conc. (ug/L)	Dermal Co Groun	dwater	Vapors from	nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
·	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	нQ	IELCR	HQ		
Acetone	22	NA	7.79E-08	NA	8.22E-08	NA	1.93E-07	_	_			-	NA	3.53E-07
Methyl ethyl ketone (MEK)	6.3	NA	3.66E-09	NA	4.07E-09	NA	1.42E-08						NA	2.19E-08
Methylene chloride	3.3	1.22E-13	1.90E-08	1.36E-13	2.11E-08	2.04E-13	1.01E-08					-	4.62E-13	5.02E-08
Toluene	5.0	NA	8.65E-10	NA	9.61E-09	NA	5.45E-08		'				NA	6.50E-08
Xylenes, total	4.2	NA	1.64E-10	NA	1.37E-09	NA	1.12E-08	-	·				NA	1.28E-08
Anthracene	3.0	NA	3.46E-09	NA	3.85E-09	NA	2.07E-10	-	_				NA	7.52E-09
Benzo(a)anthracene	5.1	8.02E-12	NA	2.06E-11	NA	9.06E-14	NA	5.5	1.03E-06	NA	1.83E-12	NA	1.03E-06	NA
Benzo(a)pyrene	7.5	1.18E-10	NA	2.58E-10	NA	6.92E-13	· NA	_					3.77E-10	NA
Benzo(b)fluoranthene	28	4.46E-11	NA	1.14E-10	NA	3.84E-13	NA	5.4	1.50E-06	NA	1.78E-12	NA	1.50E-06	NA
Benzo(g.h.i)perylene	13	NA	5.22E-07	NA	1.74E-07	NA	9.17E-10			_			NA	6.96E-07
Benzo(k)fluoranthene	2.8	4.37E-13	NA	1.12E-12	NA	2.24E-15	NA	-	_				1.56E-12	NA
Chrysene	7.1	1.12E-13	NA	2.88E-13	NA	1.66E-15	NA						4.01E-13	NA
Dibenzo(a,h)anthracene	35	5.49E-10	NA	1.41E-09	NA	1.63E-12	NA	-	_				1.96E-09	NA
Fluoranthene	11	NA	3.11E-08	NA	5.19E-08	NA	8.14E-10	_		_			NA	8.39E-08
Indeno(1,2,3-cd)pyrene	5.9	9.25E-12	NA	2.37E-11	NA	3.00E-14	NA						3.30E-11	NA
Phenanthrene	24	NA	9.43E-07	NA	3.14E-07	NA	1.20E-08	_	-		_		NA	1.27E-06
Рутепе	21	NA	7.96E-08	NA	2.65E-07	NA	2.10E-09			-	_		NA	3.47E-07
Carbazole						-		6.4	NA	NA	4.30E-14	NA	4.30E-14	NA
Organics Total Risk		7.30E-10	1.68E-06	1.83E-09	9.28E-07	3.04E-12	2.99E-07		2.53E-06	NA	3.66E-12	NA	2.54E-06	2.91E-06
TPH-GRO ·	375	NA	NA	NA	1.70E-06	NA	2.21E-06	388	NA	NA	NA	2.11E-05	NA	2.50E-05
TPH-DRO	36,120	NA	7.97E-05	NA	2.42E-04	NA	6.93E-05	1,683	NA	NA	NA	2.95E-03	NA	3.34E-03
TPH-ORO	3,159	NA	8.05E-06	NA	2.07E-05	NA	6.52E-07	238	. NA	NA	NA	1.11E-03	NA	1.14E-03
TPH Total Risk		NA	NA	NA	NA	NA	NA		NA.	NA	NA	4.08E-03	NA	4.50E-03
Arsenic	7,508	1.87E-10	2.91E-05	5.92E-08	9.21E-03	9.85E-11	1.53E-06	48	NA	NA	NA	NA	5.95E-08	9.24E-03
Manganese]		_	_		4,864	NA	NA	NA	NA	NA	NA
Selenium	1,262	NA	2.93E-05	NA	9.78E-05	NA	2.70E-05				_		NA	1.54E-04
Metals Total Risk		1.87E-10	5.84E-05	5.92E-08	9.31E-03	9.85E-11	2.86E-05		NA	NA	NA	NA	5.95E-08	9.40E-03
CUMULATIVE RISK		9.17E-10	6.01E-05	6.11E-08	9.31E-03	1.02E-10	2.89E-05		2.53E-06	NA	3.66E-12	4.08E-03	2.60E-06	1.39E-02

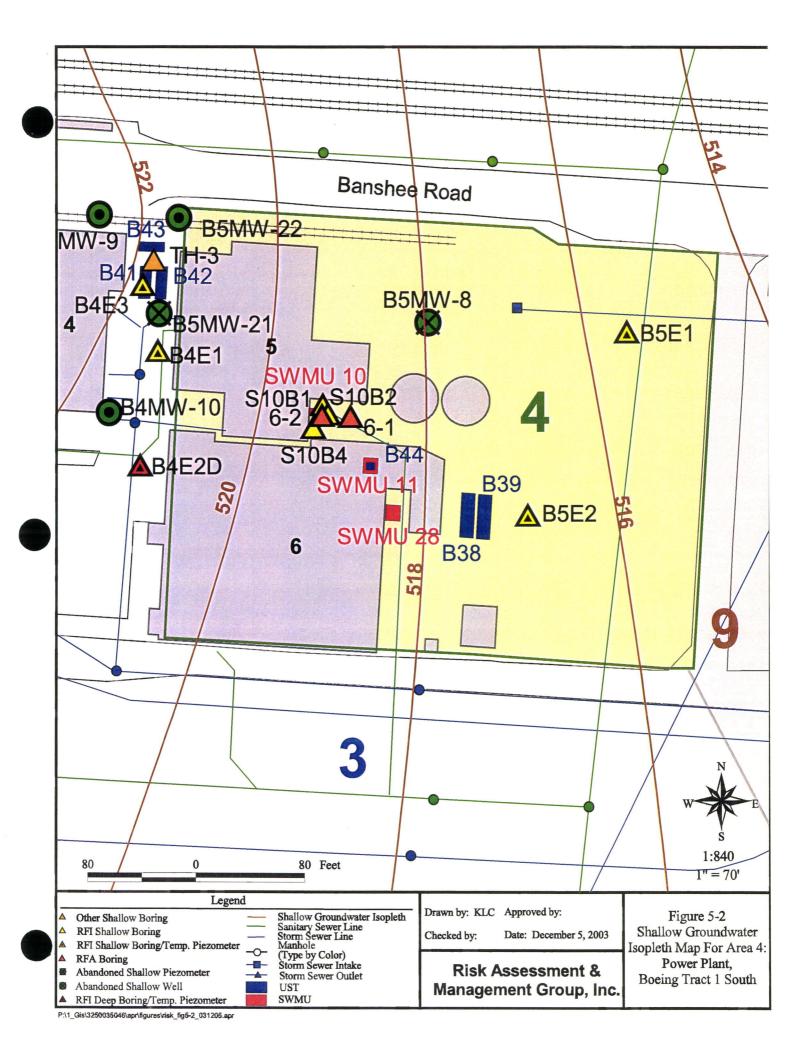
NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon


GRO: Gasoline range organic


DRO: Diesel range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

ATTACHMENT 5-A

ECOLOGICAL RISK ASSESSMENT – AREA 4 POWER PLANT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1. Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

Yes, Area 4 is located approximately 175 feet west of the portion of Coldwater Creek that flows through an enclosed culvert, and about 200 feet southwest of the portion of Coldwater Creek that enters an open culvert and continues to flow north.

2. Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?

No.

3. Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?

No, the site is entirely paved.

4. Has a process (operational) discharge or storm water permit not been issued for the site?

Site-wide, there is a storm water permit.

5. Is the site located in a known Karst environment (see Reference map)?

No.

6. Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.

No.

7. Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?

No.

8. Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?

No.

ATTACHMENT 5-B

ECOLOGICAL RISK ASSESSMENT – AREA 4 POWER PLANT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

la. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, groundwater has been impacted.

1b. Are contaminants associated with the site mobile in groundwater?

Yes.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Yes, Coldwater Creek is located to the east of Area 4 in an enclosed culvert, and flows north into an open culvert at the north perimeter of the adjacent Area 9.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

No, groundwater impact is minimal, and located primarily about 200 feet from the creek, therefore impact is very unlikely.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

Constituents have been detected in soil samples at depths of 3 feet bgs.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, the site is paved.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the site is paved.

4a. Are contaminants present in surface soil or on the surface of the ground?

No.

4b. Are potential ecological receptors on the site?

No.

4. Could contaminants reach ecological receptors via direct contact?

No.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the site is entirely paved, and the impact is not in the surficial soil.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the site is entirely paved, and the impact is not in the surficial soil.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

Yes, constituents have been detected in soil samples from 3 to 7 feet bgs.

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, the site is entirely paved.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No, the site is entirely paved.

6d. Do contaminants found on the site bioaccumulate?

Yes, some metals.

6. Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

6.1 INTRODUCTION

The Industrial Water Treatment Plant (IWTP), also referred to as Area 5, is located in the southeastern corner of the site, adjacent and south of Norfolk and Western Railroad Company railroad tracks and Banshee Road. Area 5 is bounded by Area 9 on the west and by the Airport runway on the south and east (see Figure 6-1). This section describes the constituents in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

6.2 DESCRIPTION OF AREA

The IWTP is an area approximately 240 feet long by 250 feet wide at its longest dimensions. Within this Area, there is one building, aeration tanks, sludge settling and equalization tanks, a sludge holding tank, filter press, and a parking lot.

6.2.1 Potential Sources within Area

The following two SWMUs were identified in this Area during the RFA investigation (SAIC, 1995):

- SWMU 3: Wastewater Sludge Collection and Holding Tank (120,000-gallon capacity)
 listed hazardous waste (F006 & F019 electroplating wastes); and
- SWMU 21: IWTP Sludge Setting and Equalization Tanks S-1, S-2, S-3, S-4, E-1, E-2, and E-3.

Hence, within this Area, we anticipate constituents of concern to be primarily metals.

6.2.2 Soil Stratigraphy within Area

There are seven soil borings within this Area, see Table 6-1 for further details of these borings. Based on the soil boring logs, the soil stratigraphy within this Area is clay from approximately 2 feet below ground surface (bgs) to 28 feet bgs. For additional details, refer to the RFI (MACTEC, 2004). No borings deeper than 28 feet were advanced in this Area. Based on borings outside this Area, bedrock is found in this Area at approximately 80 feet bgs (which consists of limestone). No karst features have been identified in this Area. To evaluate the risk to indoor inhalation, a source average depth of 10 feet (304.8 cm) was used (see Table 1-9).

6.2.3 Hydrogeology within Area

There are no monitoring wells located within this Area. Based on recent (since 2000) groundwater gauging data in monitoring wells outside this Area, groundwater flow within the shallow zone in this Area may be to the west towards Coldwater Creek. Coldwater Creek is located about 300 feet to the west of this Area below the surface in an enclosed culvert; however, no groundwater elevation data is available in this Area to confirm the groundwater flow direction. Based on the soil boring logs, shallow groundwater appears to be present at about 12 to 13 feet bgs. To evaluate the risk to indoor inhalation, an average depth to groundwater of 12 feet (365.76 cm) was used (see Table 1-13).

6.3 LAND USE

6.3.1 Current Land Use

The Area is owned by Boeing and is being used as an IWTP. Boeing intends to retain ownership of this Area.

6.3.2 Future Land Use

This Area is anticipated to remain in use as an IWTP.

6.4 AVAILABLE DATA

The following provides an overview of the available data within the Area:

- One soil boring completed as a piezometer exists in this Area and has been sampled once for groundwater during February 1998.
- Seven soil borings have been sampled during two events in May 1994 and February 1998 within this Area resulting in 15 individual soil samples.

6.5 CONSTITUENTS IDENTIFIED WITHIN AREA

6.5.1 Soil

From 1994 to date, 15 soil samples have been collected within Area 5 during two investigations. These samples have been analyzed for a comprehensive list of constituents that included VOCs, TPH, metals, and cyanide. Typical laboratory methods that were used include SW 846 Methods 6010, 7060, 7421, 7471, 7740, 8240, 9010, OA1, and OA2. Appendix F-1 includes a comprehensive table of the laboratory data for constituents detected at least once in soil samples from Area 5. Table 6-2 presents a listing of soil samples that were used in the risk calculations. Evaluation of the data in Tables 6-3(a), 6-3(b), and 6-3(c) indicated that the following 13 constituents were detected in at least one soil sample:

METALS/IN	METALS/INORGANICS					
Arsenic	Nickel	Acetone				
Barium	Selenium	TPH (2 types)				
Cadmium	Silver					
Chromium	Zinc					
Lead	Cyanide, total					
Mercury						

Acetone was eliminated from further consideration since it was the only VOC detected in the specific sample. Note as discussed in Section 1.9.11, lead was also eliminated. The data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. The data for soil samples collected at or above a depth of 12 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included barium, cadmium, chromium, silver, and zinc. The following six constituents were considered further:

METALS/INORGANICS	TPH
Arsenic	TPH (2 types)
Mercury	
Nickel	
Selenium	
Cyanide, total	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included barium, cadmium, chromium, silver, and zinc. The following six constituents were considered further:

METALS/II	METALS/INORGANICS				
Arsenic	Selenium	TPH (2 types)			
· Mercury	Cyanide, total				
Nickel					

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the construction worker.

6.5.2 Groundwater

During the various investigations conducted within this Area, groundwater samples were analyzed for a list of constituents that included metals and cyanide using laboratory analysis SW 846 Methods 6010, 7060, 7421, 7470, 7471, 7740, and 9010. Appendix F-2 includes a comprehensive list of the analytical data for constituents detected at least once in groundwater samples from Area 5. Table 6-4 presents a listing of groundwater samples used in the risk

calculations. Evaluation of the data in Table 6-5(a) indicated that five constituents were detected in one groundwater sample:

MET	ALS
Barium	Mercury
Chromium	Selenium
Lead	

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration and included barium, mercury, and selenium. Note as discussed in Section 1.9.11, lead was also eliminated. The remaining constituent is shown in the table below:

METALS	
Chromium	

Based on this evaluation, the constituent listed above was considered for quantitative risk evaluation for groundwater exposure.

6.6 FREE PRODUCT

Free product has not been observed within this Area.

6.7 EXPOSURE MODEL

6.7.1 Current Conditions

This Area is comprised of the IWTP building, aeration tanks, sludge settling and equalization tanks, a sludge holding tank, filter press, and parking lots. Hence, the receptors under current conditions would be the non-residential worker and a visitor/maintenance worker to the Area. As the exposure duration for the visitor/maintenance worker is small relative to the on-site non-residential worker, the risk from any soil or groundwater impact will not be quantitatively evaluated for the visitor/maintenance worker.

Exhibit 6-1 presents the EM for the current non-residential worker.

Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Surficial Soil	NC	The Area is mostly paved and covered with buildings and tanks; therefore, contact with surficial soil is unlikely.
Ingestion of Surficial Soil	NC	The Area is mostly paved and covered with buildings and tanks; therefore, ingestion of surficial soil is unlikely.
Indoor Inhalation of Vapors from Subsurface Soil	С	Volatile constituents were detected in soils in this Area; therefore, this pathway is complete.
Indoor Inhalation of Vapors from Groundwater	С	This pathway is complete; however, there is no data available regarding volatile constituents.

6.7.2 Future Conditions

Under future conditions, the land use in this Area is not expected to alter; hence, the receptors will remain the same in the future. As such, they will not be quantitatively evaluated, as the comparison for the current conditions will be protective of the future non-residential worker. Groundwater concentrations are expected to decrease in the future through natural attenuation processes, further reducing the risk.

In the future, construction work could be performed within this Area; therefore, the potential future construction worker is a receptor. Exhibit 6-2 presents the EM for the construction worker.

Scenario, Receptor, and	C or NC	Justification
Pathways/Routes Analyzed	0 01 110	0.000
Dermal Contact with Soil	С	Soil is impacted at depths less than 20 feet, which is considered the construction zone; therefore, contact is possible.
Accidental Ingestion of Soil	· C	Soil is impacted at depths less than 20 feet, which is considered the construction zone; therefore, ingestion is possible.
Outdoor Inhalation of Vapors and Particulates from Soil	C	Soil is impacted within this Area, and some of the constituents identified are volatile; therefore, this pathway is complete.
Dermal Contact with Groundwater	С	A construction worker may come in contact with groundwater located at a depth of about 12 to 13 feet bgs. Therefore, this pathway is considered complete.
Outdoor Inhalation of Vapors from Groundwater	C	This pathway is complete; however, there is no data available regarding volatile constituents.

Iquantitatively evaluated.

6.8 REPRESENTATIVE CONCENTRATIONS

Representative concentrations for this Area were determined to be the Area-wide average in soil and groundwater. This was chosen as the sampling activities that have been performed have all been within the areas of most impact; therefore, the mean concentration represents a conservative estimate of the overall impact to the Area. Additionally, no information is known regarding the likely future location of a building; therefore, it is prudent to identify the source areas as the representative concentration.

Tables 6-6(a), 6-6(b), and 6-7 present the soil and groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. None of the constituents exceeded a ratio of 10.

6.9 CALCULATION OF RISK

Tables 6-8(a) and 6-8(b) present the results for the non-residential worker and construction worker, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HO and HI) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,

- Cumulative risk for each route of exposure, and
- Total risk, which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

6.9.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 6-8(a), the cumulative IELCR for non-residential worker in Area 5 is not available.

Non-carcinogenic Risk:

As shown in Table 6-8(a), the cumulative HI for all COCs and all routes of exposure is 0.00053, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

6.9.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 6-8(b), the cumulative IELCR is 6.37×10^{-8} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 6-8(b), the cumulative HI is 0.013, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

6.10 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek. Area 5 is located approximately 300 feet east of the portion of Coldwater Creek that flows through an enclosed culvert, and about 400 feet southeast of the portion of Coldwater Creek that enters an open culvert and continues to flow north. There are no known unpermitted conduits present that could carry impacts from Area 5 to Coldwater Creek. Considering the geology, groundwater flow characteristics, and the chemical types and concentrations of the impacts in Area 5, it is not likely that migration of impacts from Area 5 to Coldwater Creek will occur. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as attachment 5-A and Attachment 5-B. These checklists identified no potential ecological receptors or issues.

6.11 CONCLUSIONS

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker and the non-residential worker are below the acceptable target risks.

Table 6-1
Soil Boring Information for Area 5: IWTP
Boeing Tract 1, St. Louis, Missouri

Boring	Date Drilled
DB-1	5/25/1994
S21B1	2/2/1998
S21B2	2/2/1998
S21B3	2/2/1998
S21B4	2/2/1998
S21B5	2/2/1998
S21B6	2/2/1998

September 2004 The RAM Group

Table 6-2 Soil Samples Used in Average Concentration Calculations in Area 5: Industrial Water Treatment Plant Boeing Tract 1, St. Louis, Missouri

	Volatile Organic Compounds		Organic Petroleum		Polymeles: Aromatic Hydrocarbons		Polychle Biphe		Metals		
	Non-Residential Worker	Construction Warker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	
			S21B5 10-12	S21B5 10-12				:::>-		DB-1 (5.6-6.5)	
			02102 10 12						S21B1 1-2	DB-1 (13.9-18.5)	
								ت: يحدد	S21B2 1-2	S21B1 1-2	
					P				S21B3 4-5	S21B2 1-2	
								- تعدد	S21B4 2-3	S21B2 13-15	
									S21B4 7-9	S21B3 17-21	
	··							ت: حدد: -	S21B5 10-12	S21B3 4-5	
5				·. — . — —					S21B5 2-4	S21B4 2-3	
								المراجعة المراجعة	S21B6 10-12	S21B4 7-9	
					-			المالية المالية	S21B6 2-4	S21B5 10-12	
								المات المات		S21B5 2-4	
										S21B6 10-12	
			 							S21B6 2-4	
,							المالية المالية				

Table 6-3(a)
Soil Constituents Average
Concentrations VOCs in Area 5:
Industrial Water Treatment Plant
Boeing Tract 1, St. Louis, Missouri

	VOCs (ug/kg)
Sample ID	3
	VCETONE
Non- Residential Worker S21B5 10-12	19
Average Concentration - Only Samples With VOC Detections	
Construction Worker	
S21B5 10-12	19
Average Concentration -	
Only Samples With	
VOC Detections	

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except acetone detected in the sample

Table 6-3(b)

Soil Constituents Average Concentrations for TPHs in Area 5: Industrial Water Treatment Plant Non-Residential Worker and Construction Worker Boeing Tract 1. St. Louis, Missouri

Constituent Fractions	S21B5 10-12	Overall Area Average (ug/l)
TPH - DRO		TPHEDRO
2/2/1998	200,000	
AVERAGE IPH-DRO	200,000	200,000
TPH - GRO		TIVILGR(0)
2/2/1998	93,000	
AVERACE INTELECTION	93,000	93,000
TPH-ORO		TPPHEOR(0)
None		
A VEREA (CLEANING ESTATE)		

Notes:

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 6-3(c)
Soil Constituents Average Concentrations for Metals in Area 5: Industrial Water Treatment Plant Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

			Doeing	Tract 1, S	or roms,	V11550u11					
	Metals (ug/kg)										
Sample ID	ARSENIC	BARIUM	САБМІИМ	снкоміим	CYANIDE, TOTAL	LEAD	MERGURY	NICKEL	SELENIUM	SILVER	ZINC
DB-1 (5.6-6.5)	5,510	94,300	50	18,800	160	8,390	20	15,500	500	450	41,200
S21B1 1-2	13,000	130,000	720	18,000	250	10,000	40	NA	1,200	1,200	NA
S21B2 1-2	3,100	180,000	315	14,000	250	15,000	30	NA	1,500	1,250	NA
S21B3 4-5		160,000		15,000	250	10,000	30	NA	1,400	1,250	NA
S21B4 2-3		110,000		18,000	· 250	12,000	60	NA	1,000	1,250	NA
S21B4 7-9	3,150			12,000	250	7,000	90	NA	1,600	1,250	NA
S21B5 10-12	11,000	140,000	640	15,000	250	12,000	70	NA	910	1,250	NA
S21B5 2-4		200,000		23,000	250	14,000	220	NA	1,200	1,250	NA
S21B6 10-12	12,000	99,000	325	17,000	250	8,500	30	NA	1,000	1,300	NA
S21B6 2-4	6,000	110,000	295	25,000	250	96,000	60	NA	1,700	1,200	NA
Average Concentration - Only Samples With Metals Detections	8,226	128,530	359.5	17,580	241	19,289	65	15,500	1,201	1,165	41,200

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 6-3(c)
Soil Constituents Average Concentrations for Metals in Sub-Area 5A: Industrial Water Treament Plant Construction Worker
Boeing Tract 1, St. Louis, Missouri

			Boeing	Tract 1, S	t. Louis, I	/113SOUF1					
	Metals										
Sample ID	4RSENIC	BARIUM	САБМІИМ	CHROMIUM	CYANIDE, TOTAL	LEAD	MERCURY	NICKEL	SELENIUM	SILVER	ZINC
DB-1 (5.6-6.5)	5,510	94,300	50	18,800	160	8,390	20	15,500		450	41,200
DB-1 (13.9-18.5)	8,980		50	18,200	5,420	6,490	95	10,600		400	34,900
S21B1 1-2	13,000	130,000	720	18,000	250	10,000	40	NA	1,200	1,200	NA
S21B2 1-2	3,100	180,000	315	14,000	250	15,000	30	NA	1,500	1,250	
S21B2 13-15	3,300	120,000	330	15,000	250	10,000	. 30	NA	1,000	1,300	
S21B3 17-21	10,000	160,000	320	16,000	250	16,000	30		1,700	1,300	
S21B3 4-5	8,400	160,000	315	15,000		10,000		NA	1,400	1,250	
S21B4 2-3	7,100	110,000	310		250			NA	1,000	1,250	
S21B4 7-9	3,150	62,000	315	12,000		7,000			1,600	1,250	
S21B5 10-12	11,000	140,000	640	15,000		12,000		NA	910	1,250	
S21B5 2-4	13,000	200,000	310	23,000	250	14,000		NA	1,200	1,250	
S21B6 10-12	12,000		325						1,000	1,300	
S21B6 2-4		110,000	295	25,000	250	96,000	60	NA	1,700	1,200	NA
Average Concentration - Only Samples With Metals Detections	8,042	127,354	330.4	17,308	641	17,337	62	13,050	1,170	1,127	38,050

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 6-4
Groundwater Samples Used in Average Concentration Calculations in Area 5:
Industrial Water Treatment Plant
Boeing Tract 1, St. Louis, Missouri

		Doomg Ruce	1, 50 25015, 1,215500		
	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals
5					S21B1W

Note:
- analysis type not performed

Table 6-5(a)

Groundwater Constituents Average Concentrations for Metals in

Area 5: Industrial Water Treatment Plant

Boeing Tract 1. St. Louis, Missouri

Average Concentration - Only Samples With Metals Detections	1,300	170	75	0.28	31
S21B1W	1,300	170	75	0.28	31
	BARIUM	CHR	LEAD	MER	SEFE
	NI)	CHROMIUM		MERCURY	SELENIUM
Sample ID		M			Į
			Metals (ug/l)		
Boeing 1ra			**********************		

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 6-6(a) Soil Constituents of Concern Summary for Non-Residential Worker for Area 5: Industiral Water Treatment Plant Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration						
Constituents of Concern	# of Samples # of Detects Average		Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background			
Volatile Organic Compounds (VOCs)										
None	1	0	N/A	N/A	N/A_	NA NA	N/A			
Total Petroleum Hydrocarbons (TPH)										
TPH DRO	1	1	1.00	200,000	200,000	NA_	N/A			
TPH GRO	1	1	1.00	93,000	93,000	NA	N/A			
Total Metals										
Arsenic	10	8	1.58	13,000	8,226	9,200	Y			
Barium	10	10	1.56	200,000	128,530	725,000	N			
Cadmium	10	2	2.00	720	359.5	<1,000	N			
Chromium	10	10	1.42	25,000	17,580	58,000	N			
Cyanide	10	1	0.66	160	241	NA_	N/A			
Lead	10	10	4.98	96,000	19,289	21,800	Y			
Mercury	10	9	3.38	220	65	39	Y			
Nickel	1	1	1.00	15,500	.15,500	14,000	Y			
Selenium	10	9	1.42	1,700	1,201	260	Y			
Silver	10	1	0.39	· 450	1,165	<700	N			
Zinc	1	1	1.00	41,200	41,200	49,000	N			

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

GRO - Gasoline range organic

ND - Not detected

Max Detected - Maximum value of detected concentrations

Table 6-6(b)

Soil Constituents of Concern Summary for Construction Worker for Area 5: Industrial Water Treatment Plant
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration							
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background				
Volatile Organic Compounds (VOCs)											
None	1	0	N/A	N/A	N/A	NA	N/A				
Total Petroleum Hydrocarbons (TPH)											
TPH DRO	1	1	1.00	200,000	200,000	NA	N/A				
TPH GRO	1	1	1.00	93,000	93,000	NA NA	N/A				
Total Metals											
Arsenic	13	10	1.62	13,000	8,042	9,200	Y				
Barium	13	13	1.57	200,000	127,354	725,000	N				
Cadmium	13	2	2.18	720	330.4	<1,000	N				
Chromium	13	13	1.44	25,000	17,308	58,000	N				
Cyanide	14	2	8.46	5,420	641	NA	N/A				
Lead	13	13	5.54	96,000	17,337	21,800	Y				
Mercury	13	12	3.55	220	62	39	Y				
Nickel	2	2	1.19	15,500	13,050	14,000	Y				
Selenium	13	11	1.45	1,700	1,170	260	Y				
Silver	13	2	0.40	450	1,127	<700	N				
Zinc	2	2	1.08	41,200	38,050	49,000	N				

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 6-7
Groundwater Constituents of Concern Summary for Area 5: Industrial Water Treatment Plant
Boeing Tract 1. St. Louis, Missouri

				Concentration							
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average Concentration (ug/L) Limit (MCL) or Equivalent (ug/L		Max Detected Exceeds MCL or Equivalent				
Volatile Organic Compounds (VOCs)											
None	1	.0	N/A	ND	N/A	N/A	N/A				
Total Metals											
Barium	1	1	1.00	1,300	1,300	2,000	N				
Chromium	1	1	1,00	170	170	100	Y				
Lead	1	1	1.00	75	75	15	Y				
Mercury	1	1	1.00	0.28	0.28	2	N				
Selenium	1	1	1.00	. 31	31	50	N				

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 6-8(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Area 5: IWTP, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Indoor Inhalation of Vapors from Subsurface Soil		Average GW Conc.	Indoor Int Vapor Groun		Sum of IELCR	Sum of HQ (HI)	
	(ug/kg)	IELCR HQ		(ug/L)	IELCR HQ]		
TPH-GRO	93,000	NA	2.83E-04				NA	2.83E-04	
TPH-DRO	200,000	NA	6.07E-05				NA	6.07E-05	
TPH Total Risk		NA	3.44E-04		NA	NA	NA	3.44E-04	
Arsenic	8,226	NA	NA				NA	NA	
Chromium				170	NA	NA	NA	NA	
Cyanide, total	241	NA	NA		****		NA	NA	
Mercury	65	NA	1.83E-04				NA	1.83E-04	
Nickel	15,500	NA	NA				NA	NA	
Selenium	1,201	NA	NA				NA	NA	
Metals Total Risk		NA	1.83E-04		NA	NA	NA	1.83E-04	
CUMULATIVE RISK		NA	5.27E-04		NA	NA	NA	5.27E-04	

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

Table 6-8(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Futue Construction Worker

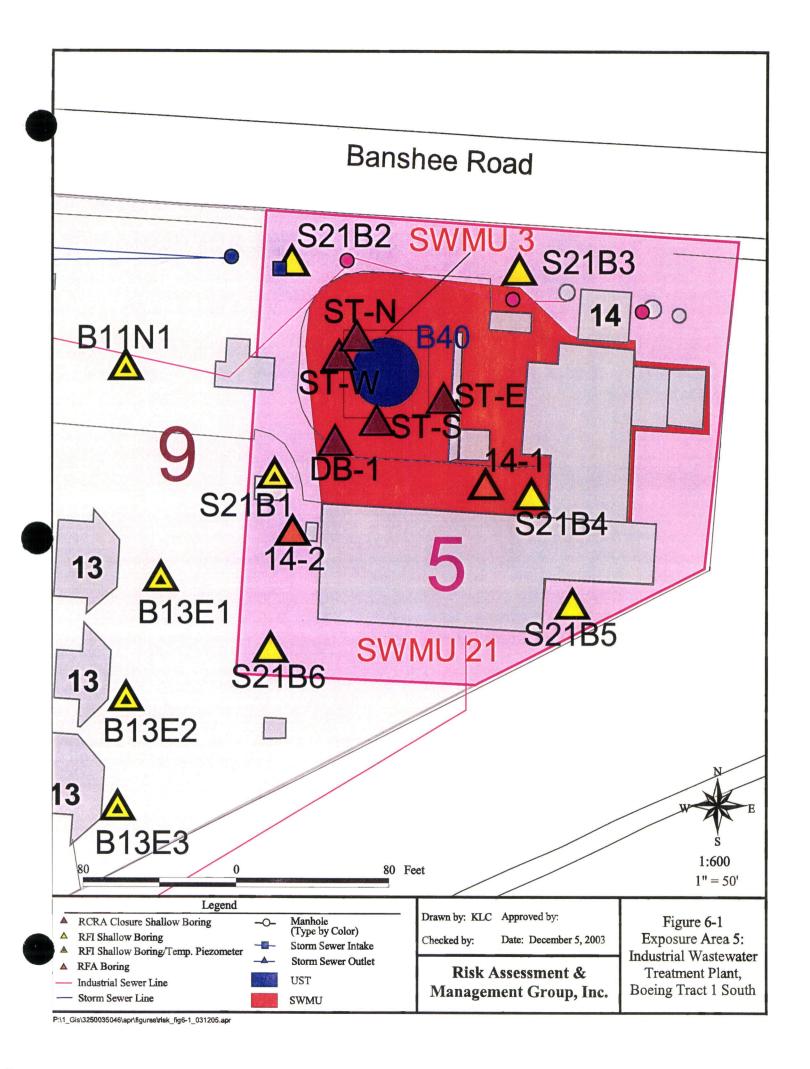
Area 5: IWTP, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Contact with Soil		Accidental Ingestion of Soil		1		Average GW Conc. (ug/L)	Dermal Contact with Groundwater		Outdoor Inhalation of Vapors from Groundwater		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ	<u> </u>	
TPH-GRO	93,000	. NA	NA	NA	4.23E-04	NA	3.00E-04						NA	7.23E-04
TPH-DRO	200,000	NA	4.41E-04	NA	1.34E-03	NA	2.13E-04			_	-	-	NA	2.00E-03
TPH Total Risk		NA	4.41E-04	NA	1.76E-03	NA	5.13E-04		NA.	NA	NA	NA	NA_	2.72E-03
Arsenic	8,042	2.00E-10	3.12E-05	6.34E-08	9.87E-03	1.06E-10	1.64E-06						6.37E-08	9.90E-03
Chromium			_			_		170	NA	NA	NA	NA	NA	NA
Mercury	62	NA	2.40E-07	NA	1.20E-05	NA	2.89E-04						NA	3.02E-04
Nickel	13,050	NA	3.79E-07	NA	2.53E-05	9.59E-12	1.40E-05						9.59E-12	3.96E-05
Selenium	1,170	NA	2.72E-05	NA	9.07E-05	NA	1.26E-06						NA	1.19E-04
Cyanide, total	641	NA	NA	NA	NA	NA	NA						NA	NA
Organics Total Risk		2.00E-10	5.90E-05	6.34E-08	9.99E-03	1.15E-10	3.06E-04		NA_	NA	NA	NA	6.37E-08	1.04E-02
CUMULATIVE RISK		2.00E-10	5.00E-04	6.34E-08	1.18E-02	1.15E-10	8.19E-04		NA	NA	NA	NΑ	6.37E-08	1.31E-02

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index


TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

ATTACHMENT 6-A

ECOLOGICAL RISK ASSESSMENT – AREA 5 INDUSTRIAL WATER TREATMENT PLANT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1. Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

Yes, Area 5 is located about 300 feet east of the portion of Coldwater Creek that flows through an enclosed culvert, and about 400 feet southeast of the portion of Coldwater Creek that enters an open culvert and continues to flow north.

2. Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?

No.

3. Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?

No, the site is mostly paved and covered with buildings and tanks.

4. Has a process (operational) discharge or storm water permit not been issued for the site?

Site-wide, there is a storm water permit.

5. Is the site located in a known Karst environment (see Reference map)?

No.

6. Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.

No.

7. Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?

No.

8. Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?

No.

ATTACHMENT 6-B

ECOLOGICAL RISK ASSESSMENT – AREA 5 INDUSTRIAL WATER TREATMENT PLANT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT

TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, groundwater has been impacted.

1b. Are contaminants associated with the site mobile in groundwater?

Yes.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Yes, Coldwater Creek is located to the west of the site in an enclosed culvert, and flows north into an open culvert north of the adjacent Area 9.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

No, groundwater impact is minimal, and located primarily about 300 feet from the creek, therefore impact is very unlikely.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

Constituents have been detected in soil samples at depths of 1 to 5 feet bgs.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, the site is mostly paved or covered with buildings and tanks.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the site is mostly paved or covered with buildings and tanks.

4a. Are contaminants present in surface soil or on the surface of the ground?

No.

4b. Are potential ecological receptors on the site?

No.

4. Could contaminants reach ecological receptors via direct contact?

No.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the site is mostly paved or covered with buildings and tanks.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the site is mostly paved or covered with buildings and tanks.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

Yes, constituents have been detected in soil samples from depths of 1 to 33 feet.

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, the site is mostly paved or covered with buildings and tanks.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No, the site is mostly paved or covered with buildings and tanks.

6d. Do contaminants found on the site bioaccumulate?

Yes, some metals.

6. Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

7.1 INTRODUCTION

The GKN facility, designated Area 6 is located within the northern portion of the Facility, adjacent to the Norfolk and Western Railroad Company railroad tracts to the south, James S. McDonnell Boulevard to the northeast, and Lindberg Boulevard to the west (see Figure 7-1). This section will describe the constituents found here, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

7.2 DESCRIPTION OF AREA

The GKN facility is approximately 4,000 feet long by 1,500 feet wide. Within this Area are three main buildings, five smaller buildings, and a large parking lot. The Area is currently paved. For the purposes of this risk evaluation, Area 6 will be further subdivided into four 6A, 6B, 6C, and 6D (see Figure 7-1):

- Sub-area 6A: Buildings 21, 29, and 29A, and all parking lots and open space to the south and west of these buildings;
- Sub-area 6B: Between Buildings 29 and 27, containing Buildings 22, 28, 39;
- Sub-area 6C: Buildings 25 and 27 and all parking lots and open space to the south and within about 450 feet to the east, and
- Sub-area 6D Parking lots and open areas beginning about 450 feet east of Buildings 25 and 27 and extending to the north, south, and east property lines.

Due to the large size of Area 6 and the presence of buildings that are likely to remain in the foreseeable future, Area 6 was subdivided to ensure that the representative concentrations calculated are as representative of the actual conditions as possible.

This Area formerly owned by Boeing has been sold to GKN Aerospace, who intends to continue aircraft maintenance and manufacturing activities into the future. As per Boeing's sale agreement with GKN, the Area has to be cleaned to allow the continuation of non-residential/industrial activities without unacceptable risk.

7.2.1 Potential Sources within Area

Potential sources (see Figure 7-1) within this Area include:

Sub-area 6A

• SWMU 29: Drum storage area for waste ferracoat, methyl ethyl ketone, and trichloroethylene.

Additionally, there was a former vapor degreaser inside Building 29 in Sub-area 6A.

Sub-area 6B

• SWMU 4: Waste Jet Aircraft Fuel UST (5,000-gallon capacity);

• SWMU 5: Less-than-90 Day Storage area for up to twenty-eight 55-gallon drums of cvanide and sulfide bearing wastes;

• SWMU 6: Former storage area for up to thirty-one 55-gallon drums of cyanide and sulfide bearing wastes;

• SWMU 8: Hazardous Waste Storage area for containers of acids, alkalis, paint sludges, oils, and solvents;

• SWMU 31: Maintenance shop 740-gallon waste oil AST; and

• SWMU 32: PCB storage area.

Additionally, there is a scrap metal recycling dock located in the northeastern portion of Sub-area 6B. As roll-off boxes of metal (aluminum, titanium, etc.) shavings and scrap are emptied into tractor trailers, water based cutting fluid is allowed to drain out. The fluid is captured and flows into an oil/water sump located below the dock. The water from the sump flows to the Boeing industrial waste treatment plant (IWTP) via the industrial waste sewer line.

Sub-area 6C

- SWMU 18: Methyl Ethyl Ketone and Methyl Isobutyl Ketone recovery (distillation) unit; and
- SWMU 30: Chemical etching spill containment area.

Additionally, there is a metal plating shop inside Building 27 in Sub-area 6C, consisting of several open top tanks of various acid solutions and rinses for electroplating chromium, cadmium, and nickel. A collection basin captures leaks and spills and via the industrial waste sewer line, the captured liquids flow to the IWTP.

In Sub-area 6C, there are numerous milling machinery pits with catch basins for aqueous cutting fluids within Building 27, and an aqueous degreaser at the northeast corner of Building 27.

Also in Sub-area 6C, two industrial wastewater sewer lines are located beneath the parking lot east of Building 27, which provide drainage from the plating and aluminum lines in Building 27 to the IWTP. In October 2000, a notable separation at an industrial sewer joint near boring B27E4 was discovered and repaired. Approximately 75 cubic yards of soil in proximity to the sewer line were excavated and disposed under an interim measure. These two industrial wastewater sewer lines extend into Sub-area 6D where they are combined into one line which continues to the south and east to the IWTP in Area 5.

USTs

A total of 16 USTs (see Table 7-1) have been identified within this Area, ranging in size from 250-gallons to 10,000-gallons. There was one UST located in Sub-area 6A, thirteen in Sub-area 6B, and two in Sub-area 6C. The contents of the USTs were leaded and unleaded gasoline, diesel, methyl alcohol, jet fuel, waste jet fuel, hydraulic oil, and fuel oil. Of these 16 USTs, only three currently remain, which are located within Sub-area 6B.

7.2.2 Soil Stratigraphy within Area

Based on soil boring logs for this Area, soil stratigraphy within this Area is silty clay from approximately 0.5 feet bgs to 75 feet bgs at which point limestone bedrock is encountered. No karst features have been identified in this Area. To evaluate the risk to indoor inhalation, the following average depths to soil source were used:

- Sub-area 6A 8.3 feet (253 cm) defaulted to average depth to groundwater since calculated depth was 12 feet (366 cm).
- Sub-area 6B 4 feet (122 cm)
- Sub-area 6C 6 feet (183 cm)
- Sub-area 6D 7 feet (213 cm)

7.2.3 Hydrogeology within Area

Based on recent (since 2000) groundwater gauging data, groundwater flow within the shallow zone is to the east (see Figure 7-2), towards Coldwater Creek. Groundwater in this Area is present in shallow monitoring wells between approximately 2 feet bgs to 13 feet bgs. To evaluate the risk to indoor inhalation, the following average depths to groundwater were used:

- Sub-area 6A 8.3 feet (253 cm)
- Sub-area 6B 4.8 feet (146 cm)
- Sub-area 6C 10.0 feet (305 cm)
- Sub-area 6D 9.1 feet (277 cm)

7.3 LAND USE

7.3.1 Current Land Use

Current land use is non-residential, as the buildings are used for manufacturing purposes. Building # 27 contains a small basement on the east end of the building. It is approximately 30 X 75 feet with 18 - foot ceiling. Boeing sold this Area to GKN Aerospace in 2001.

7.3.2 Future Land Use

It is anticipated that future land use will continue to be non-residential, based on the long history of non-residential use at the site, and in the surrounding neighborhood, which is entirely non-residential.

7.4 AVAILABLE DATA

The following gives an overview of the available data within the Area.

- Ninety-five soil borings exist in this Area (7 in Sub-area 6A, 42 in Sub-area 6B, 39 in Sub-area 6C, and 7 in Sub-area 6D). Refer to Table 7-2.
- One hundred thirty-five soil samples including eight duplicates have been collected within this Area, since 1994 (7 in Sub-area 6A, 62 with 2 duplicates in Sub-area 6B, 50 with 5 duplicates in Sub-area 6C, and 16 with one duplicate in Sub-area 6D).
- Twenty-nine monitoring wells are located within this Area of which twenty-five are active and have been sampled at least once since 2000 (one active in Sub-area 6A, 10 of

- 13 active in Sub-area 6B, 12 of 13 active in Sub-area 6C, and 2 active in Sub-area 6D). See Table 7-3 for monitoring well information.
- Sixty-four soil borings were completed as piezometers within this Area and have been sampled for groundwater at least once since 2000 (4 in Sub-area 6A, 29 in Sub-area 6B, 26 in Sub-area 6C, and 5 in Sub-area 6 D).
- Three hundred sixty-five groundwater samples including 34 duplicate samples have been collected from this Area (19 with 3 duplicates from Sub-area 6A, 158 with 13 duplicates from Sub-area 6B, 133 with 15 duplicates from Sub-area 6C, and 55 with 3 duplicates in Sub-area 6D).

7.5 CONSTITUENTS IDENTIFIED WITHIN AREA

This section presents the soil and groundwater data for each of the three Sub-areas of Area 6.

7.5.1 Soil

A total of 135 soil samples including eight duplicate samples have been collected within Area 6, from 1994 to the present. Soil samples were analyzed during the various investigations conducted within this Area for a comprehensive list of constituents that included VOCs, SVOCs including PAHs, Pesticides, PCBs, TPH, metals, and cyanide. Typical laboratory methods that were used include SW 846 Methods 6010, 7060, 7421, 7470, 7471, 7740, 8015, 8021, 8081, 8082, 8151, 8240, 8260, 8310, 9012, 9060, OA1, and OA2. Appendix G includes comprehensive tables of the laboratory analysis data for constituents in soil that were detected in at least one sample from Area 6 (Appendix G-1A for Sub-area 6A, Appendix G-1B for Sub-area 6B, Appendix G-1C for Sub-area 6C, and Appendix G-1D for Sub-Area 6D). Table 7-4 presents a listing of the soil samples used in the risk calculations.

7.5.1.1 Sub-area 6A

Evaluation of the data in Appendix G-1A indicated that the following 9 constituents were detected in at least one soil sample from Sub-area 6A:

ORGANICS/TPH	METALS	
Acetone	Arsenic	Lead
Methyl ethyl ketone	Barium	Mercury
Chrysene	Chromium	Selenium

The laboratory analysis data for the above listed constituents, i.e., constituents that were detected in at least one sample, are presented in Tables 7A-5(a), 7A-5(b), and 7A-5(c). The soil data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. No constituents were detected in soil samples from Sub-area 6A obtained above 8.3 feet bgs (average depth of groundwater table, see Table 1.12).

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration. Specifically for Sub-area 6A, the following metals were eliminated: barium, chromium, lead, and mercury. The following 5 constituents were considered further.

ORGANICS	METALS
Acetone	Arsenic
Methyl ethyl ketone	Selenium
Chrysene	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil.

7.5.1.2 Sub-area 6B

Evaluation of the data in Appendix G-1B indicated that the following 47 constituents were detected in at least one soil sample from Sub-area 6B:

METALS		ORGANICS/TPH		
Aluminum	Iron	1,1-Dichloroethane	Vinyl chloride	
Antimony	Lead	1,1-Dichloroethene	Xylenes, Total	
Arsenic	Magnesium	1,2-Dichloroethene (total)	Acenaphthene	
Barium	Manganese	Acetone	Acenaphthylene	
Beryllium	Mercury	cis-1,2-Dichloroethene	Benzo(a)anthracene	
Cadmium	Nickel	Ethylbenzene	Benzo(b)fluoranthene	
Calcium	Potassium	Methyl ethyl ketone	Chrysene	
Chromium	Sodium	Methylene chloride	Fluoranthene	
Cobalt	Selenium	Tetrachloroethene	Fluorene	
Copper	Vanadium	Toluene	Phenanthrene	
	Zinc	trans-1,2-Dichlorobenzene	Pyrene	
		trans-1,2-Dichloroethene	Aroclor 1254	
		Trichloroethene	TPH (2 types)	

The laboratory analysis data for the above listed constituents, i.e., constituents that were detected in at least one sample, are presented in Tables 7B-5(a), 7B-5(b), 7B-5(c), 7B-5(d), and 7B-5(e). The data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents detected in soil samples collected above the groundwater table. Soil samples collected at or above a depth of 4.8 feet bgs are included (Table 1-12).

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included aluminum, barium, chromium, potassium, sodium, and vanadium. Note as discussed in Sections 1.9.11 and 1.9.12, lead and 1,2-dichloroethene (total) were also eliminated. Calcium and iron were not considered since they are ubiquitous in nature and have no known sources in this Sub-area. Magnesium was not considered because it has no toxicity and physical/chemical values. The following 30 constituents were considered further:

METALS		ORGANIC	ORGANICS/TPH	
Antimony Manganese		Acetone	Acenaphthene	
Arsenic	Mercury	cis-1,2-Dichloroethene	Acenaphthylene	
Beryllium	Nickel	Ethylbenzene	Benzo(a)anthracene	
Cadmium	Selenium	Methylene chloride	Benzo(b)fluoranthene	
Cobalt	Zinc	Tetrachloroethene	Chrysene	
Copper		Toluene	Fluoranthene	
Соррог		trans-1,2-Dichlorobenzene	Fluorene	
		Trichloroethene	Pyrene	
		Vinyl chloride	TPH	
		Xylenes, total		

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included aluminum, barium, chromium, potassium, sodium, and vanadium. Note as discussed in Sections 1.9.11 and 1.9.12, lead and 1,1-Dichloroethene (total) were also eliminated. Calcium and iron were not considered since they are ubiquitous in nature and have no known sources in this Sub-area. Magnesium was not considered because it has no toxicity and physical/chemical values. The following 36 constituents were considered further:

ME	TALS	ORGANICS/TPH	
Antimony	Manganese	1,1 – Dichloroethane	Xylenes, total
Arsenic	Mercury	1,1-Dichloroethene	Acenaphthene
Beryllium	Nickel	Acetone	Acenaphthylene
Cadmium	Selenium	cis-1,2-Dichloroethene	Benzo(a)anthracene
Cobalt	Zinc	Ethylbenzene	Benzo(b)fluoranthene
Copper		Methyl ethyl ketone	Chrysene
		Methylene chloride	Fluoranthene
		Tetrachloroethene	Fluorene
		Toluene	Phenanthrene
		trans-1,2-Dichlorobenzene	Pyrene
		trans-1,2-Dichloroethene	Aroclor 1254
		Trichloroethene	TPH
		Vinyl chloride	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the construction worker.

7.5.1.3 Sub-area 6C

Evaluation of the data in Appendix G-1C indicated that the following 24 constituents were detected in at least one soil sample from Sub-area 6C:

METALS	ORGANICS/TPH	
Arsenic	1,2-Dichloroethene(total)	Methyl isobutyl ketone
Barium	Acetone	o-Xylene
Cadmium	Chloroform	Trichloroethene
Chromium	cis-1,2-Dichloroethene	Xylenes, Total
Lead	Dichlorodifluoromethane	Benzo(a)anthracene
Mercury	Ethylbenzene	Benzo(b)fluoranthene
Selenium	Methylene Chloride	Chrysene
	Methyl ethyl ketone	Fluoranthene
		TPH (3 types)

The laboratory analysis data for the above listed constituents, i.e., constituents that were detected in at least one sample, are presented in Tables 7C-5(a), 7C-5(b), 7C-5(c), and 7C-5(d). Methylene chloride was not considered further since it was the only VQC detected in those specific samples. The data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. Soil samples collected or above a depth of 10 feet bgs are included (Table 1-12).

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were

eliminated from further consideration and included barium, cadmium, and lead. Note as discussed in Section 1.9.12, 1,2-dichloroethene (total) was also eliminated. The following 15 constituents were considered further:

METALS		ORGANICS/TPH	
Arsenic	Mercury	Acetone	o-Xylene
Chromium	Selenium	cis-1,2-Dichloroethene	Trichloroethene
		Dichlorodifluoromethane	Xylenes, total
		Ethylbenzene	Chrysene
		Methyl ethyl ketone	TPH
		Methyl isobutyl ketone	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs in Sub-area 6C are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included barium and lead. Note as discussed in Section 1.9.12, 1,1-dichloroethene(total) was also eliminated. The following 20 constituents were considered further:

ME'	METALS ORGANICS/TPH		CS/TPH
Arsenic	Mercury	Acetone	o-Xylene
Cadmium	Selenium	Chloroform	Trichloroethene
Chromium		cis-1,2-Dichloroethene	Xylenes, total
		Dichlorodifluoromethane	Benzo(a)anthracene
		Ethylbenzene	Benzo(b)fluoranthene
		Methyl ethyl ketone	Chrysene
		Methyl isobutyl ketone	Fluoranthene
		· • • • • • • • • • • • • • • • • • • •	TPH

7.5.1.4 Sub-area 6D

Evaluation of the data in Appendix G-1D indicated that the following 10 constituents were detected in at least one soil sample from Sub-area 6D:

METALS	ORGANICS/TPH		
Arsenic	Dichlorodifluoromethane	Toluene	
Barium	Methyl ethyl ketone	TPH (3 types)	
Cadmium			
Chromium			
Lead			
Mercury			

The laboratory analysis data for the above listed constituents, i.e., constituents that were detected in at least one sample, are presented in Tables 7D-5(a), 7D-5(b), and 7D-5(c). The data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. Soil samples collected at or above a depth of 9.1 feet bgs are included (Table 1-12).

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included arsenic, barium, cadmium, chromium and lead. The following 3 constituents were considered further:

ORGANICS/TPH			
Dichlorodifluoromethane TPH			
Toluene			

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background level. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included barium, cadmium, chromium, lead and mercury. The following 5 constituents were considered further:

METALS	ORGANICS/TPH	
Arsenic	Dichlorodifluoromethane	Toluene
	Methyl ethyl ketone	TPH

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the construction worker.

7.5.2 Groundwater

Within this Area, 89 groundwater sampling points exist, which have been sampled recently for a total of 362 samples including 34 duplicate samples. Groundwater samples were analyzed during the various investigations conducted within this Area for a comprehensive list of constituents that included VOCs, PCBs, Pesticides, SVOCs including PAHs, TPH, metals, and cyanide. Typical laboratory analysis methods that were used include SW 846 Methods 3510/DRO, 3550/DRO, 6010, 7196, 7470, 8015, 8021, 8081, 8082, 8260, 8310, 9012, OA1, OA2, TX 1005, and TX 1006. Appendix G-2 includes comprehensive tables of the laboratory analysis data for constituents in ground water that were detected in at least one sample from Area 6 (Appendix G-2A for Sub-area 6A, Appendix G-2B for Sub-area 6B, Appendix G-2C for Sub-area 6C, and Appendix G-2D for Sub-area 6D). Table 7-6 presents the list of samples used in the risk calculations.

7.5.2.1 Sub-area 6A

Evaluation of the data in Tables 7A-7(a), 7A-7(b), and 7A-7(c) indicated that the following 17 constituents were detected in at least one ground water sample from Sub-area 6A:

ORGANICS/TPH		META	LS	
Acetone	cis-1,2-Dichloroethene	Arsenic	Lead	
Benzene	Dibromochloromethane	Barium	Mercury	
Bromodichloromethane	Methylene Chloride	Cadmium	Selenium	
Carbon disulfide	Trichloroethene	Chromium		
Chloroform	TPH (1 type)			

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. The constituents eliminated from further consideration included acetone, bromodichloromethane, carbon disulfide, chloroform, cis-1,2-dichloroethene, dibromochloromethane, methylene chloride, trichloroethene, mercury and selenium. Note as discussed in Section 1.9.11, lead was also eliminated. The remaining constituents consist of 1 VOC, TPH, and 4 metals. These 6 constituents are listed in the following table:

ORGANICS/TPH	METALS		
Benzene	Arsenic	Cadmium	
TPH (1 type)	Barium	Chromium	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

7.5.2.2 Sub-area 6B

Evaluation of the data in Tables 7B-7(a), 7B-7(b), 7B-7(c), 7B-7(d), and 7B-7(e) indicated that the following 48 constituents were detected in at least one ground water sample from Sub-area 6B:

METALS	ORGANIC	S/TPH
Arsenic	1,1,2-Trichloro-1,2,2- trifluoroethane	Isopropylbenzene
Barium	1,1-Dichloroethane	Methyl ethyl ketone
Cadmium	1,1-Dichloroethene	Methyl tertiary-butyl ether
Chromium	1,2,3-Trimethylbenzene	Methylene chloride
Lead	1,2,4-Trimethylbenzene	n-Propylbenzene
Manganese	1,2-Dichlorobenzene	sec-Butylbenzene
Mercury	1,2-Dichloroethene (total)	tert-Butylbenzene
Selenium	1,2-Dichloropropane	Tetrachloroethene
Silver	1,3-Dichlorobenzene	Toluene
	1,4-Dichlorobenzene	trans-1,2-Dichloroethene
-	Acetone	Trichloroethene
	Benzene	Trichlorofluoromethane
	Bromodichloromethane	Vinyl chloride
	Bromomethane	Xylenes, total
	Carbon disulfide	Acenaphthene
	Chloroethane	Benzo(a)anthracene
	Chloroform	Chrysene
	cis-1,2-Dichloroethene	Aroclor 1254
	Dichlorodifluoromethane	TPH (5 types)
	Ethylbenzene	

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. The constituents eliminated from further consideration included 1,1-dichloroethane, 1,2-dichlorobenzene, 1,2-dichloropropane, 1,3-dichlorobenzene, 1,4-dichlorobenzene, acetone, acenaphthene, bromodichloromethane, carbon disulfide, chloroethane, chloroform, chrysene, dichlorodifluoromethane, ethylbenzene, isopropylbenzene, methyl ethyl ketone, n-propylbenzene, sec-butylbenzene, tert-butylbenzene, toluene, trichlorofluoromethane, xylenes (total), selenium, and silver. Note as discussed in Sections 1.9.11 and 1.9.12, lead and 1,2-dichloroethene (total) were also eliminated. The remaining constituents consist of 13 VOCs, 1 PAH, 1 PCB, 6 metals, and TPH (5 types). This includes detected constituents that exceeded the target level criteria, detected constituents that did not have target level criteria for comparison, and all types of TPH that were analyzed whether detected or not. These 22 constituents are listed in the following table:

METALS	ORGANICS/TPH			
Arsenic	1,1,2-Trichloro-1,2,2-trifluoroethane	Methylene chloride		
Barium	1,1-Dichloroethene	Tetrachloroethene		
Cadmium	1,2,3-Trimethylbenzene	trans-1,2-Dichloroethene		
Chromium	1,2,4-Trimethylbenzene	Trichloroethene		
Manganese	Benzene	Vinyl chloride		
Mercury	Bromomethane	Benzo(a)anthracene		
	cis-1,2-Dichloroethene	Aroclor 1254		
	Methyl tertiary-butyl ether	TPH (5 types)		

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

7.5.2.3 Sub-area 6C

Evaluation of the data in Tables 7C-7(a), 7C-(b), and 7C-(c) indicated that the following 29 constituents were detected in at least one ground water sample from Sub-area 6C:

METALS	ORGANICS/TPH		
Arsenic	1,1,2-Trichloroethane	Dichlorodifluoromethane	
Barium	1,1-Dichloroethene	Methylene chloride	
Cadmium	1,2-Dichloroethene (total)	Methyl ethyl ketone	
Chromium	2-Hexanone	Methyl isobutyl ketone	
Iron	Acetone	Tetrachloroethene	
Lead	Benzene	Toluene	
Mercury	Bromodichloromethane	Trichloroethene	
Selenium	Carbon disulfide	trans-1,2-Dichloroethene	
	Carbon tetrachloride	Vinyl chloride	
	Chloroform	TPH (5 types)	
	cis-1,2-Dichloroethene		

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. The constituents eliminated from further consideration included 1,1,2-trichloroethane, 1,1-dichloroethene, acetone, benzene, bromodichloromethane, carbon disulfide, carbon tetrachloride, chloroform, dichlorodifluoromethane, methyl ethyl ketone, methyl isobutyl ketone, toluene, tetrachloroethene, trans-1,2-dichloroethene, and selenium. Note as discussed in Sections 1.9.11 and 1.9.12, lead and 1,2-dichloroethene (total) were also eliminated. The remaining constituents consist of 4 VOCs, TPH, and 5 metals. These 10 constituents are listed in the following table:

METALS	ORGANICS/TPH		
Arsenic	2-Hexanone	Trichloroethene	
Barium	cis-1,2-Dichloroethene	Vinyl chloride	
Cadmium		TPH (5 types)	
Chromium			
Mercury			

7.5.2.4 Sub-area 6D

Evaluation of the data in Tables 7D-7(a) and 7D-7(b) indicated that the following 13 constituents were detected in at least one ground water sample from Sub-area 6D:

METALS	ORGANICS/TPH		
Arsenic	1,1,1-Trichloroethane	Tetrachloroethene	
Barium	1,1-Dichloroethane	Toluene	
Cadmium	1,1-Dichloroethene	Trichloroethene	
Chromium	cis-1,2-Dichloroethene		
Lead			
Mercury			

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. The constituents eliminated from further consideration included 1,1,1-trichloroethane, 1,1-Dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, toluene, trichloroethene, barium, cadmium and mercury. Note as discussed in Section 1.9.11, lead was also eliminated. The remaining constituents consist of 1 VOC and 2 metals. These 3 constituents are listed in the following table:

METALS	ORGANICS/TPH
Arsenic	Tetrachloroethene
Chromium	

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water.

7.6 FREE PRODUCT

The only evidence of free product in Area 6 since investigations began in 2000 was during the groundwater sampling of temporary piezometer RC2 on July 25, 2000. During sampling an oil sheen and thin emulsion of dark brown product with a cutting oil odor was observed on the groundwater. However, no measurable free product has been observed in Area 6, and no evidence of free product has been observed since the July 2000 sampling of RC2. Therefore, it is our opinion that the sheen observed was very localized and does not indicate the presence of a free product plume.

7.7 CURRENT REMEDIATION ACTIVITIES

Within Sub-area 6B, remediation activities are currently on-going in an effort to reduce the groundwater concentrations of the chlorinated solvents observed around MW-3 in the northern part of the Sub-area. Hydrogen Release Compound (HRC) was injected into this area via nine borings or injection points located around MW-3 on June 18, 2002. Since the time of injection, three wells; MW-3A, MW-3, and MW-3B have been sampled monthly to monitor the enhanced

attenuation. This remediation strategy is currently being tested within this Sub-area to determine its suitability for more widespread use at the site, should further remediation be necessary.

7.8 EXPOSURE MODEL

7.8.1 Current Conditions for Sub-areas 6A, 6B, 6C, and 6D

Under current conditions, all four Sub-areas are in use as commercial manufacturing facilities; therefore, the receptor of concern is the non-resident in each of the three Sub-areas. Exhibit 7-1 presents the EM for the non-resident in any of the four Sub-areas.

EXHIBIT 7-1. EM CURRENT ON-SITE NON-RESIDENTIAL WORKER FOR AREA 6			
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	6B, 6C AND 6D) Justification	
Dermal Contact with Surficial Soil	NC	The Area is entirely paved; therefore, contact with surficial soil is unlikely.	
Ingestion of Surficial Soil	NC	The Area is entirely paved and likely to remain so; therefore, ingestion of surficial soil is unlikely.	
Indoor Inhalation of Vapors from Subsurface Soil	С	A number of volatile constituents were identified in soil within this Area; hence, inhalation is possible.	
Indoor Inhalation of Vapors from Groundwater	C	A number of volatile constituents were identified in groundwater within this Area; hence inhalation is possible.	
Notes: NC: Not Complete C: Complet Exposure pathways highlighted in bold ind evaluated.		ese pathways are complete and will be quantitatively	

7.8.2 Future Conditions for Sub-areas 6A, 6B, 6C, and 6D

Under future conditions, the land use and the locations of the buildings is anticipated to remain the same. Hence the comparison of current conditions will be protective of the future non-resident, as it is anticipated that any impact observed within this Area will continue to naturally attenuate, and concentrations will decline in the future.

Construction work could be performed anywhere within Area 6 in the future. Exhibit 7-2 presents the EM for the potential future construction worker in any of the four Sub-areas.

EXHIBIT 7-2. EM POTENTIAL FUTURE ON-SITE CONSTRUCTION WORKER FOR AREA 6 (SUB-AREAS 6A, 6B, 6C, AND 6D)

Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Soil	С	Soil is impacted at depths less than 20 feet bgs which is considered the construction zone; therefore, contact is possible.
Accidental Ingestion of Soil	С	Soil is impacted at depths less than 20 feet bgs which is considered the construction zone; therefore, ingestion is possible.
Outdoor Inhalation of Vapors and Particles from Soil	С	Soil is impacted within this Area, and a number of volatile constituents were identified in soil within this Area; therefore, this pathway is complete.
Dermal Contact with Groundwater	С	The depth to groundwater intersects with the typical depth of construction; therefore, this pathway is complete.
Outdoor Inhalation of Vapors from Groundwater	С	A number of volatile constituents were identified in groundwater within this Area, hence this pathway is complete.

Notes: NC: Not Complete C: Complete

Exposure pathways highlighted in bold indicate that these pathways are complete and will be quantitatively evaluated.

7.9 REPRESENTATIVE CONCENTRATIONS

The representative concentration for the non-resident, under current conditions is the Sub-area-wide average soil and groundwater concentration. This has been used as the majority of the samples have been collected from locations where a source has been identified; hence, the concentration derived will be very conservative compared with the actual concentrations beneath the buildings. Also, most of the sampling locations are around the periphery of the buildings. For the construction worker, the representative concentration will also be the Sub-area-wide average as the location of future construction work is unknown.

The ratio of the maximum detected concentration to the average concentration is presented in the 7-8(a), 7-8(b), and 7-9 series tables. Constituents and samples for which this ratio exceeds 10 have been identified. The results of this evaluation are presented as follows for each Sub-area.

7.9.1 Sub-area 6A

Tables 7A-8(a), 7A-8(b), and 7A-9 present the representative concentrations for soil and groundwater. The ratio of the maximum detected concentration to the average concentration was calculated for each constituent for soil and groundwater and are shown on the tables. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

7.9.2 Sub-area 6B

Tables 7B-8(a), 7B-8(b), and 7B-9 present the representative concentrations for soil and groundwater. The ratio of the maximum detected concentration to average concentration is also presented. Following are the constituents and the samples for which this ratio exceeds 10:

SOIL -	- CONSTRUCTION WORKER	
COCs	Locations	
cis-1,2-Dichloroethene	B27W3-8	
Ethylbenzene	B28-N-D (SWMU-4)	
Toluene	B28-N-D (SWMU-4)	
Vinyl chloride	B27W3-8	

	GROUNDWATER
COCs	Locations
1,1,2-Trichloro-1,2,2-	B28MW4
trifluoroethane	
1,2-Dichlorobenzene	B28MW1
Benzene	B28MW4
cis-1,2-Dichloroethene	MW3, B27W3S
Dichlorodifluoromethane	B28MW4
MTBE	B28MW4
Methylene chloride	MW3
Tetrachloroethene	HWI
Vinyl chloride	MW3, B27W3S
Trichloroethene	MW3
TPH-DRO	RC2
Barium	B22E2
Mercury	B28MW3

Several of these chemicals were at concentrations several orders of magnitude below the acceptable HQ of 1 and the acceptable IELCR of 1×10^{-5} , refer Tables 7B-10(a) and 7B-10(b). Thus, the target risk will not exceed unacceptable levels. However, to be conservative, we have identified those constituents whose concentrations are within two orders of magnitude of acceptable risk (i.e. those chemicals with an IELCR >1 x 10^{-7} and/or HQ > 0.01 for any receptor).

Based on this comparison, two constituents in groundwater, vinyl chloride in the vicinity of MW3 and B27W3S, and TPH-DRO in the vicinity of RC2, are within two orders of magnitude of acceptable risk.

7.9.3 Sub-area 6C

Tables 7C-8(a), 7C-8(b), and 7C-9 present the representative concentrations for soil and groundwater. The ratio of the maximum detected concentration to average concentration is also presented. Following are the constituents and the samples for which this ratio exceeds 10:

SOIL	- CONSTRUCTION WORKER	- /
COCs	Locations	
Ethylbenzene	B20E1-6	
Xylenes, total	B20E1-6	

	GROUNDWATER
COCs	Locations
Trichloroethene	B27E1
Barium	B27E9
Chromium	B27E1
Mercury	B27E9
Lead	B27E7

Several of these chemicals were at concentrations several orders of magnitude below the acceptable HQ of 1 and the acceptable IELCR of 1×10^{-5} , refer Tables 7C-10(a) and 7C-10(b). Thus, the target risk will not exceed unacceptable levels. However, to be conservative, we have identified those constituents whose concentrations are within two orders of magnitude of acceptable risk (i.e. those chemicals with an IELCR >1 $\times 10^{-7}$ and/or HQ > 0.01 for any receptor).

Based on this comparison, one constituent in groundwater, trichloroethene in the vicinity of B27E1, is within two orders of magnitude of acceptable risk.

7.9.4 Sub-area 6D

Tables 7D-8(a), 7D-8(b), and 7D-9 present the representative concentrations for soil and groundwater. The ratio of the maximum detected concentration to the average concentration was calculated for each constituent for soil and groundwater and are shown on the tables. For this Sub-area the ratio of maximum detected concentration to the average concentration did not exceed 10 for the COCs in soil or groundwater.

7.10 CALCULATION OF RISK

Tables 7A-10(a), 7B-10(a), 7C-10(a), and 7D-10(a) present the results for the non-residential worker for Sub-area 6A, Sub-area 6B, Sub-area 6C, and Sub-area 6D, respectively. Tables 7A-10(b), 7B-10(b), 7C-10(b), and 7D-10(b) present the results for the construction worker for Sub-area 6A, Sub-area 6B, Sub-area 6C, and Sub-area 6D, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

- Each COC.
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

7.10.1 Sub-area 6A

7.10.1.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 7A-10(a), the cumulative IELCR is 1.12×10^{-10} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7A-10(a), the cumulative HI is 0.054 that is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.10.1.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 7A-10(b), the cumulative IELCR is 5.33×10^{-8} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7A-10(b), the cumulative HI is 0.0089 that is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.10.2 Sub-area 6B

7.10.2.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 7B-10(a) the cumulative IELCR is 1.44×10^{-6} which is below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} — the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7B-10(a) the cumulative HI for all COCs and all routes of exposure is 7.9, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the HQ for indoor inhalation of aliphatics >nC16 to nC21 from groundwater is 6.9, i.e., the contribution to the HI from all the other COCs and routes of exposure is relatively small.

7.10.2.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 7B-10(b), the cumulative IELCR is 2.44×10^{-5} that is below the regulatory acceptable level of 1×10^{-4} . However, further examination of the table indicates that the IELCR for dermal contact of benzo(a)anthracene from groundwater is 2.36×10^{-5} , which resulted in the risk level for benzo(a)anthracene and routes of exposure greater than the regulatory acceptable risk level of 1×10^{-5} .

Non-carcinogenic Risk:

As shown in Table 7B-10(b), the cumulative HI is 0.17 that is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.10.3 Sub-area 6C

7.10.3.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 7C-10(a) the cumulative IELCR is 7.03×10^{-8} which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7C-10(a) the cumulative HI for all COCs and all routes of exposure is 4.1, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the HQs for indoor inhalation of aliphatics >nC16 to nC21 and aliphatics >nC21 to nC35 from groundwater are 2.2 and 1.1, i.e., the contribution to the HI from all the other COCs and routes of exposure is negligible.

7.10.3.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 7C-10(b), the cumulative IELCR is 8.36×10^{-8} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7C-10(b), the cumulative HI is 0.06 that is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.10.4 Sub-area 6D

7.10.4.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 7D-10(a) the cumulative IELCR is 2.99×10^{-10} which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7D-10(a) the cumulative HI for all COCs and all routes of exposure is 0.00014, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.10.4.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 7D-10(b), the cumulative IELCR is 8.25×10^{-8} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and each route of exposure would be less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 7D-10(b), the cumulative HI is 0.013 that is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

7.11 ECOLOGICAL RISK

The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 7-A and Attachment 7-B. These checklists identified some potential for dissolved groundwater impacts to migrate to Coldwater Creek located adjacent to the east of Sub-area 6D. An evaluation of the future potential for residual impacts to migrate and impact Coldwater Creek will be performed in accordance with the procedures included in the MRBCA program. This evaluation will be presented in an addendum to this report.

7.12 CONCLUSIONS

Carcinogenic and non-carcinogenic risks to the construction worker and the non-residential worker were calculated for each Sub-area. Key conclusions of the risk evaluation are:

Sub-area 6A

The calculated risks for all the COCs and all potentially complete routes of exposure for the noresidential worker and the construction worker are below the acceptable target risks.

Sub-area 6B

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from aliphatics >nC16 to nC21 in groundwater. The calculated carcinogenic risk for the non-residential worker was below the acceptable target risk.

The calculated risks for all COCs and all potentially complete routes of exposure for the construction worker are below the regulatory acceptable level. However, the carcinogenic risk of benzo(a) anthracene exceeded the target risk for dermal contact of groundwater.

Sub-area 6C

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of vapor from aliphatics >nC16 to nC21 and aliphatics >nC21 to >nC35 in groundwater. The calculated carcinogenic risk for the non-residential worker was below the acceptable target risk.

The calculated risks for all COCs and all potentially complete routes of exposure for the construction worker are below the regulatory acceptable level.

Sub-area 6D

The calculated risks for all the COCs and all potentially complete routes of exposure for the noresidential worker and the construction worker are below the acceptable target risks.

Table 7-1
Summary of Underground Storage Tanks (USTs) Present Historically within Area 6: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Sub-area	UST Number	Location	Volume (Gallons)	Contents	Construction Materials	Year Installed	Status	Comments
Sub-area 6A	B66	Building 29	4,000	Hydraulic Oil	Single Wall Fiberglass	1980	Removed 1994	Excavated
Sub-area 6B	B52	Building 22	5,000	Leaded Gasoline	Single Wall Steel	1942	Removed 1961	Excavated
	B53	Building 22	7,520	Leaded Gasoline	Single Wall Steel	1961	Removed 1989	Excavated
	B54	Building 22	8,000	Unleaded Gasoline	Double Wall Fiberglass	1989	Active	Retrofitted in 1995
	B55	Building 22	10,000	Unleaded Gasoline	Single Wall Fiberglass	1981	Removed 1995	Excavated
	B56	Building 22	10,000	Unleaded Gasoline	Double Wall Plastic Coated Steel	1995	Active	No action
	B57	Building 22	10,000	Diesel	Single Wall Fiberglass	1981	Removed 1995	Excavated
	B58	Building 22	10,000	Diesel	Double Wall Plastic Coated Steel	1995	Active	No action
	B60	Building 28	5,000	Jet fuel	Single Wall Steel	1955	Removed 1989	 Excavated
	B61	Building 28	5,000	Jet fuel	Single Wall Steel	1955	Removed 1989	Excavated
	. B62	Building 28	5,000	Waste Jet Fuel	Single Wall Steel	1953	Removed 1989	Excavated
	B63	Building 28	5,000	Jet fuel	Double Wall Steel	1989	Removed 2000	Excavated
,	B64	Building 28	5,000	Jet fuel	Double Wall Steel	1989	Removed 2000	Excavated
_	B65	Building 28	5,000	Waste Jet Fuel	Double Wall Steel	1989	Removed 2000	Excavated
Sub-area 6C	B59	Building 25	8,000	Methyl Alcohol	Single Wall Steel	1984	Removed 1995	Excavated
	B67	Building 20	250	Fuel Oil	Single Wall Steel	1943	Removed 1999	Excavated

Notes:

UST B65 replaced UST B62

USTs B63 and B64 replaced USTs B60 and B61

Table 7-2
Soil Boring Information for Area 6: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Sub-area	Boring	Date Drilled	Boring	Date Drilled
Sub-area 6A	B21S1	7/19/2000	MW-1	7/17/2000
	B29AW1	7/24/2000	RR1	9/22/2000
_	B29E1	7/20/2000	RR2	9/19/2000
-	B29Ĭ1	7/25/2000		
Sub-area 6B	B28-N	12/6-7/1993	HW1	7/24/2000
	B28-S	12/6-7/1993	MW-3	7/19/2000
<u> </u>	39-1	11/1/1994	MW-7	7/19/2000
-	39-2	11/1/1994	MW9S	9/18/2000
-	39-3	11/1/1994	PB1	7/24/2000
	22-1	11/1/1994	RC10	11/13/2000
-	22-2	11/1/1994	RC11	12/7/2000
<u> </u>	S31B1	6/1/1998	RC12	12/7/2000
-	S31B2	6/1/1998	RCI	7/25/2000
ļ	S31B3	6/1/1998	RC2	7/25/2000
}-	B22E1	7/24/2000	RC3	7/25/2000
-	B22E1	7/25/2000	RC4	9/18/2000
-	B22E3	7/25/2000	RC5	9/18/2000
 -	B22N1	7/24/2000	RC6	9/18/2000
}-	B22W1	7/24/2000	RC7	9/18/2000
				
-	B27W1	9/18/2000	RC8	9/18/2000
[-	B27W2	9/18/2000	RC9	11/13/2000
-	B27W3	9/18/2000	RR5	9/20/2000
	B28E1	7/26/2000	SBW-1 (SB1)	NA NA
-	B28N1	7/26/2000	SBW-3 (SB3)	NA NA
	CN1	7/24/2000	TH-2	NA
Sub-area 6C	B20E1	7/19/2000	B27I4	7/21/2000
ļ.	B20E2	7/19/2000	B27I5	7/21/2000
L-	B27E10 ·	11/13/2000	B27I6	7/25/2000
<u> </u>	B27E15	7/25/2003	B2717	7/21/2000
<u> </u> _	B27E1	7/20/2000	B27I8	7/21/2000
L	B27E2	7/19/2000	B27I9	7/25/2000
<u> </u>	B27E3	9/18/2000	B27S1	7/19/2000
1	B27E4	9/18/2000	B27S2	7/19/2000
L	B27E5	9/19/2000	B27S3	7/19/2000
Ļ	B27E6	9/19/2000	EPE1	7/20/2000
	B27E7	11/13/2000	EPE2	7/20/2000
L	B27E8	11/13/2000	MW-5	7/18/2000
	B27E9	11/13/2000	MW5AD	9/20/2000
	B27I10	11/14/2000	MW-8	7/18/2000
	B27I1	7/21/2000	MW8AD	9/21/2000
	B27I11	11/14/2000	MW8AS	9/21/2000
	B27I12	7/22/2003	RR3	9/19/2000
	B27I13	7/22/2003	RR4	9/19/2000
Γ	B27I2	7/21/2000	B27E11	11/14/2000
Ī	B27I3	7/21/2000		
Sub-area 6D	B27E12	7/2/2003	MW-6	7/19/2000
	B27E13.	7/25/2003	MW6D	9/20/2000
	B27E14	7/25/2003	SEWER	12/6/2000
ľ	B27E16	7/2/2003		,

Note:

NA: Not available

Table 7-3

Monitoring Well Information within Area 6: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Sub-area	Monitoring Well	Diameter	Screened Interval (ft bgs)	Total Depth (ft)	Installation Date	Status	# of Times Sampled
Sub-area 6A	MW1	2	10-20	20	7/17/2000	Active	7
Sub-area 6B	B28MW1	2	2-12	12	10/25/1988	Active	9
	B28MW2	2	2-12	12	11/7/1988	Active	7
	B28MW3	2	. 2-12	12	11/7/1988	Active	6
	MW3	2	9.7-19.7	19.7	7/19/2000	Active	9
	MW7	2	6.9-11.9	14.4	7/19/2000	Active	9
	MW9D	2	62.5-72.5	72.5	9/22/2000	Active	9
	MW9S	2	8.0-18.0	73.5	9/18/2000	Active	9
	MW3A	2	5.0-20.0	20	6/10/2002	Active	3
	MW3B	2	5.0-20.0	20	6/10/2002	Active	3
	B28MW-16	2	2-12	12	11/8/1988	Closed	9
	B28MW-1A	2	3.3-13.3	13.3	10/24/1988	Closed	9
	B28MW-15	2	2-12	12	11/8/1988	Closed	3
	B28MW4	2	10.6-15.6	15.6	8/1/1988	Active	3
Sub-area 6C	B25MW4	2	10.6-15.6	15.6	8/1/1988	Active	8
	MW5	2	7.9-17.9	19.9	7/18/2000	Active	4
	MW5AD	2	68.4-78.4	78.5	9/25/2000	Active	9
	MW5AS	2	5.0-15.0	16.5	9/21/2000	Active	9
İ	MW5BS	2	6.15-16.15	16.5	11/22/2000	Active	9
	MW5CS	2	7.64-17.64	18.1	11/22/2000	Active	9
·	MW5DS	2	7.08-17.08	17.5	11/22/2000	Active	10
	MW8	2	9.5-19.5	20	7/18/2000	Active	9
	MW8AD	· 2	70.5-80.5	81	9/21/2000	Active	9
	MW8AS	2	6.5-16.5	16.5	9/21/2000	Active	9
	B25MW1	2	10.7-15.7	15.7	8/1/1988	Active	. 7
	B25MW2	2	10.5-15.5	15.5	8/1/1988	Active	NA
	B25MW3	2	· NA	60	NA	Closed	NA
Sub-area 6D	MW6	2	8.0-23.0	23	7/19/2000	Active	9
	MW6D	2	68.0-78.0	78	9/23/2000	Active	9

Notes:

NA: No information available ft bgs: Feet below ground surface

ft: Feet

September 2004 The RAM Group

Table 7-4 Soil Samples Used in Average Concentration Calculations in Area 6: GKN Facility Boeing Tract 1, St. Louis, Missouri

iub-	Vola Orga Compo	inic	To Petro Hydroc	leum	Polynuclear Arom	atic Hydrocarbons		orinated senyis	Me	tals
rea	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Werker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker
		B29E1-17			MW-1-16					B21S1-12
6A		MW-1-16						ļ <u>-</u>		B29E1-17
				20011114	100031114	D223111.4		RC2-7		MW-1-16 39-1 0-1
	B22N1-4	B22N1-4		B22N1-4 B22W1-6	B22N1-4 RC3-5	B22N1-4 B28N1-7		NCD1	39-1 1-2	39-1 1-2
	B27W1-3 39-1 0-1	B22W1-6 B27W1-3	RCJ-J	B28N1-7	22-1 1-2	MW-7-7	11 1		39-2 0-1	39-2 0-1
	39-3 0-1	B27W2-8		MW-7-7		RC2-7	A		. 39-2'1-2	39-2 1-2
	22-1 1-2	B27W3-8		RC2-7.	a v	RC3-5	ti da Martini	1 · · · · · · · · · · · · · · · · · · ·	39-3 0-1	39-3 0-1
	22-2 0-1	B28N1-7		RC3-5		S31B1 6_2-7			39-3 1-2	39-3 1-2
	HWI-5	B28-N-D			ļ	22-1 1-2			22-1 0-1	22-1 0-1 22-1 1-2
	RC3-5	39-1.0-1						 	22-1 1-2 22-2 0-1	22-2 0-1
	·	39-3 0-1						 	22-2 1-2	22-2 1-2
		22-1 1-2	<u> </u>	· · · · · · · · · · · · · · · · · · ·	 			 	B22N1-4	B22N1-4
		22-2 0-1 HW1-5	-						B27W1-3	B22W1-6
		MW-3-12				\$ 15,75			HWI-5	B27W1-3
		MW-7-7			1				RC3-5	B27W2-8
		RC1-7	1						S31B3 1_5-2_5	B27W3-8
	-	RC2-7	L	I						B28E1-6
		RC3-5								B28N1-7
		RC4-10						4		HW1-5
		RC6-7	<u> </u>		1	 		 	1	MW-3-12 MW-7-7
6B	<u> </u>	S31B1 6.2-7 S31B1 8-8.5			 `					MW9S-12
	<u> </u>	S31B2 5.2-6	+		 			+		RC10-10
		33162 3.2-0		 					1	RCI-7
		 	 							RC2-7
										RC3-5
				1						RC4-10
								4		RC5-9
								·	-	RC6-20
		ļ						 	-	RC6-7 RC7-16
		 		 				+		RC8-8
		 	+							RC9-8
			<u> </u>							S31B1 6_2-7
		 	1							S31B1 8-8_5
										S31B2 5_2-6
										S31B2 7_5-8_
							1		<u> </u>	S31B3 1_5-2_
										S31B3 6_5-8_
										4
	B20E1-6	B20E1-6	B20E1-6	B20E1-6	B2714-5	B27E2-12	4	-10	B27E15-8	B27E10-12
	B27E1-9	B27E1-9	B20E2-8	B20E2-8	B2719-9	B2714-5	 	 	B27E1-9	B27E15-8
	B27112-8	B27E4-12	B27I10-9	B27E2-12		B2719-9		1	B27E7-10	B27E1-9
	B2714-5	B2711-12	B27111-9	B27110-9].		B27E9-10	. B27E2-12
	B2717-3	B27112-8	B2719-9	B2711-12		<u> </u>	L		B2714-5	B27E3-12
	B2719-9	B2712-11	1	B27111-9	+	 	 	+	B2716-8	B27E4-12
		B2713-12 B2714-5	 	B2719-9	 	1	+	+	B2717-3 B2719-9	B27E5-14 B27E6-12
		B2717-14	 	 	+	- 	 	 	B2751-5	B27E7-10
		B2717-3		1		1			B27S2-8	B27E8-11
		B2718-15								B27E9-10
		B2719-9		1						B2711-12
6C		MW-5-12	+	 	 		+	+		B2712-11 B2713-12
	 	MW-8-14	 	 	+	 				B2713-12 B2714-5
		- 	1	1	1	1	1			B2715-14
					.1		1			B2716-8
							4			B2717-3
				 		- 			 	B2718-15
		+	 	 		 	+	+		B27[9-9
	 		+	+	†	+	 	+		B27S1-5 B27S2-8
		1	1	1	1		1		 	MW-5-12
							1	1		MW-8-14
				-	+		_			MWBAS-12
			200016	1		 	+	+		
	B27E12-7	B27E12-7	B27E16-7	B27E16-7				 	SEWER-5	MW-6-13
6D	B27E14-6	B27E14-6		 	+				SEWER-8	MW6D-12
	L	MW-6-13			41.		 	N		SEWER-5

Table 7A-5(a) Soil Constituents Average Conentrations for VOCs in Sub-area 6A: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	VO	Cs (ug/k) ☑	g)
Sample ID	ACETONE	METHYL ETHYL KETONE (MEK)	METHYLENE CHLORIDE
Non- Residential Worker			
B29AW1-8	12.5	12.5	13
Average Concentration - Only Samples With VOC Detections			
Construction Worker			
B29AW1-8	12.5	12.5	13
B29E1-17	20	11	3.2
B2911-17	231	13	3.2
MW-1-16	41	24	3.6
Average Concentration - Only Samples With VOC Detections	30.5	17.5	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 8 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except acetone and/or methylene chloride detected in the sample

Bold indicates a detection

Table 7A-5(b)
Soil Constituents Average Concentrations for Metals in Sub-area 6A:
GKN Facility Construction Worker
Boeing Tract 1, St. Louis, Missouri

	Metals (ug/kg)									
Sample ID	ARSENIC	BARIUM	СНКОМПОМ	LEAD	MERCURY	SELENIUM				
B21S1-12	3,100	68,300	12,400	8,100	15	320				
B29E1-17	9,500		20,300	11,200	26	320				
MW-1-16	7,500	77,400	11,900	7,000	14	420				
Average Concentration - Only Samples With Metals Detections	6,700	119,567	14,867	8,767	18	353				

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 8 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 7A-5(c) Soil Constituents Average Concentrations for PAHs in Sub-area 6A: GKN Facility

Construction Worker

Boeing Tract 1, St. Louis, Missouri

	PAH (ug/kg)
Sample ID	CHRYSENE
MW-1-16	1,500
Average Concentration - Only Samples With PAH Detections	1,500

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 8 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Table 7A-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 6A: GKN Facility
Boeing Tract 1, St. Louis, Missouri

	VOCs (ug/l)									
Sample ID	ACETONE	BENZENE	BROMODICHLOROMETHANE	CARBON DISULFIDE	CHLOROFORM	CIS-1,2-DICHLOROETHENE	DIBROMOCHLOROMETHANE	METHYLENE CHLORIDE	TRICHLOROETHENE	
B21S1W	5	0.5	0.5	0.52	0.5	NA	0.5	0.5	0.5	
B29AWIW	5	0.5	***********	0.5	0.5	NA	0.5	***************	0,5	
B29E1W	4.6	0.5	0.5	0,5	0.5	NA	0.5	0,5	0.5	
B29I1W	5	0.5		0.5	1.7	NA	0.37	0.77	2.1	
MW1W	21.36	1.29	0.68	1.50	2.32	0.76	1.50	2.32	0.68	
Average Concentration - Only Samples With VOC Detections	10.45	0.76	0.59	0.84	1.51	0.76	0.79	1.20	1.09	

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except acetone and/or methylene chloride detected in the sample

September 2004 MACTEC

Table 7B-5(a) Soil Constituents Average Conentrations for VOCs in Sub-area 6B: GKN Facility Boeing Tract 1, St. Louis, Missouri

dan 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 marin 1 m	(300 1000 700)		000000000000000000000000000000000000000		Doeing 1	ract 1, Gt		Missouri VOCs (ug	Brot						
ł	· ·					ı			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Sample ID	1,1-DICHLOROETHANE	1,1-DIGHLOROETHENE	1,2-DiCHLOROETHENE (TOTAL)	ACETONE	GIS-1,2-DICHLORGETHENE	ETHYLBENZENE	METHYL ETHYL KETONE (MEK)	METHYLENE CHLORIDE	TETRACHLOROETHENE	TOLUENE	TRANS-1,2-DICHLOROETHENE	TRANS-1,2-DICHLOROBENZENE	TRICHLOROETHENE	VINYL CHLORIDE	XYLENES, TOTAL
Von-Residential Worker	0.051	0.051	0.051	70	N/A I	2.05	40	a oel	6 01	ാ വടി	NIA.	NA	2.95	2.95	2.95
322N1-4	2.95 3.2	2.95 3.2	2.95 NA	72 26	NA 1.6	2.95 11	12 12,5	2.95 3.2	6.2 3.2	2.95 16	NA 1.6	NA NA	3.2	3.2	2.53
327W1-3 39-1 0-1	NA	ND	NA NA	ND	ND	5	NA	ND	ND	51	NA	NA.	ND	ND	5
39-3 0-1	NA	ND	NA	ND	ND	3.4	NA.	ND	0.29	3.4	NA	36	0.062	ND	3.5
22-1 1-2	NA	ND	NA	ND	ND	ND	NA	ND	15	ND	NA	NA	ND	ND	ND
22-2 0-1	NA	ND	NA	ND	ND	ND	NA.	ND	10	ND	NA	NA	ND	ND	ND
-W1-5	3.15	3.15	55	16	NA NA	3.15	12.5	13	43 3.95	3.15 3.95	NA NA	NA NA	9 120	18 3.95	3.15 3.95
Average Concentration -	3.95	3.95	240	200 78.50	NA 74.89	3.95 4.91	16	31 12.54	3.95 11.66	3.95 13.41	IVA	36.00	27.04	7.03	13.76
Only Samples With VOC Detections			1	70.50	74.05	4.51		12.54	11.00	13.41		30.00	27.04	7.00	10.70
Construction Worker															
SOUSTIGEROUS VACAGE	3.25	×3.25	3.25	20	NA.	3.25	··· 43	14	3.25	3.25	NA	NA:	3 25	3 25	3.25
322E249	3.2	32	3.2	18	NA.	3.2		3.2	3.2	3.2	NA	NA	32	32	S/
322E3-6	 2	 23		39	NA	3.2	***************************************	32	3.2		‱NA	NA.	32	3.2	
322N1-4	2.95	2.95	2.95	72	NA	2.95	12	2.95	6.2	2.95	NA NA	NA NA	2.95	2.95	2.9
322W1-6	3.15 3.2	3.15 3.2	3.15 NA	21 26	NA 1.6	3.15 11	25 12.5	13 3.2	3.15 3.2	3.15 16	NA 1.6	NA NA	3.15 3.2	3.15 3.2	3.15
327W1-3 327W2-8	3.25	3.25	NA NA	13	1.65	3.25	12.5	3.25	9.3	3.25	1.65	- NA	3.25	3.25	3.2
B27W3-8	3.15	7.5	NA.	40	1,800	3.15	12.5	3.15	3.15	71	160	NA	390	600	1
328E146		 2	32	21	N/A	32	**************************************	2	3.2		NJA	NA.	32	32	<u>.</u>
B28N1-7	3.2	3.2	3.2	24	NA	30	13	3.2	3.2	3.2	NA	. NA	3.2	3.2	3.2
B28-N-D (14-16)	NA	ND	NA	ND	ZD	2,000	NA	ND	ХD	83,000	NA	ND	ND	ND	750
39-1 0-1	NA NA	ND	NA NA	ND	ND	3.4	NA NA	ND ND	0.29	51 3.4	NA NA	ND 36	ND 0.062	ND ND	3.
39-3 0-1 22-1 1-2	NA NA	ND ND	NA NA	ND ND	ND ND	ND	NA NA	ND	15	ND	NA NA	ND	0.062 ND	ND	NI NI
22-2 0-1	NA NA	ND	NA.	ND	ND	ND	NA NA	ND	10	ND	NA.	ND	ND	ND	N
HW1-5	3.15	3.15	55	16	NA	3.15	12.5	13	43	3.15	NA	NA	9	18	3.1
MW-3-12	3.15	3,15	250	12.5	NA	3.15	12.5	3.15	3.15	3.15	NA	NA	1.9	3.15	3.1
MW-7-7	3.15	3.15	3,15	12.5	NA	3.15	15	3.15	3.15	3.15	NA	NA	3.15	3.15	3.1
MVV95-12	3.2	2	NA NA	13 12.5	1.5 1.55	3.2	13 12.5	11 8.2	3.2	3.2	1.55	NA NA	32	3.2	3.
RC10-10 RC11-15	2.5	3.1 2.5	2.5		25	2.5	5	8 2	91 75	2.5	2.5	VA VA	25	7	2
RC12-15		2.5	25	5	25	2.5	5	5	2.5	2.5	2.5	NA		- 5	2
RC1-7	3.25	3.25	58	23	NA	3.25	13	3.25	3.25	3.25	NA	NA	2.5 3.9		3.2
RC2-7	1.6	3.2	3.2	20	NA	3.2	13	15	3.2	3.2	NA		3.2	4.7	3.
RC3-5	3.95	3.95	240	200	NA 0.4	3.95	16		3.95	3.95					3.9 3.1
RC4-10 RC5-9	3.15	3.15	NA NA	12.5 26	9.1	3.15 3.2	12.5 13	3.15 3.2	3.15	3.15 3.2	1.6		24 3.2	3.15	3.1
RC8-20	3.05	305	NA.	26	1.55	3.05	12	3.05	3.05	3.05	1.55		3,05	3.05	3.0
RC6-7	3.15	3.15	NA	12.5	44	3.15		3.15	3.15	3.15	1.6	NA	58	28	3.1
RC9-8	32	S 2	NA.	13	16	3.2	***************************************	8,1	3.2	3.2	1.6	N/A		3.2	3
S31B1 6.2-7	NA	NA	NA	6.5	3,2	NA		NA NA	8	NA	3.2				
S31B1 8-8.5	NA NA	NA NA	NA NA	7	3.4	NA NA		NA NA	28						3.
S31B2 5.2-6 S31B3 1.5-2.5	NA NA	NA NA	NA NA	6 14	3.1	NA NA		NA NA	9.4 3.2	NA NA	3.1				
Average Concentration - Only Samples With VOC Detections	3.10	3.53				122.83		7.40	8.24	4,892.95				52.20	381.8

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds NA - Not Analyzed

ND - Not Detected

NO VCCs except actions and/or methylene chloride detected in the sample Bold indicates a detection

MACTEC September 2004

Table 7B-5(b)

Soil Constitutents Average Concentrations for TPHs in Sub-area 6B: GKN Facility, Non-residential Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B22N1-4	RC3-5	Overall Area Average (ug/kg)
TPH - DRO			
7/19/2000	NA		
7/24/2000	15,000		
7/25/2000	ŇA		
7/26/2000	NA	NA	
AVERAGE TPH - DRO	15,000	20,000	17,500
TPH - GRO		· · · · · · · · · · · · · · · · · · ·	
7/19/2000	NA	NA	
7/24/2000	1,400	NA	
7/25/2000	NA	220	
7/26/2000	NA	NA	
AVERAGE TPH - GRO	1,400	220	810
TPH - ORO			
None			
AVERAGE TPH - ORO			

Notes:

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 7B-5(b)

Soil Constitutents Average Concentrations for TPHs in Sub-area 6B: GKN Facility, Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B22N1-4	B22W1-6	B28N1-7		RC2-7	RC3-5	Area Average (ug/kg)
TPH - DRO	T NA	NA	NA NA	15,500	NA NA	NA NA	
7/19/2000	NA						
7/24/2000	15,000					20,000	
7/25/2000	NA NA						
7/26/2000 AVERAGE TPH - DRO	15,000	16,000		15,500		20,000	177,083
TPH - GRO							
7/19/2000	NA	NA					 -
7/24/2000	1,400	270					
7/25/2000	NA	NA					
7/26/2000	NA	NA	16,000				
AVERAGE TPH - GRO	1,400	270	16,000	660	65	220	3,103
TPH - ORO							
None							District Section 1971 in
AVERAGE TPH - ORO							

Notes:

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 7B-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 6B: GKN Facility Non-Residential Worker
Booling Tract 1, St. Loois, Missouri

											, St. Lees, Missed										
											Metals (w	g/kg)									
Sample ID	тгиним	INTIMONY	RSENIC	ARIUM	SERYLLIUM	САБМІИМ	CALCIUM	снкомилм	COBALT	COPPER	IRON	LEAD	MAGNESIUM	MANGANESE	мексику	NICKEL	POTASSIUM	SELENIUM	млідоз	VANADIUM	ZINC
39-1 0-1	8,779,000	4,310	21,100	74,100	822	550	26,800,000	15,200	5,200	15,200	. 22,100,000	20,000	14,900,000	230,000	25	15,700	775,000	3,660	342,000	33,100	46,200
39-1 1-2	8,230,000	7,940		386,000	997				10,100	21,900		27,500	14,300,000	2,520,000	22	31,900	690,000	5,650	311,000	42,200	52,300
39-2 0-1	3,930,000	2,040	8,950		451				5,230					141,000	2	26,200	613,000	1,545	320,000	20,000	45,500
39-2 1-2	2,690,000				781				5,479				22,000,000	240,000	29				303,000	29,200	38,900
39-3 0-1	8,958,000	2,480	28,000	66,000	781	244	42,200,000	13,700	5,470	13,300	11,600,000	19,800	22,800,600	240,000	29				303,000	29,200	38,900
39-3 1-2	9,430,000	3,500	21,400	184,800	809	244			6,850					549,600	24			1,545	296,800	33,200	46,300
22-1 0-1	12,760,600	5,510		199,000	1,340	1,860			14,800					4,316,606	49			3,570			67,500
22-1 1-2	10,400,000			200,000	1,140	244			15,100					1,548,000	32			1,545	801,000	45,200	60,300
22-2 0-1	11,500,000	4,090		168,000	1,120	244			8,420	17,200				771,000	. 53				1,410,000	38,800	58,300 67,200
22-2 1-2	18,200,000			L58,000	1,130	244			8,200					300,000	39				484,000 NA	45,200 NA	NA
B22N1-4	NA.				NA				NA	NA.		6,100		NA.	29 65				NA NA	NA NA	NA NA
B27W1-3	NA.			152,000	NA.				NA	NA.					32			315	- NA	-NA	NA NA
HWI-5	NA				NA				NA NA	NA NA		8,100 8,100			25					NA	NA NA
RC3-5	NA.	NA.		97,400	NA NA	370 315			NA NA	NA NA									NA NA	NA NA	NA NA
S31B3 1_5-2_5	NA	NA	8,500	190,000	NA.	313	NA NA	15,000	NA	- NA		13,000		17.				313			
Average Concentration - Only Samples With Metals Detections	9,280,000	3,964	27,807	137,333	937	582.6	28,271,000	16,283	8,484	19,350 .	18,575,000	18,333	11,190,000	1,064,100	34	28,150	813,400	1,687	608,000	36,300	52,140

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area. Non Rezidential Worker - shows groundwater table in the area

Table 7B-5(c)
Soli Constituents Average Concentrations for Metals in Sub-area 6B: GKN Facility Construction Worker
Beeing Tract 1, St. Louis, Missouri

	,							*			1, St. Louis, Missou										
											Metals (6/kg)									
St-M					-			_		•			M)	Ŋ.			_			_	
Sample ID	LUMINUM	NTIMONY	RSENIC	RIUM	RYLLIUM	рмилм	ЗАІСТОМ	HROMIUM	COBALT	COPPER	N.O	gyp	IGNESIU	ANGANESE	ERCURY	CKEL	JTASSIUM	SLENIUM	Милао	ANADIUM	ZINC
	₹	~	_<_	≨	39	్ చ					<u> </u>	3	₹	2	Σ	<u> </u>	_ &	5		Ά	
39-1 0-1	8,778,860	4,310		74,100	822	550		15,200	5,200	15,200	22,190,000	20,000	14,908,000	230,000	25	15,790	775,900	3,660 5,650	342,000	33,100 42,200	46,200 52,300
39-1 1-2	8,230,000	7,940	28,200	306,000	997	2,520		16,900	10,100	21,900		27,900		2,520,000	22		690,000				45,500
39-2 0-1	3,930,000	2,840		53,100	451	244		22,700	5,230	17,800			4,750,000	141,000	29	26,290 12,600	613,000 922,000	1,545 1,545	320,000	29,000	38,900
39-2 1-2	8,690,000	2,480		66,000	781	244		13,700	5,470	13,300		19,800		240,000 240,000	29		922,000	1,545	303,000		38,500
39-3 0-1 39-3 1-2	8,950,000 9,430,000	2,480 3,500		66,000	781 809	244		13,700	5,470 6,850	14,000	11,600,000	20,500		549,800	24		· 852,600	1,545	296,000		46,300
22-1 0-1	12,790,000	5,510		199,000	1,340	1.360		20,500	14,800	28,100		32,700		4,319,000	49		1.080.000	3,579	1,510,000		67,500
22-1 1-2	18,408,800	3,520			1,140	244		17,800	15,100			26,500		1,540,000	32		687,800	1,545	361,008		68,300
22-2 0-1	11,500,600	4,090		168,000	1,120	244		21,200	8,420	17,200	17,500,000	26,100		771,600	53		897,000	1,545	1.410.000	36,000	58,300
22-2 1-2	18,208,800	3,770		158,000	1,130	244		18,700	8,200	27,200		25,700		300,000	39		696,000	1,545	484,000	45,200	67,200
B22N1-4	NA	NA	3,000	84,400	NA	295	NA.	11,300	NA	NA	NA	6,100	NA	NA.	29	NA.	NA	295	NA.	NA	NA
B22W1-6	NA.	NA	1,100	70,300	NA	315	NA.	13,100	NA	NA	NA	8,800	NA.	NA.	32	NA	NA	315	NA.	NA	NA
B27W1-3	NA.	NA	130,000	152,000	NA	\$10			NA	· NA	, NA	7,500	NA.	NA	65		NA	320	NA.	NA	NA.
B27W2-8	NA.	NA	5,800	187,000	NA	1,100	NA.	13,206	. NA	NA	NA.	8,000	NA:	NA	65		NA	325	NA.		NA
B27W3-8	NA	NA			NA.	750			NA.	NA				NA.	65		NA.	315	NA.	NA	NA.
928E1-6	NA.	NA	3,000	82,600	NA.	320		10,500	NA	NA		7,160		NA	22		NA	320	NA.		NA.
828N1-7	NA.	NA.			NA.	320			NA.	NA.		8,000		NA.	38	NA.	NA NA	320	NA.	NA.	NA
HW1-5	NA.	NA.	4,400		NA	315		14,000	NA	NA		8,100		NA	32		NA.	315	NA.	NA	NA
MW-3-12	NA.	NA	9,000		NA	315		21,000	NA	NA		9,800		- NA	21		NA	660	NA.	NA	NA
MW-7-7	NA.	NA.			NA	315			NA	NA		7,480		NA NA	22	NA.	NA.	315	NA.		NA NA
MW9S-12	ΝA	NA	5,200		NA	320			NA	NA		6,900		NA	65		NA.	320	NA.	NA NA	NA NA
RC10-10	NA NA	NA.		81,000 188,000	NA NA	310 140			NA.	NA NA		8,890 11,590		NA NA	60 15		NA NA	310 325	NA NA	NA NA	NA NA
RC1-7 RC2-7	NA NA	NA NA		98,100	NA NA	320			NA NA	NA NA		7,700		NA.	21	NA.	NA.	320	NA NA	NA NA	NA.
RC3-5	NA NA	NA NA		97.400	NA NA	370			NA NA	NA NA				- NA	25	NA	NA NA	370	NA NA	NA.	NA.
RC4-10	NA.	NA.			NA.	L,100			NA.	NA.				NA NA	65	NA NA	NA.	315	NA.	NA.	NA.
RCS-9	NA.	. NA		97,500	NA.	320			NA.	NA.		8,600		NA NA	65		NA.	320	NA.	NA.	NA.
RC6-20	NA.	NA.			NA	305			NA.	NA.		10,600		.NA	60		NA	. 305	NA	NA	· NA
RC6-7	NA.	NA.			NA	315			NA.	NA		6,500		NA	65		NA	315	NA	NA	NA
RC7-16	NA	NA			NA	310			NA	NA		6,000		NA	60	. NA	NA.	310	NA	NA	NA
RC#-#	NA	ÑĀ	3,300	97,400	NA	730		16,500	NA	NA.	NA.	6,400	NA.	NA	65		NA	320	NA	NA	NA
RC9-8	· NA	NA	2,110		NA	320		16,300	NA	NA		7,600		NA	65	NA	NA	320	NA.	NA.	NA
S31B1 6_2-7	NA	NA.		180,000	NA.	320		11,000	NA.	NA.		9,800		NA	50	NA.	. NA	315	NA.	NA	NA.
S31B1 8-8_5	NA	NA	3,350	97,000	NA	340	NA.	31,000	NA.	NA				NA	40		NA.	335	NA	NA.	NA.
S31B2 5_2-6	NA	NA	6,600		NA.	310		12,000	NA:	NA		11,000		NA	49		NA.	2,300	NA NA	NA.	NA.
S31B2 7_5-8_5	NA.	NA.	3,250	96,000	NA	320		12,000	NA.	NA.		6,000		NA	50	NA.	NA.	325	NA NA	NA NA	NA NA
S31B3 1, 5-2_5	NA	NA.	8,800	190,800	NA	315		15,000	NA.	NA.	NA.	13,000		NA.	60	NA	NA NA	315 335	NA NA	NA NA	NA NA
S31B3 6_5-8_5	NA	NA:	3,350	140,000	NA	335	NA	12,060	NA	NA.	NA	7,900	NA NA	NA	50	NA	NA	333	NA.	. NA	NA
Average Concentration - Only Samples With Metals Detections	9,230,000	3,964	14,266	125,724	937	481.3	28,271,000	15,617	8,404	19,350	18,575,000	12,347	11,190,000	1,054,100	42	28,150	813,400	920	608,000	36,300	52,140

ng/kg - suicrograms per kilogram

Groundwater table is at a dopth of 5 feet below ground surface (bgs) for area. Non Residential Wortor - above groundwater table in the area Construction Worker - above a depth of 20 feet bgs

ND - Not Detected

Table 7B-5(d) Soil Constituents Average Concentrations for PAHs in Sub-area B: GKN Facility

Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

			•	PA	Hs (ug/k	g)		··· <u>·</u>	
Sample ID	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	CHRYSENE	FLUORANTHENE	FLUORENE	PHENANTHRENE	PYRENE
B22N1-4	6800	74	42	42	300	110	62	18	18
22-1 1-2	ND	ND	ND	ND	ND	520	ND	ND	500
RC3-5	22	22	11.25	11.25	85	22	22	22	
Average Concentration - Only Samples With PAH Detections	3,411	48	26.63	26.63	192.50	217.33	42		180

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

Table 7B-5(d) Soil Constituents Average Concentrations for PAHs in Sub-area B: GKN Facility Construction Worker

Boeing Tract 1, St. Louis, Missouri

				PA	Hs (ug/ka	3)			
Sample ID	ACENAPHTHENE	ACENAPHTHYLENE	BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	CHRYSENE	FLUORANTHENE	FLUORENE	PHENANTHRENE	PYRENE
B22N1-4	6,800		42	42	300	110		18	18
B28N1-7	19.5	19.5	9.5	9.5	110	19.5	19.5	19.5	. 19.5
22-1 1-2	ND	ND	ND	ND	ND	520	ND	ND	500
MW-7-7	19	19	9.5	9.5	210	19	19	19	19
RC2-7	19	19	29	9.5	9.5	19			19
RC3-5	22	22	11.25	11.25	85	22	22	22	22
S31B1 6_2-7	21.25	21.25	2.125	2.125	2.125	2.125	21.25	5.07	2.125
Average Concentration - Only Samples With PAH Detections	1,150.13	29.13	17.23	13.98	119.44	101.66	27.13	17.1	85.66

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

Table 7B-5(e) Soil Constituents Average Concentrations for PCBs in Sub-area 6B: GKN Facility

Construction Worker

Boeing Tract 1, St. Louis, Missouri

Ducing Trace 1, on Loan,	PCB (ug/kg)
Sample ID	OCLOR 1254
RC2-7	100
Average Concentration - Only Samples With PCB Detections	100

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 5 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PCB - Polychlorinated Byphenyls

Table 7B-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 6B: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Commission of the Commission o		000000000000000000000000000000000000000			9000000	00000000	888888888	*******									yo.	cs (ug/l)										()(()()()()()()()()()()()()()()()()()(7.73.00	

Sample ID	2-TRICHLORO-1,2,2-TRIFLUOROETHANE	DICHLOROETHANE	DICHLOROETHENE	3.TRIMETHYLBENZENE	#TRIMETHYLBENZENE	Z-DICHLOROBENZENE	.2-DICHLOROETHENE (TOTAL)	2.DICHLOROPROPANE	-DICHLOROBENZENE	ADCHLOROBENZENE	ETONE	NZENE	CMODICHLOROMETHANE	ОМОМЕТНАМЕ	RRON DISULFIDE	LOROETHANE	ILOROFORM	5-1,2-DICHLOROETHENE	сицоворициовометнаме	THYLBENZEVE	opropyl Benzene	ethyl ethyl ketone (mek)	ethyl tert-Butyl ether	ETHYLENE CHLORIDE	PROPYLBENZENE	ec-Butylbenzene	ert-butylbenzene	ETRACHLOROGTHENE	OLUENE	лліз-1,2. ИСНІ ОКОЕТНЕНЕ	RICHLOROETHENE	RICHLOROFLUOROMETHANE	inyl chlomde	GLENES, TOTAL
		•	*	77	21					11.0	×	ø	1	, o	ಾ	្ល	ಾರ	<u> </u>	· 5		NA	2.5	NA NA	0.5	NA	NA NA	NA.	0.5	0.5	NA.	0.5	NA	1	0.5
822E2W	NA	0.5				. NA	0.5	0,5		NA.	. 5	0.5	0.5		0.5		0.5 0.5	NA NA		0.5	<u>₩</u>					NA.	NA NA	0.5		NA.	0.5		1	0.5
B22E3W	NA.	0.5				NA.	0.5	0.5		NA.	5	0.5	0.5		0.5		0.5	NA NA			- NA						NA	0.5		NA.	0.5		1	0.5
B22N1W	NA.	0.5				NA.	0.5	0.5		NA.	11 	0.5			0.51		0.5	— <u>XX</u>			NA.					Ň	NA	0.5		NA	2.2	NA.	1	0.5
B22W1W	NA.	0.5				NA.	3.6	0.5		N	20				2.5		2.5	1.25				. 10					NA	2.5		14	2.5	NA	110	
B27W1W	NA.	2.5				NA AA	NA.			NA NA	21	2.5			2.5		2.5	13		2.5	NA.	10				NA.	NA.	39	2.5	1.25	20		2.5	2.5
B27W2W	NA.	2.5				NA 45 88	NA NA				632.00	13.20						1014.25				632.00	15.88		15.88	15.88	15.88	13.20		70.45		15.88	113.50	
B27W3DW	0.50	13.34			15.88	15.88 NA	NA NA			NA	10	7.3				5	2.5	7200		2.5	NA.	10	NA	2.5	NA	N	N	2.5		410	510		2600	
B27W3SW	NA.	12					0.5	0.5		NA.		0.5			0.5	1	0.5	NA.		0.5	NA.	2.5	NA.	0,39		NA	NΑ	0.5		- X	0.5		1	0.5
B28E1W	0.50	0.5				114.04	NA NA			12.67	39.43	1.18			2.50	1.46	6.51	155.29	1.19	1.14	1.00	38.57	2.55				1.00	40.61		15.88	11.62		99.57	
828MW1W	36.00	1.66					NA.					1.00						0.84	1.44	1.06					0.79	0.79	0.79	1.00		0.84	1.00		1.31	
B28MW2W	0.50	0.89				0.50	NA	0.79		0.50	24.43	0.79		1.14	2.50	1.14	2,50	1.95		0.86			0.50		0.50	0.50	0.50	0.79		0.61	2.43		0.79	
B28MW3W B28MW4W	7000,00	0.50					NA.				25.00	136.67	0.50	0.50	N/	0.50	2.50		350.25	3.53			310.33				0.50	6.0		305.00	1.00		31.50 260	
B28N1W	NA	25					1900	25		NA	250	44	25	50	25		25	NA.		25					NA.		NA.	25		NA NA	25 37		32	
HW1W	NA NA		0.71				180	6	NA.	NA.	60	e	_6	12.5	5 (12.5	_6	NA.		. 6	NA		NA.		NA.		NA 1 80	260		13.37			6,92	
MW3AW	0.50	1.25					NA.	1.00	1.00	1.00	50.00	1.00	1.00	1.00				272.31	1.00	1.00						1.00	1.00	1.00		13.37			7.48	
MW3BW	0.50	0.54			0.54		NA	0.65	0.54	0.54	26.92	0.54						45,92	0.54				0.54			0.54	0.54 13.13	12.12			1874.24		626.92	
MW3W	3.40						NA.	12.12	13.13	13.13	596.60	12.12	12.12					3344.00		12.16			13.24					0.67		0.68	0.70		0.92	
MW7W	0.50	0.67					NA.	0.67	0.68	0.68	21.67	0.67						0.37	0.91	0.71			0.91 NA				0.77 NA	2.5		1.25	36		2.5	
RC10W	NA.	2.5				NA.	ž	2.5	NA.	NA	10	2.5	2.5		5 2.5		2.5	11									- NA		5 2.5	NA NA	80		20	
RC1W	NA	3.8		NA NA	NA.	NA.	120	5	NA.	NA.	50		<u> </u>	10				NA.			NA.						NA.	0.5		NA.	0.5		21	
RC2W	NA.	17					34			3	7.1				0.5		0.5	NA.									NA.	0.5		NA.			16.5	
RC3W	NA.	0.5					225			NA.	5	0.5			0.5		0.5	9.9								- NA	NA.	2.5		1.25	49		13	2.5
RC4W	NA.	2.5					2			NA.	10	2.5			2.5		2.5 2.50	9.9 5.64							0.50		0.50	0.90		1.55	0.90		3.18	
RC6DW	0.50	1,32					2	0.90		0.50		0.90			2.50		2.50	120								NA.	NA.	2.5	5 2.5	9.1	120	NA	59	
RC6SW	NA.	2.5					NA.			NA.	21	2.5		10000	2.3			***********	wii.				××××××××××××××××××××××××××××××××××××××				NA	2	2.6	126	2.6		26	
RC7W	NA	***					‱ KUA			<u> </u>	**************************************			*******				14.60								0.50	0.50	0.9		0.79	7.04		0.90	
RC8DW	0.50	0.90					NA NA			0.50		0.90 125						1500									NA.	12		130	125		125	
RC85W	N	125	125				NA.						123		5		23	129							NA.	SSNA.			2.3	3.25	29	NA.	2.5	
RCWV	**************************************	2 5	****			XXXX	NA.		8888 KA	*****	**************************************	***********************	40000	********	******	7		0000/0V	1		1	1	1		i				T			\Box	-	
Average Concentration - Only Samples With VOC Detections	640.31	8.55	7.97	0.74	3.36	13.46		7.58	3,22	4.24	88.71	13.31	7.58	14.22	7.88	14.13	11.85	582.14	35.09	7.71	3.50	79.96	31.55	12.84	3,33	3.20	3.19	19.56	13.02	58.37	111.85	3.52	148.77	10.06

Notes:
ugh - micrograms per litar
VOCs - Voletile Organic Compounds
NA - Not Analyzed
No VOCs except some description for sample

Table 7C-5(a) Soil Constituents Average Conentrations for VOCs in Sub-area 6C: GKN Facility Boeing Tract 1, St. Louis, Missouri

************					IS, MISSOU						***************************************
·					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uging					
1,2-DICHLOROETHENE (TOTAL)	ACETONE	CHLOROFORM	CIS-1,2-DICHLOROETHENE	DICHLORODIFLUOROMETHANE	ETHYLBENZENE	METHYL ETHYL KETONE (MEK)	METHYL ISOBUTYL KETONE	METHYLENE CHLORIDE	O-XYLENE	TRICHLOROETHENE	XYLENES, TOTAL
NA	NA	NA	NA	NA	3,200	NA	NA	NA	1,200	NA	1,200
										11	3.15
								8.3	NA	3.1	3.1
				NA	3.2	13	13	8,3	NA	3.2	3.2
	NA	0.5	0.5	3.6	25	NA	NA	0.5	0.5	0.5	25
3.1	82	3.1	NA	NA	3.1	18	12.5	3.1	NA	3.1	3.1
3.3	13.5	3.3	NA	NA	3.3	8.9	13.5	3.3	NA	3.3	3.3
3.2	110	3.2	NA	NA	3.2	13	6.7	3.2	NA	3.2	3.2
	54.5		2.5	3.6	539.63	13.1	11.3		600.25	4.22	206.292
NA	NA	NA	NA	NA	3,200	NA	NA	NA	1,200	NA	1,200
2.4	12.5	3.15	NA	NA	3.15	12.5	12.5		NA		3.15
NA		3.1	7								3.1
NA											9.1
											3.3
NA		3.2	1.6	N/A							3.2
6.1											3.25
											25
											3.35
											3.2
											3.1
							***************************************			***************************************	3.45
											3.05 3.3
											3.3
											3.3
											3.2
											3.35
0.00	26.83	2.92	3.47	3.60	233.11			0.00	600.25	29.44	90.25
	NA 2.4 NA NA 3.1 3.3 3.2 NA 2.4 NA NA NA	NA NA 12.5 NA 13.1 NA NA 3.1 82 3.3 13.5 3.2 110 54.5 NA 12.5 NA 12.5 NA 12.5 NA 12.5 NA 12.5 NA 13.5 NA 13.5 3.2 13.5 3.3 13.5 3.2 13 3.1 82 3.45 25 3.05 12 3.3 13.5 3.2 110 3.2 13 3.1 82 3.45 25 3.05 12 3.3 13.5 3.2 110 3.2 13 3.1 3.5	NA NA NA NA 12.6 3.1 82 3.1 82 3.1 NA 12.5 3.15 NA 12.5 3.15 NA 12.5 3.15 NA 12.5 3.1 NA 12.5 3.1 NA 12.5 3.1 NA 12.5 3.1 NA 12.5 3.1 NA 13 3.3 NA 13 3.2 6.1 13 2.1 NA NA 0.5 3.35 13.5 3.2 13 3.2 3.1 82 3.1 82 3.1 3.45 25 3.45 3.05 12 3.05 3.3 13.5 3.3 3.2 110 3.2 3.2 13 3.2 3.1 3.5 3.3 3.2 110 3.2 3.2 13 3.2 3.2 3.3 3.2 110 3.2 3.2 3.3 3.2 3.2 3.3 3.2 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.2 3.3 3.3	NA NA NA NA 2.4 12.5 3.15 NA NA 12.6 3.1 1.65 NA 13 3.2 1.6 NA NA 0.5 0.5 3.1 82 3.1 NA 3.3 13.5 3.3 NA 3.2 110 3.2 NA 54.5 2.5 2.5 NA NA NA NA NA NA 12.5 3.15 NA NA NA 13.3 3.2 1.6 6.1 13 2.1 NA NA NA NA NA NA 0.5 0.5 3.35 NA 3.2 13 3.2 NA 3.1 82 3.1 NA 3.45 25 345 NA 3.05 NA 3.05 12 3.05 NA 3.3 NA 3.3 13.5 3.3 NA 3.3 13.5 3.3 NA 3.3 NA 3.2 110 3.2 NA 3.3 NA 3.3 NA 3.3 NA 3.2 110 3.2 NA 3.3	NA NA NA NA NA NA 2.4 12.5 3.15 NA NA NA 12.6 3.1 1.55 NA NA 13 3.2 1.6 NA NA NA 0.5 0.5 3.6 3.1 82 3.1 NA NA 3.3 13.5 3.3 NA NA 3.2 110 3.2 NA NA 3.2 10 3.2 NA NA 3.4 12.5 3.15 NA NA 3.4 12.5 3.1 7 NA 3.4 12.5 3.1 7 NA 3.4 12.5 3.1 7 NA 3.4 13 3.2 1.6 NA 3.4 13 3.2 1.6 NA 3.3 13.5 3.35 NA NA 3.3 13.5 3.35<	NA	NA NA NA NA NA 3,200 NA 2.4 12.5 3.15 NA NA 3.15 12.5 NA 12.5 3.1 1.55 NA 3.1 12.5 NA 13 3.2 1.6 NA 3.2 13 NA NA 0.5 0.5 3.6 25 NA 3.1 82 3.1 NA NA 3.1 18 3.3 13.5 3.3 NA NA 3.3 8.9 3.2 110 3.2 NA NA 3.2 13 54.5 2.5 3.6 539.63 13.1 NA 12.5 3.15 NA NA 3.2 13 54.5 2.5 3.6 539.63 13.1 NA 12.5 3.15 NA NA 3.2 13 54.5 3.1 15.6 NA 3.1 12.5	NA	NA	NA NA NA NA NA NA NA 3,200 NA NA NA 1,200 NA NA NA NA NA NA NA 3,200 NA NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,3 89 13.5 3.3 NA NA 12.5 3.1 7 NA NA 3,2 13 6.7 3.2 NA NA 12.5 3.1 65 NA 3,3 12.5 12.5 3.15 NA 3.2 110 3.2 NA NA 3,2 13 12.5 12.5 NA NA 12.5 3.1 65 NA 3,3 12.5 12.5 NA NA 12.5 3.1 NA NA 3,2 13 6.7 3.2 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,2 13 6.7 3.2 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,3 8.9 13.5 3.3 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,3 89 13.5 3.3 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,2 13 6.7 3.2 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,2 13 6.7 3.2 NA NA NA 0,5 0,5 3.6 25 NA NA 0,5 0,5 3.1 82 3.1 NA NA 3,2 13 6.7 3.2 NA NA 13 3,3 165 NA 3,3 12.5 12.5 3.15 NA NA 12.5 3.1 7 NA 3,1 12.5 12.5 3.15 NA NA 13 3,3 165 NA 3,3 13 12.5 12.5 NA NA 13 3,3 165 NA 3,3 13 12.5 12.5 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 8.7 NA NA 13 3,3 165 NA 3,3 13 13 3.2 NA NA NA 0,5 0,5 3,6 25 NA NA 0,5 0,5 3,35 13,5 3,3 NA NA NA 3,2 13 13 3,2 NA NA NA 0,5 0,5 3,6 25 NA NA 0,5 0,5 3,35 13,5 3,3 NA NA NA 3,2 13 13 3,2 NA NA NA 0,5 0,5 3,6 25 NA NA 0,5 0,5 3,35 13,5 3,3 NA NA NA 3,3 18 12.5 3,1 NA NA 13 3,3 13,5 NA NA NA 3,3 18 12.5 3,1 NA NA 13 3,3 13,5 NA NA NA 3,3 18 12.5 3,1 NA NA NA 0,5 0,5 3,6 25 NA NA NA 0,5 0,5 3,35 13,5 NA NA NA 3,2 13 13 3,2 NA NA NA 0,5 0,5 3,6 25 NA NA NA 3,2 13 3,3 NA NA NA 0,5 0,5 3,6 25 NA NA NA 3,2 13 3,3 NA NA NA 0,5 0,5 0,5 3,6 25 NA NA NA 3,2 NA NA NA 0,5 0,5 0,5 3,6 25 NA NA NA 3,2 NA NA 13 3,3 13,5 NA NA NA 3,3 15 13,5 NA NA NA 0,5 0,5 0,5 3,6 25 NA NA NA 3,2 NA NA NA 0,5 0,5 0,5 3,6 25 NA NA NA 3,2 NA NA NA 0,5 0,5 0,5 3,6 25 NA NA NA 3,2 NA NA 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,	NA

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except methylene chloride detected in the sample

Bold indicates a detection

September 2004 MACTEC

Table 7C-5(b)

Soil Constitutents Average Concentrations for TPHs in Sub-area 6C:

GKN Facility, Non-residential Worker Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B20E1-6	B20E2-8	B27110-9	B27l11-9	B27l9-9	Overall Area Average (ug/kg)
TPH - DRO			<u> </u>			TPH - DRO
7/18/2000	NA	NA	NA	NA	NA NA	
7/19/2000	170,000	490,000	NA	NA	NA	
7/20/2000	NA	NA	NA	NA	NA	
7/21/2000	NA	NA	NA	NA	NA	
7/25/2000	NA	NA	NA	NA	1,400,000	
11/14/2000	NA	NA	650,000	120,000	NA	
7/22/2003	NA	NA	NA	NA	NA	
7/25/2003	NA	NA	NA	NA	NA	
AVERAGE TPH - DRO	170,000	490,000	650,000	120,000	1,400,000	566,000
TPH - GRO						TPH - GRO
7/18/2000	NA	NA	NA	NA	NA	
7/19/2000	. 65	320,000	NA	NA	NA	
7/20/2000	NA	NA	NA	NA	NA	1
7/21/2000	NA	NA	NA	NA	NA	
7/25/2000	NA	NA	NA	NA	65	
11/14/2000	NA	NA	65	65	NA	· ·
7/22/2003	NA	NA	NA	NA	NA	
7/25/2003	NA	. NA	NA	NA	NA	
AVERAGE TPH - GRO	65	320,000	65	65	65	64,052
TPH - ORO						TPH - ORO
7/22/2003	NA	NA	NA	. NA	NA	,
7/25/2003	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO		erina di serina di s		1900 V F		

Notes:

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area. Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 7C-5(b)

Soil Constitutents Average Concentrations for TPHs in Sub-area 6C: GKN Facility, Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B20E1-6	B20E2-8	B27E2-12	B27l10-9	B27l1-12	B27l11-9	B27l9-9	Overall Area Average (ug/kg)
TPH - DRO		3	· · · · · · · · · · · · · · · · · · ·					TPH - DRO
7/18/2000	NA	NA	NA NA	NA	NA	NA	NA	
7/19/2000	170,000	490,000	4,500,000	NA	NA	NA	. NA	!
7/20/2000	NA	NA	· NA	NA	NA	NA	. NA	SI.
7/21/2000	NA	NA	NA	NA	16,000	. NA	NA	8
7/25/2000	NA	NA	NA	NA	NA	NA	1,400,000	
11/14/2000	NA	NA	NA	650,000	NA	120,000	NA	
7/22/2003	. NA	NA	NA	NA	NA	NA	NA	
7/25/2003	NA	. NA	NA	NA	NA	NA	NA NA	
AVERAGE TPH - DRO	170,000	490,000	4,500,000	650,000	16,000	120,000	1,400,000	1,049,429
TPH - GRO		and the second s				*		TPH - GRO
7/18/2000	NA	NA	NA	NA.	NA	NA	NA	
7/19/2000	65	320,000	240	NA	NA	NA	NA	
7/20/2000	NA	NA	NA	NA	NA	NA	NA	41
7/21/2000	NA	NA NA	NA	NA	150	NA	NA.	41
7/25/2000	NA	NA	NA	NA	NA	NA	65	31
11/14/2000	NA	NA	NA	65	NA NA	6 5	NA	ar i
7/22/2003	NA	NA	NA	NA	NA	NA	NA	
7/25/2003	NA	NA	NA	· NA	NA	NA	NA	
AVERAGE TPH - GRO	65	320,000	240	65	150	65	65	45,807
TPH - ORO	ing are the interest of the second of the se	er til skriver og skriver. Skriver og skriver og skriver			tie spetitijs bit til 1995. Bestinger			TPH - ORO
7/22/2003	NA	NA	NA	NA	NA	NA	NA	
7/25/2003	NA	NA	NA	NA	NA	NA	NA	
AVERAGE TPH - ORO							tion of the second	

Notes:

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 7C-5(c) Soil Constituents Average Concentrations for Metals in Sub-area 6C: GKN Facility Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

		· · · .	Me	etals (ug/k	g)		
Sample ID	ARSENIC	ВАВІИМ	САБМІОМ	CHROMIUM	LEAD	MERCURY	SELENIUM
B27E15-8	NA	NA	NA	10,000	. NA	NA	NA
B27E1-9	7,200	164,000	290	69,800	14,100	47	315
B27E7-10	2,800	75,700	310	9,300	7,300	60	310
B27E9-10	5,900	163,000	740	13,400	12,600	65	320
B27I4-5	4,400	233,000	310	13,200	8,700	19	310
B27I6-8	10,850	166,000	330	93,650	13,400	27	330
B27I7-3	7,700	293,000	330	18,000	12,200	17	530
B27I9-9	6,500	189,000	320	17,600	14,000	20	320
B27S1-5	2,200	75,400	320	10,700	6,400	11	320
B27S2-8	7,000	108,000	320	16,000	10,500	29	320
Average Concentration - Only Samples With Metals Detections	6,061	163,011	363.3	27,165	11,022	33	342

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 7C-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 6C: GKN Facility
Construction Worker

Boeing Tract 1, St. Louis, Missouri

 			or rouis,				
		· .	Me	etals (ug/k	g)	· · · · · · · · · · · · · · · · · · ·	. • .
Sample ID	ARSENIC	BARIUM	САБМІИМ	СНВОМІОМ	LEAD	MERCURY	SELENIUM
B27E10-12	2,700	91,800	325	11,800	7,600	65	325
B27E15-8	NA NA	NA	NA	10,000	NA	NA	NA
B27E1-9	7,200	164,000		69,800	14,100	47	315
B27E2-12	9,400	176,000		17,200	10,400	25	315
B27E3-12	2,700	101,000		11,800	9,200	65	315
B27E4-12	1,500	64,800	310	13,700	7,000	60	310
B27E5-14	4,400	103,000		10,900	10,600	. 60	310
B27E6-12	4,600	85,100	320	13,300	7,600	65	320
B27E7-10	2,800	75,700	310	9,300	7,300	60	310
B27E8-11	4,200	146,000	660	13,700	8,000		330
B27E9-10	5,900	163,000	740	13,400	12,600		320
B27I1-12	5,500	152,000	76	13,400	9,100		325
B27I2-11	3,700	71,600	335		6,800		335
B27I3-12	7,700	142,000	98	17,500	9,700		320
B27I4-5	4,400	233,000		13,200	8,700		310
B27I5-14	5,400	122,000	310	17,900	12,800		310
B27I6-8	10,850	166,000		93,650	13,400		330
B2717-3	7,700	293,000		18,000	12,200		530
B2718-15	8,500	295,000	180		11,700		330
B27I9-9	6,500	189,000		17,600	14,000		320
B27S1-5	2,200	75,400		10,700	6,400		320
B27S2-8	7,000	108,000		16,000	10,500		320
MW-5-12	8,200	84,400		14,500	8,600		320
MW-8-14	5,800	107,000		18,100	11,900		335
MW8AS-12	10,750	303,500			9,800		322.5
Average Concentration - Only Samples With Metals Detections	5,817	146,346	424.5	19,798	10,000	38	329

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 7C-5(d)
Soil Constituents Average Concentrations for PAHs in Sub-area 6C: GKN Facility Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

Boeing Traci	1, 56 200			
		PAHs (ı	ig/kg)	
Sample ID	BENZO(A)ANTHRACENE	BENZO(B)FLUORANTHENE	CHRYSENE.	FLUORANTHENE
B27I4-5	9.5	9.5	72	18.5
B27I9-9	95	95	740	190
Average Concentration - Only Samples With PAH Detections			406	

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

Table 7C-5(d)
Soil Constituents Average Concentrations for PAHs in Sub-area 6C: GKN Facility Construction Worker
Roeing Tract 1. St. Louis, Missouri

. Boeing I raci	1,000	11, 11,110,004		
		PAHs (i	ig/kg)	
Sample ID	BENZO(A)ANTHRACENE	BENZÓ(B)FLUORANTHENE	CHRYSENE	FLUORANTHENE
B27E2-12	94	39	9.5	44
B27I4-5	9.5	9.5	72	18.5
B27I9-9	95	95	740	190
Average Concentration - Only Samples With PAH Detections	66.17	47.83	273.83	84.17

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 10 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

Table 7D-5(a) Soil Constituents Average Conentrations for VOCs in Sub-area 6D: GKN Facility Reging Tract 1, St. Louis, Missouri

Boeing Tract 1, St. La			
	VO	Cs (ug/	kg),
Sample ID	DICHLORODIFLUOROMETHANE	METHYL ETHYL KETONE (MEK)	TOLUENE
Non- Residential Worker			
B27E12-7	8.4	NA	25
B27E14-6	2.5	125	52
Average Concentration - Only Samples With VOC Detections	5.45		38.5
Construction Worker	: .		
B27E12-7	8.4	NA	25
B27E14-6	2.5	125	52
MW-6-13	NA	12	3.2
Average Concentration - Only Samples With VOC Detections	5.45	68.5	26.73

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Bold indicates a detection

September 2004

MACTEC

Table 7D-5(b)

Soil Constitutents Average Concentrations for TPHs in Sub-area 6D: GKN Facility

Non-Residential Worker and

Construction Worker

Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B27E16-7	Overall Area Average (ug/kg)
TPH - DRO		TPH - DRO
7/19/2000	NA	
7/2/2003	2,500	
7/25/2003	NA	
AVERAGE TPH - DRO	2,500	2,500
TPH - GRO		TPH - GRO
7/19/2000	NA	
7/2/2003	12,000	
7/25/2003	NA	
AVERAGE TPH - GRO	12,000	12,000
TPH - ORO		TPH - ORO
7/2/2003	2,500	
7/25/2003	NA	
AVERAGE TPH - ORO	2,500	2,500

Notes:

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 7D-5(c)

Soil Constituents Average Concentrations for Metals in Sub-area 6D: GKN Facility Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

			Metals	(ug/kg)		
Sample ID	ARSENIC	BARIUM	САДМІТІМ	СНКОМІОМ	LEAD	MERCURY
SEWER-5	5,800	174,000	305	11,000	14,400	60
SEWER-8	4,500	123,000	740			65
Average Concentration - Only Samples With Metals Detections	5,150	148,500	522.5	16,000	12,300	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 7D-5(c)
Soil Constituents Average Concentrations for Metals in Sub-area 6D:
GKN Facility Construction Worker
Boeing Tract 1, St. Louis, Missouri

			Metals	(ug/kg)		
Sample ID	ARSENIC	BARIUM	САРМІГЛМ	СНКОМІОМ	LEAD	MERCURY
MW-6-13	17,700	195,000	120	15,000	8,400	21
MW6D-12	9,000	143,000	760	14,300	27,700	65
SEWER-5	5,800	174,000	305	11,000	14,400	
SEWER-8	4,500	123,000	740	21,000	10,200	65
Average Concentration - Only Samples With Metals Detections	9,250	158,750	481.3	15,325	15,175	53

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 9 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

Table 7-6
Groundwater Samples Used in Average Concentration Calculations in Area 6: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Sub- area	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals
	B21S1W	B29E1W			B21S1W
6 A	B29I1W				MW1W
	MW1W				
	B22E2W	B22E3W	B22N1W	RC1W	B22E2W
	B22E3W	B22N1W	RC2W	RC2W	B22E3W
	B22N1W	B28MW1W			B22N1W
	B22W1W	B28MW3W			B22W1W
	B27W1W	B28MW4W	· · · · · · · · · · · · · · · · · · ·		B27W1W
	B27W2W	B28N1W			B27W2W
	B27W3DW	HW1W			B27W3DW
	B27W3SW	MW3W		telen en B27W3SW	
	B28E1W	RC1W			B28E1W
	B28MW1W	RC2W			B28MW1W
	B28MW2W	RC3W			B28MW2W
	B28MW3W				B28MW3W
	B28MW4W				B28N1W
	B28N1W				RC10W
Œ	HW1W				RC1W
6B	MW3AW				RC2W
	MW3BW				RC3W
	MW3W				RC4W
,	MW7W				RC5W
	RC10W				RC6DW
	RC1W				RC6SW
	RC2W				RC7W
	RC3W				HW1W
	RC4W				MW3W
	RC6DW				MW7W
	RC6SW				MW9SW
	RC8DW				RC8SW
	RC8SW		3		RC9W
					RR5W

Table 7-6
Groundwater Samples Used in Average Concentration Calculations in Area 6: GKN Facility
Boeing Tract 1, St. Louis, Missouri

Sub- area	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals
	B27E1W	B25MW1W			B25MW1W
	B27E2W	B25MW4W			B25MW4W
	B27E4W	B27E1W			B27E10W
	B27I12W	B27E2W	•		B27E11W
	B27I1W	B27I10W			B27E15W
	B27I2W	B27I11W			B27E1W
	B27I5W	B27I1W			B27E2W
	B27I6W	B27I2W			B27E3W
	B27I7W	B27I6W			B27E4W
	B27I8W	B27I7W			B27E5W
	B27I9W ·	B27I9W			B27E6W
	B27S2W	MW5ASW			B27E7W
	B27S3W	MW5CSW			B27E8W
	MW5ASW				B27E9W
6C	MW5W		•		B27I1W
	MW5W				B27I2W
	MW8ASW				B27I5W
	MW8W				B27I6W
					B27I7W
					B27I8W
					B27I9W
					B27S1W
				- 1	B27S2W
					B27S3W
					MW5ASW
					MW5BSW
					MW5CSW
					MW5DSW
					MW5W
					MW8ASW
			·		MW8W
	B27E12W				MW6W
A	B27E16W				SEWERW
6 D	MW6W				GEWERW
				4. 1465 T. HA	

Table 7A-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 6A: GKN Facility
Boeing Tract 1, St. Louis, Missouri

		g ract	, , , , , , , ,						
					VOCs				
			,		(ug/l)	•	· · · · ·		
Sample ID	ACETONE	BENZENE	BROMODICHLOROMETHANE	CARBON DISULFIDE	CHLOROFORM	CIS-1,2-DICHLOROETHENE	DIBROMOCHLOROMETHANE	METHYLENE CHLORIDE	TRICHLOROETHENE
B21S1W	5	0.5	0.5	0.52	0.5	NA	0.5	0.5	0.5
B29AW1W	5	0.5	0.5				0.5	0.4	0.5
B29E1W	4.6	0.5	0.5	0.5			0.5	0.5	0.5
B29I1W	5	0.5	0.6	0.5		NA	0.37	0.77	2.1
MW1W	21.36	1.29	0.68	1.50	2.32	0.76	1.50	2.32	0.68
Average Concentration - Only Samples With VOC Detections	10.45	0.76	0.59	0.84	1.51	0.76	0.79	1.20	1.09

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except acetone and/or methylene chloride detected in the sample

Table 7A-7(b) Groundwater Constitutents Average Concentrations for TPHs in Sub-area 6A:

GKN Facility Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B29E1W	Overall Area Average (ug/l)
TPH-DRO		TPH-DRO
7/21/2000	250	
7/26/2000	NA	
7/27/2000	NA	
AVERAGE	250	250
TPH-GRO		TPH-GRO
7/25/2000	730	
7/26/2000	. NA	
7/27/2000	NA	
AVERAGE	730	730
TPH-ORO		TPH-ORO
None		
AVERAGE	114	

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

Table 7A-7(c)
Groundwater Constituents Average Concentrations for Metals in Sub-area 6A:
GKN Facility

Boeing Tract 1, St. Louis, Missouri

		11400 1, 00 2					
			Met	als (ug/l)			
Sample ID		·	M	UM		X.	M
	ARSENIC	BARIUM	CADMIUM	CHROMIUM	LEAD	MERCURY	SELENIUM
B21S1W	196	22900	13.4	1060	388	1.3	7
MW1W	7.39	233.63	1.69	17	8.25	0.2719	26.25
Average Concentration - Only Samples With Metals Detections	102	11,567	7.54	539	198	0.79	16.63

Notes:

ug/l - micrograms per liter

NA - Not Analyzed

Table 78-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 68: GKN Facility

Beeing Tract 1, St. Louis, Missouri

	٠.	_										,					Vo	Cs (ug/l)																
Sample ID	2-TRICHLORO-1,2,2-TRIFLUOROETHANE	1-DICHLOROETHANE	-DICHLOROETHENE	3-TRIMETHYLBENZENE	+TRIMETHYLBENZENE	-DICHELOROBENZENE	2-DICHLOROETHENE (TOTAL)	2-DICHLOROPROPANE	-DICHLOROBENZENE	-OKCHLOROBENZENE	ETONE	NZENE	OMODICHLOROMETHANE	ROMOMETHANE	ARBON DISULFIDE	IL OROETHANE	IL OROFORM	р 8-12-оксицоноетнеме 6	CHLORODIFLUOROMETHANE	HYLBENZENE	SOPROPYL BENZENE	IETHYL ETHYL KETONE (MEK)	ETHYL TERT-BUTYL ETHER	ETHYLENE CHLORIDE	PROPYLBENZENE	C-BUTYL BENZENE	INT-BUTYLBENZENE	TRACH ORDETHENE	y vene	RANS-1,2-DICHLOROETHENE	41CHLOROETHENE	RICHLOROFLUOROMETHANE	RYYL CHLORIDE	YLENES, TOTAL
	, <u>;</u>	-	Ξ.	5	2	2	l 		2	خا	٤	8	# H	<u> </u>	_0_	1 2	_ ₹	ğ	Ď		_=	. 2	. E	يقن	Ž	بيقا	البال	<u> </u>	اجا	E	=	F _{NA}	- 5 -	0.5
B22E2W	NA	0.5					0.5				5	0.5	0.5	<u> </u>	0.5		0,5		3						2			0.5		NA NA	0.5 0.5			0.5
B22E3W	NA.	0.5					0.5					0.5	0.5		0.5		0.5		NA.					0.5 0.38	≨≨			0.5		NA NA	0.5			0.5
B22N1W	NA.	0.5					0.5						0.5		0.51		0.5		NA NA			2.5		0.5				0.5		- NA	22		$\overline{}$	0.5
822W1W	NA.	0.5					3.6					0.5	0,5		0.5 2.5		0.5 2.5		- NA			10		2.5				2.5		14			110	
B27W1W	NA.	2.5					NA NA				20		2.5 2.5		2.5		2.5					10	NA	2.5				39		1.25	20		2.5	2.5
B27W2W	0.50	2.5 13.34			15,88		NA NA						13.20		2.50				15.88				15.88			15.88		13.20		70,45	13.20	15.88	113.50	
B27W3OW B27W3SW	NA	13.34					NA NA				10		2.5	5	2.5		2.5		NA.			10		2.5		NA		2.5		410			2600	2.5
B26E1W	- NA	0.5					0.5			N		0.5	0.5	1	0.5		0.5		NA.			2.5		0.39	NA	NA	NA.	0.5		NA.	0.5		1	0.5
B28MW1W	0.50	1.56				114.04	NĂ					1.16							1.19			38.57	2.55	4.11	1.00			40.61		15.88		3,99	99.57	
828MW2W	36.00	1.00					NA.					1.00	1.00						1.44	1.06		20.63		2.50		0.79		1.00		0.84	1.00		1,31	1.75
B28MW3W	0.50	0.80					NA						0.79						0.50	0.86		22.86	0.50	2.50				0.79		0.61	2.43		0.79	
B28MW4W	7000.00	0.50					NA	0.50	0.50	0.50	25.00	136.67	0,50						350.25				310.33					6.05		305.00	1.00		31,50	
B26N1W	NA	25					1900		NA.		250	44	25		25				NA					43		NA.		25		NA NA			260 38	25
HWIW	. NA	6	0.71	NA	NA	NA.	180	- 6	NA.		60	6	6	12.5	- 6	12.5		N	NA		Ŋ	31	NA.	6	NA			260		NA 13.37			6.92	3.00
MW3AW	0.50	1.25					NA.												1.00			50.00						1,00 0,54		13.37	207.60		7.48	
MWaBW	0.50	0.54		0.50			NA					0.54		0.54	NA				0.54			26.92	0.54				13.13	12.12		73.35			626.92	36.06
MWSW	3.40	12.94			13.13		NA.				596.60	12.12	12.12		1.09			3344.00	13.24		13.13		13.24					0.67		0.68	0.70		0.92	
MW7W	0.50	0.67					NA.				21.67				1.50				0.91 NA			21,40		2.5		- W		2.5		1,25			2.5	
AC10W	NA.	2.5					NA.						2.5		2.5	10		NA.	- NA									5	5	NA.			20	
RC1W	NA.	3.8					120		3				0.5	1 10	0.5	<u> </u>	0.5		- NA									0.5		NA.			21	
AC2W	NA NA	17					34 225					0.85	0.5		0.5		0.5		- NA									0.5		NA.			16.5	
RC3W	N X	0.5 2.5					- 22						2.5	<u> </u>	2.5		2.5		NA NA			10		2.5				2.5		1.25	49		13	
RC4W RC6DW	0.50	1.12					NA NA						0.90	1.40					0.50					2.50		0.50		0.90		1.55	0.90	0.50	3,18	1,70
HC60W RC6SW	NA	2.5					NA NA				21	2.5	2.5		2.5		2.5		NA.			10		2.5				2.5	2.5	9,1			50	
AC7W	NA.	2.6	_				NÃ.							6	2.5				NA.			.10	NA	. 2.5	. NA	. NA	NA.		2.5	1.25			2.5	
RCSOW	0.50	0.90				0.50	NA.						0.90				2.50		0.50	0.90	0.50	. 22.00	0.50	3.54		0.50		0.90		0.79			0.90	
RC8SW	NA	125					NA.				500	125	125		125				NA.	125		500	NA	125				125		130			125	125
		2.5								. N		2.5	. 2.5				2.5	1.25	NA.	2.5	NA	10	. NA	2.5	. NA	· NA	· · NA	2.5	2.5	4 1 <u>.25</u>	2.5	. NA	2.5	. 2.8
Average Concentration - Only Samples With VOC Detections	640.31				3.36			7.58	3.22	4.24	86.71	13.31	7.58	14.22	7.86	14.13	11.85	582.14	35.00	7.71	3.50	79,96	31.55	12.84	3.33	3.20	3.19	19.56	13.02	58,37	111.86	3.52	148.77	10.06

Notes:
ugh - micregrams per Ber
VOCa - Velatile Organio Compsunds
NA - Not Analyzed
No VOCa issues connec desentel in the stainle

Table 7B-7(b)

Groundwater Constitutents Average Concentrations for TPHs in Sub-area 6B: GKN Facility

Boeing Tract 1, St. Louis, Missouri Overall Constituent Area RC2W Fraction by **B22E3W B22N1W B28MW1W** RC3W B28MW3W **B28MW4W B28N1W HW1W** MW3W RC1W RC2W **Average** - 2004 Sample Event (ug/l) TPH-DRO **TPH - DRO** 7/24/2000 NA 2,900 NA NA NA NA 480 NA NA NA NA NA 7/25/2000 600 NA NA NA 250 NA 340,000 NA NA NA NA 49.000 7/26/2000 NA NA NA NA NA 250 NA NA NA NA NA NA 7/28/2000 NA NA NA NA NA NA NA 250 NA NA NA NA 10/23/2001 170 150 NA NA NA NA NA NA NA NA NA NA 3/21/2003 NA NA NA NA 420 NA NA NA NA NA NA NA 6/18/2003 NA NA NA NA 310 NA NA NA NA NA NA NA 4/29/2004 NA NA NA NA NA NA NA NA NA NA 7,000 NA **AVERAGE** 600 2.900 170 150 365 250 480 49,000 250 250 340.000 7.000 33,451 TPH-GRO TPH - GRO 7/24/2000 NA 3.600 NA NA NA NA 180 NA NA NA NA NA 7/25/2000 130 NA NA NĀ NA NA NA NA 140 130 2,100 NA 7/26/2000 NA NA NA NA NA 1,000 NA NA NA NA NA NA 7/28/2000 NA NA NA NA 1,700 NA NA NA NA NÃ ÑΑ NA 3/21/2003 NA NA NA NA 460 NA NA NA NA NA NA NA 6/18/2003 NA NA NA NA 1.000 NA NA NA NA NA NA NA 4/29/2004 NA NA NÃ NA NA NA NA NA NA 250 NA NA AVERAGE 130 3600 730 1000 180 1700 130 2100 250 140 996 TPH-ORO TPH - ORO 3/21/2003 NA NA NA NA 50 NA NA NA NA NA NA NA 6/18/2003 NA 50 NA NA NA NA NA NA NA NA NA NA 4/29/2004 ÑĀ NA NA NA NA NA NA 250 NA NA NA NA AVERAGE 50 250 150

Notes:

ug/l - micrograms per liter

ORO - Oil range organic

TPH - Total petroleum hydrocarbon

Bold indicates a detection

DRO - Diesel range organic

NA - Not analyzed

GRO - Gasoline range organic

Table 7B-7(c)

Ground water Constituents Average Concentrations for Metals in Sub-area 6B: GKN Facility
Boeing Tract 1, St. Louis, Missouri

,				Metals	(ug/l)		١,		
Sample ID	ARSENIC	BARIUM	САБМІОМ	CHROMIUM	LEAD	МЕЯСИЯУ	SELENIUM	SILVER	MANGANESE
B22E2W	577	57,000.0	2.5	2,170.0		1.8	2.5	5	
B22E3W	453	13,100.0	2.5	2,390.0		2.2	2.5	5	NA
B22N1W	70.9	5,770.0	14.9	426.0		0.42	36.4	1.2	NA
B22W1W	47.5	23,400.0	23.4	2,560.0		2.1	2.5		NA
B27W1W	27.6	397.0	2500	72.9		0.84	2.5	5	NA
B27W2W	84.2	7,660.0	2500	336.0	95.2	0.51	2.5	5	
B27W3DW	5	553.0	2500	5.0		0.1	2.5	5	
B27W3SW	109	2,070.0	2500	250.0	97	0.25	7.2	5	NA
B28E1W	82.8	1,620.0	2.5	301.0	105	0.43	2.5	5	
B28MW1W	18.07	730.0	419.8	24.4		0.13	27.5	7.5	NA
B28MW2W	47.18	500.8	509.06	26.1	79.24	0.1	26.25	7.5	NA
B28MW3W	27.14	2,203.3	370.53	76.5		19.19	2.5	5	NA
B28N1W	23.2	637.0	2.5	54.6		0.077	2.5	5	NA
HW1W	499	19,000.0	2.5	906.0	798	2	32.6	5	_ NA
MW3W	14.27	615.2	1.78	35.7		0.12	18.33	6.67	NA
MW7W	13.18	666.7	2.1	29.28	13.64	0.0956	26.25	7.5	NA
MW9SW	42.55	3,690.9	230.26	105.82	56.13	0.27	51.25	12.5	6,400
RC10W	112	3,280.0	2500	641	267	1.2	2.5	5	NA
RC1W	15.4	589.0	8.6	64.5	19	0.16	2.5	5	NA
RC2W	549	2,100.0	24.2	159	39.8	0.2	2.5	5	NA
RC3W	9.85	928.5	2.5	37.2		0.075	2.5	5	NA
RC4W	109	2,540.0	2500	490		0.61	2.5	5	NA
RC5W	37.9	1,020.0	2500	91.5	31.6	0.1	2.5	5	. NA
RC6DW RC6SW	11	820.0	2500	16.2	34.8	0.1	2.5	5	NA
	16.4	841.0	2500	69.8	22.6	0.1	2.5	5	NA
RC7W RC8SW	61.4	3,160.0	2500	411	124	0.49	2.5	5	NA
RC9W	5	756.0	2500	25.2	5.9	0.1	2.5	5	NA
RR5W	23.8 37.7	488.0	2500	71.2		0.1	2.5	5	NA
	3/./ 	1,630.0	2500	91.1	33.5	0.1	2.5	5	NA
Average Concentration - Only Samples With Metals Detections	108	5,440	1,176.5	412	189	1.17	10	5 _.	6,400

ug/l - micrograms per liter

NA - Not Analyzed

Table 7B-7(d) Groundwater Constituents Average Concentrations for PAHs in Sub-area 6B: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	PAH (ug/l)						
Sample ID	ACENAPHTHENE	BENZO(A)ANTHRACENE	CHRYSENE				
B22N1W	43	2.5	25				
RC2W	25	250	86				
Average Concentration - Only Samples With PAH Detections	34	126.25	55.5				

Notes:

ug/l - micrograms per liter

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Table 7B-7(e) Groundwater Constituents Average Concentrations for PCBs in Sub-area 6B: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	PCB (ug/l)
Sample ID	54
	ROCLOR 1254
	₹
RC1W	11
RC2W	580
Average Concentration - Only Samples With PCB Detections	296

Notes:

ug/l - micrograms per liter

PCB - Polychlorinated Byphenyls

NA - Not Analyzed

Table 7C-7(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 6C: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	Į i					·				VC	Cs (ug/l)			·		·····	 			
Sample ID	1,1,2-TRICHLOROETHANE	1,1-DICHLOROETHENE	1,2-DICHLOROETHENE (TOTAL)	2-HEXANONE (MBK)	ACETONE	BENZENE	BROMODICHLOROMETHANE	CARBON DISULFIDE	CARBON TETRACHLORIDE	CHLOROFORM	CIS-1,2-DICHLOROETHENE	DICHLORODIFLUOROMETHANE	METHYL ETHYL KETONE (MEK)	METHYL ISOBUTYL KETONE	METHYLENE CHLORIDE	TETRACHLOROETHENE	TOLUENE	TRANS-1,2-DICHLOROETHENE	TRICHLOROETHENE	VINYL CHLORIDE
B27E1W	1.3	0.58	740	2.5	5	0.5	0.73	0.5	0.5	2	NA	NA	2.5	2.5	0.5	3.5	0.36	NA	2700	
B27E2W	0.5	0.5	0.5	2.5	5.9	0.5	0.5	0.91	0.5	0.5	NA	NA	2.5	2.5	0.5	.0.5	0.5	NA	0.5	1
B27E4W	NA	2.5	NA	NA	NA	2.5	NA	NA	2.5	2.5	190.6	· NA	NA	NA	2.5	2.5	2.5	2.5	388.45	2.5
B27l12W	0.5	0.5	NA	NA	NA	1.17	0.5	NA	-0.5	0.5	1.55	1.8	NA	NA	0.5	0.5	1.17	0.5	0.5	0.5
B27l1W	0.5	2	290	2.5	5	0.5	0.5	0.5	0.5	0.92	. NA	NA	2.5	2.5	0.6	0.5	0.5	NA	620	31
B27I2W	0,5	1.5	290	2.5	5	0.5	0.5	0.5	0.5	0.5	NA	NA	2.5	2.5	0.5	0.5	0.5	NA	200	18
B27I5W	0.5	0.5	0.81	2.5	5	0.5	0.5	0.5	0.5	0.5	NA	NA	2.5	2.5	0.5	0.5	0.5	NA	7.4	1
B27I6W	0.5	0.5	0.51	2.5	5.4	0.24	0.5	0.5	0.5	0.5	NA	NA	2.5	2.5	0.5	0.5	0.5	NA	0.5	16
B2717W	0.5	0.5	0.5	2.5	5	0.5	0.5	0.5	0.5	0.5	NA	NA	2.5	2.5	0.47	0.5	0.5	NA	0.46	
B27I8W	0.5	0.5	0.38	2.5		0.5	0.5	0.5	0.5	0.5	NA	. NA	2.5	2.5	0.6	0.5	0.38	NA	0.25	
B27I9W	0.5	0.5	0.5	16		0.5	0.5	2.15	0.5	0.5	NA	NA	14.5	2.6	0.5	0.5	0.5	NA	0.5	
B27S2W	0.5	0.5	0.5	2.5	5	0.5	0.5	0.5	0.32	0.5	NA	NA	2.5	2.5	0.5	0.5	0.5	NA	0.5	
B27S3W	0.5	0.5	3.4	2.5	4.4	0.5	0.5	0.5	0.5	0.5	NA	NA	2.5	2.5	0.5	0.5	0.5	NA	0.5	
MW5ASW	1.05	1.05	NA	7.50		1.05	1.05	2.50	1.05	3.41	91.64	1.15	30.91	30.91	3.41	1.05	3.23	2.93	104.83	
MW5W	1.30	1.30	NA	4.17	13.00	1.30	1.30	1.83	1.30	2.10	10.48	2.75	12.50	12.50	2.11	1.50	1.70	1.50	49.40	6.98
MW8ASW	0.86	0.86	NA	7.50	21.82	0.99	0.86	2.50	0.86	2.50	0.75	0.95	21.82	21.82	2.50	0.86	2.42	0.75	0.86	1.09
MW8W	0.68	0.68	NA	3.75		0.78	0.68	1.50	0.68	2.32	3.86	0.95	21.14	21.14	2.32	0.68	2.19	0.70	1.30	
Average Concentration - Only Samples With VOC Detections	0.67	0.88		4.26	11.49	0.77	0.63	1.06	0.72	1.22	95.65	1.52	8.39	7.60	1.12	0.92	1.08	1.48	239.76	5.19

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

Groundwater Constitutents Average Concentrations for TPHs in Sub-area 6C: GKN Facility
Boeing Tract 1. St. Lauk. Miscouri

						Во	ing Tract	, St. Louis	, Missouri							
Constituent								·			ľ	!				Overall
Fraction by	B25MW1W	B25MW4W	D27E1W	B27E2W	B27E2W	B27110W	B27111W	D2711W	BOTTOW	B2716W	B2717W	B2719W	B2719W	MW5ASW	MW5CSW	Area
•	DZ3MW IW	DZ3MW4W	DZ/EIW	D2/E2W	- 2004	52/11011	02/11111	02/1111	02/1211	02/1017	DE/1/14	B271811	- 2004	III IV SACSIV		Average
Sample Event	1.	}	•	1	•	l										(ug/l)
TPH-DRO																TPH - DRO
7/20/2000	NA				NA.		NA.			NA				NA.	NA	
7/21/2000	NA.	NA.		NA	NA.		NA.	250	NA.	NA		NA		NA	NA	
7/24/2000	NA	NA		NA	NA	NA	N.A	NA.	550	NA		NA.		NA.	NA NA	
7/25/2000	NA.	NA.		NA.	NA	NA NA	N.A			NA.				NA	NA	
7/26/2000	NA.	NA.		NA	NA		N/A			8,000		NA.		NA.	NA	
7/27/2000	NA.	NA.		NA.	NA.	NA.	NA NA			NA		NA NA		NA.	NA.	
7/28/2000	NA.	NA		NA.	NA.		NA.			NA NA				NA.	NA	
9/20/2000	250	8,000		NA	NA		NA.	NA.		NA NA				NA.	NA NA	
11/16/2000	NA.	NA.		NA	NA NA		6,800			NA.				NA NA	NA	
1/11/2001	50	583	NA.	NA	NA	NA	NA NA			NA NA		NA.		NA	NA	
5/7/2001	NA 1 400	NA CO		NA	NA	NA	N/A	NA.		NA		NA.		NA	NA	ľ
5/9/2001 7/19/2001	1,400 NA	60 NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	
7/23/2001	190	1,400		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA		NA NA	NA NA	
10/24/2001	200	2,200	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA		NA NA	NA NA	
10/25/2001	NA NA		NA NA	NA NA		NA NA		NA NA							NA NA	
3/11/2002	NA NA	3,300	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA		NA NA	NA NA	
5/31/2002	160	4,000	NA NA	NA NA	· NA	NA NA	NA NA	NA NA	NA NA	. NA		NA NA	NA NA	NA NA	. NA	
8/14/2002	- NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	130	120	
8/16/2002	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA NA		NA NA	NA NA	
12/10/2002	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	50	50	
12/11/2002	NA NA	NA NA	NA NA	- NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	
3/13/2003	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	
3/14/2003	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	50	50	
6/24/2003	NA NA	NA NA	NA	NA NA	NA NA	NA NA	. NA	NA NA	NA NA	NA NA		NA.	NA NA	50	50	
6/25/2003	120	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA.		NA NA	NA.	NA NA	NA NA	1
7/22/2003	NA.	NA NA	NA.	NA NA	NA NA	NA NA	NA	NA NA	NA.	NA NA		NA NA	NA NA	· NA	NA	I
7/25/2003	NA.	NA	NA	NA.	· NA	NA	NA.	NA	NA	NA.		NA	NA	NA	NA.	
4/29/2004	NA	NA	NA	NA	1,800	NA	NA	NA.	NA	NA	NA	. NA	3,200	NA	NA	
AVERAGE	-: 339	2,792	250 -	11,000	1,800	25,000	6,800	250	550	8,000		120,000.	3,200	70	- 68	12,575
TPH-GRO					.,,000	30,000			000	3	. 0,000.					TPH - GRO
7/20/2000	NA	NA	NA	50	NA	NA	NA	NA	NA	NA		NA	NA.	NA	NA	
7/21/2000	NA.	NA.	480	NA.	NA NA	NA NA	NA NA	520	NA	NA.		NA NA	NA.	NA.	NA NA	
7/25/2000	NA	NA	NA	NA	NA	NA.	NA NA	NA	NA.	50		110	NA	NA.	NA	•
7/26/2000	NA.	NA NA	NA.	NA NA	NA.	. NA	NA NA	NA.	110	NA NA		NA NA	NA NA	NA.	NA	
7/27/2000	NA.	NA	NA	NA	NA	NA	NA NA	NA.	NA	NA		NA.	NA NA	NA.	NA	
7/28/2000	NA	NA	NA	NA	NA	NA NA	. NA	NA.	NA	NA		NA.	NA	NA.	NA	
9/20/2000	50	50	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	
11/16/2000	NA	NA	NA	NA	NA	710	270	ŇA	NA	NA		NA	NA	NA	NA	
1/11/2001	50	50	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	
6/24/2003	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	50	50	ı
6/25/2003	50	NA	NA	NA	NA.	NA	NA	NA	NA	NA		NA	.NA	NA	NA	
7/22/2003	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
7/25/2003	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	. NA	NA	NA	NA	
4/29/2004	NA	NA	NA	NA	250	NA	NA	NA	NA	NA	NA.	NA.	250	NA.	NA	
AVERAGE	50	50	480	50 × .	250	710	270	520	110	50	50	110	250	50	50	203
TPH-ORO						7.7-		-						لنبتب	<u>., </u>	TPH-ORO
1/11/2001	50	3,430	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	33.11.33.13
6/24/2003	NA	NA NA	NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA.		NA NA	NA NA	50	50	1
6/25/2003	50	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA.	NA NA	NA NA	NA.	NA.	NA NA	
7/22/2003	NA NA	NA.	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA	NA.	NA	NA NA	NA NA	NA NA	NA NA	1
7/25/2003	NA.	NA	NA	NA.	NA.	NA.	NA NA	NA NA	NA	NA	NA	NA.	NA.	NA NA	NA NA	
4/29/2004	NA.	NA.	NA NA	NA.	250	NA.	NA NA	NA.	NA.	NA	NA.	NA	2,300	NA.	NA]
AVERAGE	. 50	3,430			250								2,300	50	50	1,022
		,							· · ·							

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

ORO - Oil range organic Boid indicates a detection NA - Not analyzed

GRO - Gasoline range organic

Table 7C-7(c)

Groundwater Constituents Average Concentrations for Metals in Sub-area 6C: GKN Facility
Boeing Tract 1, St. Louis, Missouri

				Metals					
Sample ID	ARSENIC	ВАRIUM	САБМІЙМ	СНВОМІИМ	CHROMIUM, HEXAVALENT	LEAD	MERCURY	SELENIUM	IRON
B25MW1W	29.18	894	501.6	94	NA	39.1	0.192	26.25	1400
B25MW4W	118.29	2,735.71	364.43	197.14	NA	93.21	0.19	126.25	NA
B27E10W	45.6	2309.5	1252.5	191	NA	88.25	0.275	7.7	NA
B27E11W	674	16900	2500	2850	NA	1010	5.5	2.5	NA
B27E15W	NA	NA	NA	13	NA	NA	NA	NA	NA
B27E1W	5	421	1.6	49000	NA	24.2	0.23	2.5	NA
B27E2W	7	526	2.5	2.2	NA	2.3	0.099	2.5	NA
B27E3W	49.5	1870	2500	207	NA.	80.3	2.9	2.5	NA
B27E4W	5	492.5	2500	13750	NA	36.5	0.1	2.5	NA
B27E5W	11.8	809	2500	46.7	NA	15.6	0.1	2.5	NA
B27E6W	89.6	2420	2500	258	NA	125	0.72	2.5	NA
B27E7W	283.5	7865	1252.5	1037.5	25	585.75		6.25	NA
B27E8W	51.1	1590	1252.5	196	NA	79.25	0.295	6.25	NA
B27E9W	242.5	16855	1252.5	1210	25	430.5	6.15	6.25	NA
B27I1W	33.3	1250	0.41	133	NA	51.5		2.5	NA
B2712W	15.3	538	2.4	57.2	NA	21.9	0.035	2.5	NA
B27I5W	16.2	2500	2.2	68.8	NA	35.4	0.15	2.5	NA
B2716W	16.1	1020	2.5	2650	NA	33.2	0.087	2.5	NA
B2717W .	255	5460	11.3	994	NA	327	2.6	2.5	NA
B27I8W	64.4	703	5	90.9	NA	29.4	0.15	4.1	NA
B27I9W	167.5	2095	1.13	96.7	NA	47.65	0.125	2.5	NA
B27S1W	68.2	2010	2.5	269	NA	98.6		2.5	NA
B27S2W	93.5	1950	2.5	290	NA	158	0.44	2.5	NA
B27S3W	28.9	1050	2.5	7.4	NA	3.2	0.091	2.5	NA
MW5ASW	7.27	429.91	230.00	16.01	10.89	7.55	0.10	26.25	2,170.25
MW5BSW	6.56	348.25	314.44	11.56	NA	8.85	0.21	26.25	628.00
MW5CSW	7.67	617.33	280.08	6.20	NA	7.50	0.10	26.25	1,173.00
MW5DSW	7.375	405.5	314.44	8	NA	9.625	0.1	26.25	311.5
MW5W	16.98	335.4	2.9	20.02	5	16.26	0.0924	34.17	NA
MW8ASW	9.6	339	501.6	8.76	NA	6.8	0.1	26.25	4430
W8WM	11.36	484.2	2.1	45.66	NA.	14.34	0.14	26.25	NA
Average Concentration - Only Samples With Metals Detections	81	2,574	668.6	2,381.48	16	-116	0.76	13.82	1,685.46

ug/l - micrograms per liter NA - Not Analyzed Bold indicates a detection

Table 7D-7(a) Groundwater Constituents Average Concentrations for VOCs in Sub-area 6D: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	VOCs (ug/l)										
Sample ID	1,1,1-TRICHLOROETHANE	1,1-DICHLOROETHANE	1,1-DICHLOROETHENE	CIS-1,2-DICHLOROETHENE	TETRACHLOROETHENE	TOLUENE	TRICHLOROETHENE				
B27E12W	2.5	2.5	2.5	2.5	24.5	2.5	2.5				
B27E16W	0.5	0.5	0:5	0.5	1.25	1.167	3.1				
MW6W	0.72	0.72	0.67	0.80	9.17	2.27	3.04				
Average Concentration - Only Samples With VOC Detections	1.24	1.24	1.22	1.27	11.64	1.98	2.88				

Notes:

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

Table 7D-7(b)

Groundwater Constituents Average Concentrations for Metals in Sub-area 6D:

GKN Facility

Boeing Tract 1, St. Louis, Missouri

		i 1, St. Louis,				
• `			Metals (ug/I)		
Sample ID	ARSENIC	BARIUM	САБМІИМ	СНКОМІОМ	LEAD	MERCURY
MW6W	12.86			77.64	21.74	
SEWERW	5	886		5	10.8	
Average Concentration - Only Samples With Metals Detections	8.93	755.90	1251	41.32	16.27	0.10

Notes:

ug/l - micrograms per liter

NA - Not Analyzed

Table 7A-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 6A: GKN Facility

Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration						
Constituents of Concern	# of Samples	# of Detects	Detected to	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background			
Volatile Organic Compounds (VOCs)					•		St.			
None	5	0	N/A	ND	N/A	NA	N/A			
Pesticides										
None	2	0.	. N/A	ND	N/A	N/A	N/A			

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 7A-8(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 6A: GKN Facility
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOC	s)						
Acetone .	5	3	1.34	41	30.50	NA	N/A
Methyl ethyl ketone (MEK)	5	2	1.37	24	17.50	NA	N/A
Polynuclear Aromatic Hydrocabons	(PAHs)						
Chrysene	4	1	1.00	1,500	1,500	N/A	N/A
Polychlorinated Biphenyls (PCBs)							
None	3	0	N/A	ND	. N/A	N/A	N/A
Pesticides							
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TP	H)						, ,
TPH DRO	4	0	N/A	ND	N/A	NA	N/A
TPH GRO	4	0	N/A	ND	N/A	NA	N/A
Total Metals					*		
Arsenic	3	3	1.42	9,500	6,700	9,200	Y
Barium	3	3	1.78	213,000	119,567	725,000	N
Chromium	3	3	1.37	20,300	14,867	58,000	N
Lead	3	3	1.28	11,200	8,767	21,800	N
Mercury	3	3	1.42	26	18	39	N
Selenium .	3	1	1.19	420	353	260	Y

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 7B-8(a)

Soil Constituents of Concern Summary for Non-residential Worker for Sub-area 6B: GKN Facility
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	·			
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Acetone	16	6	2.55	200	78.50	NA	N/A
cis-1,2-Dichloroethene	16	4	3.20	240	74.89	NA	N/A
Ethylbenzene	15	1	2.24	11	4.91	NA	N/A
Methylene chloride	15	2	2.47	31	12.54	NA NA	N/A
l'etrachloroethene	16	5	3.69	43	11.66 .	NA	N/A
l'oluene	15	2	3.80	51	13.41	NA	N/A
rans-1,2-Dichlorobenzene	10	1	1.00	36	36.00	NA NA	N/A
Trichloroethene	15	4	4.44	120	27.04	NA	N/A
Vinyl chloride	15	1	2.56	18	7.03	NA	N/A
Xylenes, Total	16	1	4.65	64	13.76	NA	N/A
Polynuclear Aromatic Hydrocabons (P				<u>, , , , , , , , , , , , , , , , , , , </u>			
Acenaphthene	15	1	1.99	6,800	3,411	NA	N/A
Acenaphthylene	15	1	1.54	74	48	NA	N/A
Benzo(a)anthracene	15	1	1.58	42	26.63	NA	N/A
Benzo(b)fluoranthene	15	1	1.58	42	26.63	NA	N/A
Chrysene	15	3	1.56	300	192.50	NA	N/A
Fluoranthene	15	2	2.39	520	217.33	NA	N/A
Fluorene	15	1	1.48	62	42.00	NA	N/A
Pyrene	15	1	2.78	500	180.00	NA	N/A
Polychlorinated Biphenyls (PCBs)		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·				
None	4	0	N/A	ND	N/A	N/A	N/A
Pesticides							
None	1 1	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)	,						
TPH DRO	2	.0	N/A	ND	17,500	NA	N/A
TPH GRO	2	2	1.73	1,400	810	NA NA	N/A
otal Metals						·	
duminum	10	10	1.37	12,700,000	9,280,000	41,000,000	N
Antimony	10	10	1.39	5,510	3,964	520	Y
Arsenic	16	16	4.68	130,000	27,807	9,200	Y
Barium	16	16	2.23	306,000	137,333	725,000	N
Beryllium	10	10	1.43	1,340	937	800	Υ .
Cadmium	16	4 10	4.33	2,520	582.6	<1,000	Y
Calcium	10		3.19	90,100,000	28,271,000	3,300,000	Y
Chromium	16	16	1.39	22,700	16,283	58,000	N
Cobalt	10	10	1.80	15,100	8,404	10,000	Y
Copper	10	10	1.45	28,100	19,350	13,000	Y
Iron	10	10	2.28	42,400,000	18,575,000	21,000,000	Y
Lead	16	16	1.78	32,700	18,333	21,800	Y
Magnesium	10	10 10	1.97	22,000,000	11,190,000	2,600,000	Y
Manganese Mercury	16	10	3.98	4,310,000	1,084,100	740,000	Y
Nickel	10	10	1.75	60	34	39	Y
Nickei Potassium	10	10	2.21	62,300	28,150	14,000	Y
Selenium	16	3	1.33	1,080,000	813,400	14,000,000	N
Sodium	10	10	3.35	5,650	1,687	260	ΥΥ
Vanadium Vanadium	10	10	2.48	1,510,000	608,000	5,300,000	N
Zinc	10	10		47,700	36,300	69,000	N
ent	1 10	I U	1.29	67,500	52,140	49,000	Y

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available ND - Not detected N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Soil Constituents of Concern Summary for Construction Worker for Sub-area 6B: GKN Facility

		Bo	eing Tract 1, St. Lot	iis, Missouri				
			Ratio of Max		Concent	ration	T	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOCs)	<u> </u>							
1.1-Dichloroethane	46	1	0.52	1.6	3.10	NA	N/A_	
1,1-Dichloroethene	32	1	. 2.13	7.5	3.53	NA	. N/A	
Acetone	36	17	6.48	200	30.85	NA NA	N/A	
cis-1,2-Dichloroethene	53	8	12.32	1,800	146.16	NA	N/A	
Ethylbenzene	44	3	16.28	2,000	122.83	NA .	N/A	
Methyl ethyl ketone (MEK)	26	2	1.79 .	25	13.93	NA	N/A	
Methylene chloride	46	10	4.19	31	7.40	NA	N/A	
Tetrachloroethene	50	9	5.22	43	8.24	NA.	N/A	
Toluene	44	4	16.96	83,000	4,892.95	NA_	N/A	
trans-1,2-Dichloroethene	24	1	7.27	160	22.02	NA NA	N/A	
trans-1,2-Dichlorobenzene	14	1	1.00	36	36.00	NA_	N/A	
Trichloroethene	45	9	9.30	390	41.93	NA .	N/A	
Vinyl chloride	46	. 5	11.49	600	52.20	NA NA	N/A	
Xylenes, Total	50	2	0.17	64	381.8	NA	N/A	
Polymuclear Aromatic Hydrocabons (F							27/4	
Acenaphthene .	30	1	5.91	6,800	1,150.13	NA	N/A	
Acenaphthylene	30	1	2.54	74	29.13	NA	N/A N/A	
Benzo(a)anthracene	30	2	2.44	42	17.23	NA NA	N/A N/A	
Benzo(b)fluoranthene	30	1	3.00	42	13.98	NA NA	N/A N/A	
Chrysene	30	.5	2.51	300	119.44	NA NA	N/A	
Fluoranthene	30	2	5.12	520	101.66	· NA	N/A	
Fluorene	30	1	2.29	62	27.13	NA NA	N/A	
Phenanthrene	30	1	0.30	5.07	17.10 85.66	NA NA	N/A	
Pyrene	30		5.84	500	83.00	1 170	1976	
Polychlorinated Biphenyls (PCBs)	· · · · · · · · · · · · · · · · · · ·	r	1.00	100	100.00	NA.	N/A	
Aroclor 1254	12		1.00	1 100	100.00	1 1/1/	100	
Pesticides		0	N/A	l ND	N/A	I N/A	N/A	
None	<u> </u>	<u> </u>				· · · · · · ·	-	
Total Petroleum Hydrocarbons (TPH)	14		5.53	980,000	177,083	NA.	N/A	
TPH DRO	14	5	5.16	16,000	3,103	NA.	N/A	
TPH GRO Total Metals	1 14		3.10	10,000	5,105			
Aluminum	14	10	1.37	12,700,000	9,280,000	41,000,000	N	
Antimony .	14	10	1.39	5,510	3,964	520	Y	
Arsenic	43	35	9.11	130,000	14,266	9,200	Y	
Arsenic Barium	43	39	2.43	306,000	125,724	725,000	N	
Beryllium	14	10	1.43	1,340	937	800	Y	
Cadmium .	43	9	5.24	2,520	481.3	<1,000	Y	
Calcium	14	10	3.19	90,100,000	28,271,000	3,300,000	Y	
Chromium	43	39	1.99	31,000	15,617	58,000	N	
Cobalt	14	10	1.80	15,100	8,404	10,000	Y	
Copper	14	10	1.45	28,100	19,350	13,000	Y	
Iron	14	10	2.28	42,400,000	18,575,000	21,000,000	Y	
Lead	43	39	2.65	32,700	12,347	21,800	Y	
Magnesium	14	10	1.97	22,000,000	11,190,000	2,600,000	Y	
Manganese	14	10	3.98	4,310,000	1,084,100	740,000	Y	
Mercury	43	22	1.41	60	42	39	Y	
Nickel	14	10	2.21	62,300	28,150	14,000	Y	
Potassium	14	10 .	1.33	1,080,000	813,400	14,000,000	N	
Selenium	43	. 5	6.14	5,650	920	260	Υ	
Sodium	14	10	2.48	1,510,000	608,000	5,300,000	N	
Vanadium	· 14	10	1.31	47,700	36,300	69,000	N	
Zinc	14	10 -	1.29	67,500	52,140	49,000	Υ	

Note

eg/kg - micrograms per kilogram

ORO - Oil range organic NA: Not available ND - Not detected N/A - Not applicable

Max Detected - Maximum value of detected concentrations

September 2004

Table 7C-8(a)

Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 6C: GKN Facility

Reging Tract 1 St. Louis Missouri

	T I		Ratio of Max		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							·
Acetone	11	4	2.02	110	54.50	NA	N/A
cis-1,2-Dichloroethene	13	1	0.96	2.4	2.50	NA NA	N/A
Dichlorodifluoromethane	4	2	1.00	3.6	3.60	NA	N/A
Ethylbenzene	18	1	5.93	3,200	539.63	NA	N/A
Methyl ethyl ketone (MEK)	11	2	1.37	.18	13.10	NA	N/A
Methyl isobutyl ketone	11	1	0.59	6.7	11.30	NA	N/A
o-Xylene	5	1	2.00	1,200	600.25	NA	N/A
Trichloroethene	14	1	2.61	11	4.22	NA	N/A
Xylenes, Total	17	1	5.82	1,200	206	. NA	N/A
Polynuclear Aromatic Hydrocabons (P.	AHs)						
Chrysene	8	2	1.82	740	406.00	NA	N/A
Polychlorinated Biphenyls (PCBs)				*			
None	7	0	N/A	ND	N/A	N/A	N/A
Pesticides							
None	2	0	N/A	ND	· N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	14	5	2.47	1,400,000	566,000	NA	N/A
TPH GRO	15	1	5.00	320,000	64,052	NA	N/A
Total Metals							
Arsenic	10	10	2.28	13,800	6,061	9,200	Y
Barium	10	10	1.80	293,000	163,011	725,000	N
Cadmium	10	2	2.04	740	363.3	<1,000	N
Chromium	11	11	4.20	114,000	27,165	58,000	Y
Lead	10	10	1.47	16,200	11,022	21,800	N
Mercury	10	8	1.43	47	33	39	Y
Selenium	10	1	1.55	530	342	260	Y

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 7C-8(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 6C: GKN Facility

Boeing Tract 1. St. Louis. Missouri

			Ratio of Max				
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs	s)	,				1	
Acetone	27	5	4.10	110	26.83	NA	N/A
Chloroform	39.	1	0.72	2.1	2.92	NA	N/A
cis-1,2-Dichloroethene	39	3	2.02	7	3.47	NA	N/A
Dichlorodifluoromethane	4	2	1.00	3.6	3.60	NA ·	N/A
Ethylbenzene	41	1	13.73	3,200	233.11	NA	N/A
Methyl ethyl ketone (MEK)	27	8	1.45	18	12.38	NA	N/A
Methyl isobutyl ketone	27	1	0.54	6.7	12.43	NA	N/A
o-Xylene	5	1	2.00	1,200	600.25	NA	N/A
Trichloroethene	39	. 6	9.85	290	29.44	NA	N/A
Xylenes, Total	40	1	13.30	1,200	90.25	NA	N/A
Polynuclear Aromatic Hydrocabons	(PAHs)						
Benzo(a)anthracene	17	, . 1	1.42	94	66.17	NA	N/A
Benzo(b)fluoranthene	· 17	1	0.82	39	47.83	NA_	N/A
Chrysene	17	3	2.70	740	. 273.83	NA	N/A
Fluoranthene	17	1	0.52	44	84.17	NA	N/A
Polychlorinated Biphenyls (PCBs)							
None	15	0	N/A	ND	N/A	N/A	N/A
Pesticides	•				•		
None	2	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPI	n						
TPH DRO	23	6	4.29	4,500,000	1,049,429	NA	N/A ·
TPH GRO	23	3	6.99	320,000	45,807	NA	N/A
Total Metals							
Arsenic	27	27	2.37	13,800	5,817	9,200	Y
Barium	27	27	2.86	418,000	146,346	725,000	N
Cadmium	27	11	4.48	1,900	424.5	<1,000	· Y
Chromium	28	28	5.76	114,000	19,798	58,000	Y
Lead	27	27	1.62	16,200	10,000	21,800	N
Mercury	27	17	1.23	47	38	39	Y
Selenium	27	- 1	1.61	530	329	260	Y

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Table 7D-8(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 6D: GKN Facility
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Dichlorodifluoromethane	5	1	1.54	8.4	5.45	NA	N/A
Toluene	5	1	1.35	52	38.50	NA	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	` 4	. 0	N/A	ND	2,500	NA	N/A
TPH GRO	4	1	1.00	12,000	12,000	NA	N/A
TPH ORO	4	. 0	· N/A	ND	2,500	NA	N/A
Total Metals							
Arsenic	2	2	1.13	5,800	5,150	9,200	N ·
Barium	2	2	1.17	174,000	148,500	725,000	N
Cadmium	2	1	1.42	740	522.5	<1,000	N
Chromium	2	2	1.31	21,000	16,000	58,000	N
Lead	2	2	1.17	14,400	12,300	21,800	N

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 7D-8(b)

Soil Constituents of Concern Summary for Construction Worker for Sub-area 6D: GKN Facility

Boeing Tract 1, St. Louis, Missouri

	1		Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)		***					
Dichlorodifluoromethane	5	1	1.54	8.4	5.45	NA	N/A_
Methyl ethyl ketone (MEK)	4	1	0.18	12	68.50	ŅA	N/A
Toluene	7	1	1.95	52	26.73	NA	N/A
Polynuclear Aromatic Hydrocabons (P.	AHs)				3		
None	1	0	N/A	ND	N/A	N/A	N/A
Polychlorinated Biphenyls (PCBs)							
None	1	0	· N/A	ND	N/A_	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	5	0	N/A	ND	2,500	NA	N/A
TPH GRO	5	1	1.00	12,000	12,000	NA ·	N/A
TPH ORO	4	0	N/A	ND	2,500	NA	N/A
Total Metals						::	
Arsenic	4	4	1.91	17,700	9,250	9,200	Y
Barium	4	4	1.23	195,000	158,750	725,000	N
Cadmium	4	3	1.58	760	481.3	<1,000	N
Chromium .	4	4	1.37	21,000	15,325	58,000	N
Lead	4	4	1.83	27,700	15,175	21,800	N
Mercury	4	1	0.40	21	53	39	N

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 7A-9

Groundwater Constituents of Concern Summary for Sub-area 6A: GKN Facility

Roeing Tract 1, St. Louis, Missouri

	T	Do	eing Tract 1, St. Lou		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
Acetone	12	1	0.44	4.6	10.45	121	N
Benzene	12	1	9.43	7.2	0.76	5	Y
Bromodichloromethane	12	1	1.01	0.6	0.59	60	N
Carbon Disulfide	6	1	0.62	0.52	0.84	201	N
Chloroform	12	1	1.13	1.7	1.51	400	N
cis-1,2-Dichloroethene	8	1	1.45	1.1	0.76	70	N .
Dibromochloromethane	6	1	0.47	0.37	0.79	40	N
Methylene chloride	12	2	0.64	0.77	1.20	49.1	N_
Trichloroethene	12	1	1.92	2.1	1.09	5	N
Polynuclear Aromatic Hydrocabons (F	AHs)						
None	2	0	N/A	ND	N/A	N/A	N/A
Polychlorinated Biphenyls (PCBs)						<u> </u>	
None	i	Q	. N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	4	0	N/A	ND	250	NA	N/A
TPH GRO	3	1	1.00	730	730	NA NA	N/A
Total Metals						en e e e	
Arsenic	8	4	1.93	. 196	102	10	Y ·
Barium	8	8	1.98	22,900	11,567	2,000	Y
Cadmium	6	1	1.78	13.4	7.54	. 5	Y
Chromium	7	5	1.97	1,060	539	100	Y
Lead	7	4	1.96	388	198	15	Y
Mercury	7	3	1.91	1.5	0.79	2	N
Selenium	3	1	0.42	7	16.63	50	N

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 7B-9 Groundwater Constituents of Concern Summary for Sub-area 6B: GKN Facility Boeing Tract 1, St. Louis, Missouri

		Doc	ing Tract 1, St. Lou		Concen	tration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)						<u>,</u>	
1,1,2-Trichloro-1,2,2-Trifluoroethane	13	3	10.93	7,000	640.31	12.3	Y
1,1-Dichloroethane	136	24	1.99	17	8.55	157	N
1,1-Dichloroethene	139	20	3.26	26	7.97	7.0	Y
1,2,3-Trimethylbenzene	13	1	4.21	3.1	0.74	2.6	Y
1,2,4-Trimethylbenzene	105	3	0.80	2.7	3.36	2.6	Y
1,2-Dichlorobenzene	107	12	14.86 0.25	200 1.9	13.46 7.58	600	N N
1,2-Dichloropropane	135	3	0.99	3.2	3.22	600	N
1,3-Dichlorobenzene 1,4-Dichlorobenzene	107	ii	5.42	23.0	4.24	75	N
Acetone	135	11	0.83	74.0	88.71	121	N
Benzene	136	7	11.27	150	13.31	5	Ÿ
Bromodichloromethane	136	1	0.24	1.8	7.58	60	N
Bromomethane	135	i	1.62	23	14.22	10	Ÿ
Carbon Disulfide	38	3	0.06	0.51	7.88	201	N
Chloroethane	135	1	0.08	1.2	14.13	48.8	N
Chloroform	135	6	0.93	11	11.85	400	N
cis-1,2-Dichloroethene	144	92	13.06	7,600	582.14	70	Y
Dichlorodifluoromethane	105	2	19.95	700	35.09	1,000	N
Ethylbenzene	136	4	0.55	4.2	7.71	700	N
Isopropylbenzene	· 105	2	1.29	4.5	3.50	4,000	N
Methyl ethyl ketone (MEK)	135	1	1.09	87	79.96	4,000	N
Methyl ter-butyl ether	106	7	29.47	930	31.55	146 .	Y
Methylene chloride	138	11	40.51	520	12.84	49.1	Y
n-Propylbenzene	105	2	0.72	2.4	3.33	5.3	N N
sec-Butylbenzene	105	2	0.44	1.4	3.20 3.19	48.6 48.6	N
tert-Butylbenzene Tetrachloroethene	137	17	13.29	260.0	19.56	5	N Y
Toluene	138	13	3.15	41.0	13.02	1,000	N
trans-1,2-Dichloroethene	127	69	7.02	410	58.37	100	Y
Trichloroethene	144	70	71.52	8,000	111.85	5	Ÿ
Trichlorofluoromethane	106	7	2.84	10	3.52	2,000	N
Vinyl chloride	141	74	18.15	2,700	148.77	2	Ÿ
Xylenes, Total	136	4	1.19	12	10.06	10,000	N
Polynuclear Aromatic Hydrocabons (I	PAHs)		•				
Acenaphthene	11	1	1.26	43	34	2,000	N
Benzo(a)anthracene	11	1	1.98	250	. 126	0.921	Y
Chrysene	11	1	1.55	86	56	92.1	N
Polychlorinated Biphenyls (PCBs)	_ _{	·					
Aroclor 1254	17	2	1.96	580	296	0.5	Y
Pesticides			· · · · · · · · · · · · · · · · · · ·				
None	1 1	0	N/A	ND ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)			10.15	1 140 000	22.45	· · · · · · · · · · · · · · · · · · ·	
TPH DRO	20	7	10.16	340,000	33,451	. NA	N/A
TPH GRO TPH ORO	16	10	3.61	3,600	996	NA NA	N/A
Total Metals	1 2	<u> </u>	N/A	ND	150	NA NA	N/A
Arsenic	65	43	5.35	577	108	10	Y
Barium	67	67	10.48	57,000	5,440	2,000	Y
Cadmium	62	15	0.04	42	1,176.5	5	
Chromium	67	50	6.22	2,560	412	100	Ÿ
Lead	65	51	6.24	1,180	189	15	Ÿ
Manganese	1	1	1.00	6,400	6,400	50	Ÿ
Mercury	64	28	110.97	130	1.17	2	Y
Selenium	34	4	3.79	36.4	10	50	N
Silver	34	1	0.22	1.2	5	100	N

ug/L - micrograms per liter DRO - Diesel range organic GRO - Gasoline range organic

ORO - Oil range organic NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Groundwater Constituents of Concern Summary for Sub-area 6C: GKN Facility Boeing Tract 1, St. Louis, Missouri

Concentration Ratio of Max Max Detected Maximum Detected to Concentration Exceeds Max Detected Average # of Samples | # of Detects **Constituents of Concern** Average Limit (MCL) or MCL or (ug/L) (ug/L) Concentration Equivalent Equivalent (ug/L) Volatile Organic Compounds (VOCs) 0.67 5 N 1,1,2-Trichloroethane 106 1.95 1.3 7.0 N 2.27 2.0 0.88 3 1.1-Dichloroethene 110 4.26 1.74 Y 3.75 16 2-Hexanone (MBK) 34 1 121 N 104 6 3.13 36 11.49 Acetone N 1.9 0.77 5 115 3 2.48 Benzene 60 N 106 1.15 0.73 0.63 Bromodichloromethane 201 N 35 3 2.17 2.3 1.06 Carbon Disulfide N 0.32 0.72 110 0.45 5 Carbon Tetrachloride 1.22 400 N 110 2 1.64 2.0 Chloroform 95.65 70 cis-1,2-Dichloroethene 112 36 2.05 196.3 1,000 N 2 1.45 2.2 1.52 Dichlorodifluoromethane 81 16 8.39 4,000 N 104 1.91 Methyl ethyl ketone (MEK) 2 32.7 N 2.7 7.60 Methyl isobutyl ketone 104 0.36 49.1 N 110 4 0.54 0.6 1.12 Methylene chloride N 110 2 3.82 3.5 0.92 5 Tetrachloroethene N 1.08 1,000 1.47 1.6 **Foluene** 115 5 100 N 4.9 1.48 3.31 rans-1,2-Dichloroethene 96 8 Y 112 25 11.26 2,700 239.76 5 **Frichloroethene** 2 5.19 Vinyl chloride 5.98 31 110 15 y Polynuclear Aromatic Hydrocabons (PAHs) N/A N/A 0 N/A ND N/A 14 1 66 1 11 Polychlorinated Biphenyls (PCBs) ND N/A N/A N/A N/A None 11 0 Total Petroleum Hydrocarbons (TPH) . . N/A 120,000 12,575 NA 21 9.54 TPH DRO 56 NA N/A 710 203 TPH GRO 30 6 3.49 NA N/A 12 2 3.36 3,430 1,022 TPH ORO Total Metals 200 10 8.30 674 81 40 Arsenic 89 2,000 90 90 12.94 33,300 2,574 Barium 668.6 5 0.03 19 Cadmium 89 11 2,381.48 100 20.58 49,000 90 67 Chromium N/A 1.21 20 16 NA Chromium, Hexavalent 13 5 Y 2170.25 1,685.46 300 1.29 6 5 TOT 15 Y 1.170 116 89 49 10.07 cad 2 Y 89 25 15.96 12.2 0.76 Mercury 50 N 0.39 5.4 13.82 44 Selenium 2

Notes

ug/L - micrograms per liter

DRO - Diesel range organic GRO - Gasoline range organic ORO - Oil range organic

N/A - Not applicable

NA: Not available

ND - Not detected

Max Detected - Maximum value of detected concentrations

Table 7D-9
Groundwater Constituents of Concern Summary for Sub-area 6D: GKN Facility
Roeing Tract 1. St. Louis, Missouri

	<u> </u>	<u> </u>	ang Tract 1, St. Lou		Concentr	ation	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs	3)						
1.1.1-Trichloroethane	28	1	0.78	0.97	1.24	200	N
1.1-Dichloroethane	28	1	0.77	0.96	1.24	157	N
1.1-Dichloroethene	28	1	0.29	0.35	1.22	7.0	N
cis-1,2-Dichloroethene	27	1	1.18	1.5	1.27	70	N
Tetrachloroethene	28	13	2.10	24.5	11.64	. 5	Y
Toluene	33	2	1.01	2.0	1.98	1,000	N N
Trichloroethene	28	12	1.42	4.1	2.88	5	N
Polynuclear Aromatic Hydrocabons	(PAHs)						
None	1	0	N/A	ND	N/A	N/A	N/A
Polychlorinated Biphenyls (PCBs)							
None	1	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TP)	H)			<u> </u>		· · · · · · · · · · · · · · · · · · ·	1
TPH DRO	5	0	N/A	ND	N/A	NA NA	N/A
TPH GRO	· 5	0	N/A	ND	N/A	NA	N/A
TPH ORO	5	0	N/A	ND	N/A	NA NA	N/A
Total Metals		1 19 14 15 15 15 15 15 15 15 15 15 15 15 15 15					·
Arsenic	12	2	1.94	17.3	8.93	10	Y
Barium	12	5	1.23	929	755.9	2,000	N
Cadmium	11	1	0.00	4.3	1,251.4	5	Y
Chromium	12	5	4.11	170	41.32	100	<u> </u>
Lead	12	3	2.41	39.2	16.27	15	Y
Mercury	. 11	1	1.26	0.13	0.10	2	N N

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 7A-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 6A: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	vapors tron		Average GW Conc. (ug/L)	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)	
	(ug/kg)	IELCR	HQ		IELCR	HQ			
Benzene				0.76	1.12E-10	6.37E-06	1.12E-10	6.37E-06	
Organics Total Risk		NA	NA		1.12E-10	6.37E-06	1.12E-10	6.37E-06	
TPH-GRO				730	NA	4.46E-03	NA	4.46E-03	
TPH-DRO				250	NA NA	4.95E-02	NA	4.95E-02	
TPH Total Risk		NA	NA		NA	5.40E-02	NA	5.40E-02	
Arsenic				102	NA	NÁ	NA	NA	
Barium				11,567	NA-	NA	NA	NA	
Cadmium	·		· ·	7.5	NA	NA	NA .	NA	
Chromium				539	NA	NA	NA	NA	
Metals Total Risk		NA	NA		NA	NA	NA.	NA	
CUMULATIVE RISK		NA	NA		1.12E-10	5.40E-02	1.12E-10	5.40E-02	

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

ug/L: Micrograms per liter

Table 7A-10(b) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 6A: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Con	tact with Soil	Accidental S		Vapors and	nhalation of Particulates Soil	Average GW Conc. (ug/L)	Dermal Co Groun	entact with dwater		ihalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
Acetone	30.5	NA	1.06E-07	NA	1.12E-07	NA	2.64E-07					.,	NA	4.83E-07
Benzene			_	-	_		-	0.76	1.46E-10	1.18E-04	5.94E-14	8.43E-08	1.46E-10	1.18E-04
Chrysene	1,500	2.36E-11	NA	6.06E-11	NA	3.49E-13	NA						8.46E-11	NA
Methyl ethyl ketone (MEK)	17.5	NA	1.02E-08	NA	1.13E-08	NA	3.94E-08				_	-	NA	6.09E-08
Organics Total Risk		2.36E-11	1.17E-07	6.06E-11	1.24E-07	3.49E-13	3.04E-07		1.46E-10	1.18E-04	5.94E-14	8.43E-08	2.31E-10	1.18E-04
TPH-GRO				ı,	ı			730	NA	NA	NA	3.98E-05	NA	3.98E-05
TPH-DRO	-	. –		1	-	-		250	NA	NA	NA	4.39E-04	· NA	4.39E-04
TPH Total Risk		NA	NA	NA	NA	NA	NA		NA	NA	NA	4.79E-04	NA	4.79E-04
Arsenic	6,700	1.67E-10	2.60E-05	5.28E-08	8.22E-03	8.79E-11	1.37E-06	102	NA	NA	NA	NA	5.31E-08	8.25E-03
Barium			-	-				11,567	NA	NA	NA	NA	NA	NA
Cadmium		-		1	-	-		7.5	NA	NA .	NA	NA	NA	NA
Chromium			l	1		-	-	539	NA	NA	NA	NA	NA	NA
Selenium	353	NA	8.21E-06	NA	2.74E-05	NA	3.80E-07	_			-		NA	3.60E-05
Metals Total Risk		1.67E-10	3.42E-05	5.28E-08	8.25E-03	8.79E-11	1.75E-06		NA	NA	NA.	NA	5.31E-08	8.28E-03
CUMULATIVE RISK		1.91E-10	3.43E-05	5.29E-08	8.25E-03	8.83E-11	2.05E-06		1.46E-10	1.18E-04	5.94E-14	4.79E-04	5.33E-08	8.88E-03

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

ug/L: Micrograms per liter
ug/kg: Micrograms per kilogram

Table 7B-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of Subsurface oil	Average GW Conc. (ug/L)		halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	Conc. (ug.L)	IELCR	HQ	ZZZCI	(-1)
1,1-Dichloroethene			-	8.0	3.64E-08	1.02E-05	3.64E-08	1.02E-05
1,1,2-Trichloro-1,2,2-trifluoroethane	_	_		640	NA	3.34E-05	NA	3.34E-05
1,2,3-Trimethylbenzene	-			0.7	NA	3.16E-06	NA	3.16E-06
1,2,4-Trimethylbenzene	_	1		3.4	NA	2.91E-05	NA	2.91E-05
Acetone	78.5	NA	8.88E-07				NA	8.88E-07
Benzene		-	_	13	2.18E-09	1.24E-04	2.18E-09	1.24E-04
Bromomethane		**		14	NA	1.54E-04	NA	1.54E-04
cis-1,2-Dichloroethene	75	NA	4.36.E-05	582	NA	5.97E-04	NA	6.41E-04
Dichlorodifluoromethane				35	NA	1.47E-04	NA	1.47E-04
Ethylbenzene	4.9	NA	2.09E-08			1	NA	2.09E-08
Methylene chloride				13	5.73E-11	1.13E-07	5.73E-11	1.13E-07
Methyl tert-butyl ether (MTBE)		_		32	6.91E-12	6.43E-08	6.91E-12	6.43E-08
Tetrachloroethene	12	5.34E-11	6.44E-07	20	5.75E-10	6.95E-06	6.29E-10	7.59E-06
Toluene	13	NA	2.79E-07	_	-		NA	2.79E-07
trans-1,2-Dichlorobenzene	36	NA	1.04E-07		1		NA	1.04E-07
trans-1,2-Dichloroethene				58	NA	6.17E-05	NA	6.17E-05
Trichloroethene	27	2.10E-10	9.87E-06	112	6.07E-09	2.85E-04	6.28E-09	2.95E-04
Vinyl chloride	7.0	6.39E-08	2.09E-05	149	1.33E-06	4.34E-04	1.39E-06	4.55E-04
Xylenes, total	14	NA	6.58E-08		•••	-	NA	6.58E-08
Aroclor 1254		_		296	NA	NA	NA	NA
Acenaphthene	3,411	NA	5.04E-08		_		NA	5.04E-08
Acenaphthylene .	48	NA	5.86E-10			-	NA	5.86E-10
Benzo(a)anthracene	27	2.84E-14	NA	126	2.56E-09	NA	2.56E-09	NA
Benzo(b)fluoranthene	27	1.61E-14	NA	-		_	1.61E-14	NA
Chrysene	193	3.57E-15	NA	_			3.57E-15	NA _
Fluoranthene	217	NA	7.25E-11	_			NA	7.25E-11
Fluorene	42	NA	2.34E-10	-			NA	2.34E-10
Pyrene	180	NA	8.19E-11		_		NA	8.19E-11
Organics Total Risk		6.41E-08	7.64E-05		1.37E-06	1.89E-03	1.44E-06	1.96E-03
Aliphatics > nC6 to nC8 (TX1006)				885	NA	6.06E-04	NA	6.06E-04
Aliphatics > nC8 to nC10 (TX1006)		***		55	NA	1.11E-03	NA	1.11E-03
Aromatics > nC8 to nC10 (TX1006)				55	NA	3.52E-05	NA	3.52E-05
TPH-GRO	810	NA	8.30E-06	996	NA	1.75E-03	NA	1.76E-03

Table 7B-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of Subsurface oil	Average GW Conc. (ug/L)		nalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ]	IELCR	HQ		
Aliphatics > nC10 to nC12 (TX1006)				5,575	NA	1.68E-01	NA	1.68E-01
Aliphatics > nC12 to nC16 (TX1006)			***	5,575	NA	7.29E-01	NA	7.29E-01
Aliphatics > nC16 to nC21 (TX1006)			-	5,575	NA	6.87E+00	NA	6.87E+00
Aromatics > nC10 to nC12 (TX1006)			-	5,575	NA	1.10E-03	NA	1.10E-03
Aromatics > nC12 to nC16 (TX1006)				5,575	NA	4.43E-04	NA	4.43E-04
Aromatics > nC16 to nC21 (TX1006)		_	_	5,575	NA	1.19E-04	NA	1.19E-04
TPH-DRO	17,500			33,451	NA	7.77E+00	NA	7.77E+00
Aliphatics > nC21 to nC35 (TX1006)	. —	_		75	NA.	9.24E-02	NA	9.24E-02
Aromatics > nC21 to nC35 (TX1006)				75	NA	1.83E-07	ΝA	1.83E-07
TPH-ORO				150	. NA	9.24E-02	NA	9.24E-02
TPH Total Risk		NA	2.60E-05		NA	7.86E+00	NA	7.86E+00
Arsenic Arsenic	27,807	NA	NA	108	NA	NA .	NA	NA
Barium				5,440	NA	NA	NA	NA.
Cadmium	583	NA	NA	1,177	NA	NA	NA	NA_
Chromium			_	412	NA	NA	NA	NA
Mercury	34	NA	9.69E-05	1.2	NA	1.53E-04	NA	2.50E-04
Selenium	1.687	NA	NA				NA	NA_
Antimony	3,964	NA	NA				NA	NA
Beryllium	937	NA.	NA			_	NA.	NA
Cobalt	8,404	NA	NA	·			NA.	NA
Copper	19,350	NA	NA	_			NA.	NA
Manganese	1,084,100	NA	NA	6,400	NA	NA	NA.	NA
Nickel	28,150	NA	NA	-			NA	NA
Zinc	52,140	NA	NA		_		NA	NA
Metals Total Risk	1 32,110	NA	9.69E-05	 	NA	1.53E-04	NA	2.50E-04
CUMULATIVE RISK		6.41E-08	1.99E-04		1.37E-06	7.86E+00	1.44E-06	7.86E+00

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

ug/L: Micrograms per liter

Table 7B-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

1,1-Dichloroethane 1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Acetone Benzene Bromomethane	(ug/kg) 3.1 3.5 31	IELCR NA 1.06E-11 NA	HQ 3.60E-08 1.37E-07 	NA 1.17E-11	HQ 1.20E-08 1.52E-07	IELCR · NA	HQ	1 '- '[IELCR	TTO				
1,1-Dichloroethane 1,1-Dichloroethane 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Acetone Benzene	3.1 3.5 — — — 31	1.06E-11	1.37E-07 	1.17E-11	1.52E-07					HQ	IELCR_	HQ		
1,1-Dichloroethene 1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Acetone Benzene	3.5 — — — 31 —	***					5.31E-08						NA	1.01E-07
1,1,2-Trichloro-1,2,2-trifluoroethane 1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Acetone Benzene	31					3.81E-11	2.68E-07	· 8.0	2.42E-08	3.14E-04	2.31E-11	1.62E-07	2.43E-08	3.14E-04
1,2,3-Trimethylbenzene 1,2,4-Trimethylbenzene Acetone Benzene	31 —					-		640	NA	NA	NA	4.81E-07	NA	4.81E-07
1,2,4-Trimethylbenzene Acetone Benzene	31 —			_		-		0.7	NA	NA NA	NA	8.80E-08	NA	8.80E-08
Acetone Benzene	31 —	NA						3.4	NA	NA	NA	5.94E-07	NA	5.94E-07
Benzene			1.08E-07	NA	1.14E-07	NA	2.67E-07		-				NA	4.88E-07
		_		_		_		13	2.56E-09	2.06E-03	1.94E-12	2.76E-06	2.57E-09	2.07E-03
								14	NA	7.87E-04	NA	3.80E-06	NA	7.91E-04
cis-1.2-Dichloroethene	146	NA	5.10E-07	NA	5.66E-06	NA	2.87E-05	582	NA	NA	NA	1.71E-05	NA NA	5.20E-05
Dichlorodifluoromethane						_		35	NA	4.66E-05	NA	2.16E-06	NA	4.88E-05
Ethylbenzene	123	NA	4.28E-07	NA	4.38E-07	NA	3.83E-07	_					NA	1.25E-06
Methyl ethyl ketone (MEK)	13.9	NA	8.10E-09	NA	9.00E-09	NA	3.14E-08		1				NA	4.85E-08
Methyl tert-butyl ether (MTBE)								32	1.48E-10	3.66E-06	2.59E-14	6.02E-09	1.48E-10	3.66E-06
Methylene chloride	7.4	2.76E-13	4.30E-08	3.07E-13	4.78E-08	4.61E-13	2.28E-08	13	2.10E-09	3.27E-04	8.11E-14	4.01E-09	2.10E-09	3.27E-04
Tetrachloroethene	8.24	2.13E-13	2.87E-08	2.37E-12	3.19E-07	4.89E-13	1.47E-07	20	1.54E-08	2.08E-03	3.84E-13	1.16E-07	1.54E-08	2.08E-03
	4,893	NA	8.53E-07	NA	9.48E-06	NA	5.37E-05						NA	6.41E-05
trans-1,2-Dichlorobenzene	36	NA	1.39E-07	NA	7.75E-08	NA	2.08E-07				_		NA	4.25E-07
trans-1,2-Dichloroethene	22	NA	3.84E-08	NA	4.27E-07	NA	2.66E-06	58	NA	NA	NA	1.33E-06	NA	4.45E-06
Trichloroethene	42	3.83E-15	4.06E-09	2.55E-12	2.71E-06	5.55E-12	6.52E-06	112	6.23B-09	6.60E-03	4.55E-12	5.34E-06	6.24E-09	6.62E-03
Vinyl chloride	52	4.94E-13	6.07E-09	5.49E-10	6.74E-06	1.66E-09	1.36E-05	149	6.53E-07	8.01E-03	7.61E-10	6.22E-06	6.56E-07	8.04E-03
Xylenes, Total	382	NA ·	6.66E-08	NA	6.81E-08	NA	1.52E-06		-				NA	1.65E-06
Aroclor 1254	100	4.65E-10	8.14E-04	1.11E-09	1.94E-03	1.75E-13	3.06E-07	296	NA	NA	NA_	NA	1.57E-09	2.75E-03
Acensphthene	1,150	NA	6.68E-06	NA	7.43E-06	NA	4.66E-07						NA	1.46E-05
Acensphihylene	29	NA	5.64E-07	NA	1.88E-07	NA	1.07E-08			-	_		NA	7.63E-07
Benzo(s)enthracene	17	2.72E-11	NA	6.96E-11	NA	3.07E-13	NA	126	2.36E-05	NA	8.64E-11	NA	2.36B-05	NA
Benzo(b)fluoranthene	14	2.20E-11	NA NA	5.65E-11	NA	1.90E-13	NA	_	-	-		_	7.87E-11	NA
Chrysene	119	1.88E-12	NA NA	4.83E-12	NA	2.78E-14	NA				_		6.74E-12	NA
Fluoranthene	102	NA NA	2.95E-07	NA NA	4.92E-07	NA	7.72E-09	_	-				NA	7.96E-07
Fluorene	.27	NA NA	2.36E-07	NA.	2.63E-07	NA	8.29E-09	_		<u></u>			NA_	5.08E-07
Phenanthrene	17	NA	6.62E-07	NA	2.21E-07	NA	8.41E-09					_	NA	8.92E-07
Pyrene	86	NA NA	3.32E-07	NA	1.11E-06	NA	8.77E-09		-				NA	1.45E-06
Organics Total Risk		5.28E-10	8.25E-04	1.80E-09	1.97E-03	1.71E-09	1.09E-04		2.43E-05	2.02E-02	8.77E-10	4.02E-05	2.43E-05	2.32E-02
Aliphatics > nC6 to nC8 (TX1006)								885	NA	NA	NA	8.60E-06	NA	8.60E-06
Aliphatics > nC8 to nC10 (TX1006)					_			55	NA	NA	NA	1.58E-05	NA	1.58E-05
Aromatics > nC8 to nC10 (TX1006)								55	NA	NA	NA	6.22E-07	NA	6.22E-07
	3,103	NA NA	NA	NA.	1.41E-05	NA.	1.83E-05	996	NA	NA	NA	2.50E-05	NA	5.74E-05
Aliphatics > nC10 to nC12 (TX1006)	3,103		-		1.41.5-05			5,575	NA	NA	NA	2.38E-03	NA	2.38E-03
								5,575	NA	NA	NA	1.03E-02	NA	1.03E-02
Aliphatics > nC12 to nC16 (TX1006)								5,575	NA.	NA.	NA	9.72E-02	NA	9.72E-02
Aliphatics > nC16 to nC21 (TX1006)								5,575	NA	NA.	NA	2.87E-05	NA	2.87E-05
Aromatics > nC10 to nC12 (TX1006)								5,575	. NA	NA NA	NA	1.99E-05	NA	1.99E-05
Aromatics > nC12 to nC16 (TX1006)	_=_							5,575	NA NA	NA NA	NA	1.51E-05	NA	1.51E-05
Aromatics > nC16 to nC21 (TX1006)	177,083	NA NA	3.91E-04	NA.	1.19E-03	NA.	3.40E-04	33,451	NA NA	NA.	NA.	1.10E-01	NA	1.12E-01
					1.1712-03	IVA	J.40E-04	75	NA NA	NA NA	NA NA	1.31E-03	NA	1.31E-03
Aliphatics > nC21 to nC35 (TX1006)						 	 	75	NA.	NA NA	NA NA	1.20E-07	NA	1.20E-07
Aromatics > nC21 to nC35 (TX1006)							 	150	NA NA	NA NA	NA NA	1.31E-03	NA.	1.31E-03
IPH-ORO IPH Total Risk	, - -	NA NA	3.91E-04	NA NA	1.20E-03	NA	3.58E-04	1	NA NA	NA NA	NA NA	1.11E-01	NA	1.13E-01

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermai Con	tact with Soil		Ingestion of	Vapors and	ihalation of Particulates Soil	Average GW Conc. (ug/L)	Group	ontact with dwater		nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ	1	IELCR	HQ	IELCR	HQ		
Arsenic	14,266	3.55E-10	5.53E-05	1.13E-07	1.75E-02	1.87E-10	2.91E-06	108	NA	NA	NA	NA	1.13E-07	1.76E-02
Barium				-		_	_	5,440	NA	NA	NA _	NA	NA	NA
Cadmium	481	NA	1.12E-05	NA	. 3.73E-04	2.65E-12	5.90E-08	1,177	NA	NA	NA	NA	2.65E-12	3.84E-04
Chromium					-		-	412	NA	NA	NA	NA	NA	`NA
Mercury	42	NA	1.65E-07	NA	8.23E-06	NA	1.98E-04	1.2	NA	NA	NA	3.29E-06	NA	2.10E-04
Selenium	920	NA	2.14E-05	NA	7.13E-05	NA	9.89E-07	_		_			NA	9.37E-05
Antimony	3,964	NA	1.15E-04	NA	3.84E-03	NA	4.26E-06	_					NA	3.96E-03
Beryllium	937	6.69B-10	5.45E-06	2.23E-10	1.82E-06	6.89E-12	1.01E-08	_			_		8.99E-10	7.27E-06
Cobalt	8,404	NA	4.88E-04	NA	1.63E-04	7.21E-11	9.03E-05				_		7.21E-11	7.42E-04
Copper	19,350	NA	5.62E-06	NA	1.87E-04	NA	4.14E-06	_				_	NA	1.97E-04
Manganese	1,084,100	NA	2.70E-03	NA	3.00E-03	NA	4.74E-03	6,400	NA	NA	NA	NA	NA	1.04E-02
Nickel	28,150	NA	8.18E-07	NA	5.45E-05	2.07E-11	3.02E-05			_			2.07E-11	8.55E-05
Zinc	52,140·	NA	2.02E-06	NA	1.68E-05	NA	1.06E-08			_	_		NA	1.89E-05
Metals Total Risk		1.02E-09	3.41E-03	1.13E-07	2.52E-02	2.90E-10	5.07E-03		NA	NA	NA.	3.29E-06	1.14E-07	3.37E-02
CUMULATIVE RISK		1.55E-09	4.62E-03	1.15E-07	2.84E-02	2.00E-09	5.54E-03		2.43E-05	2.02E-02	8.77E-10	1.11E-01	2.44E-05	1.70E-01

Notes:

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic ug/L: Micrograms per liter ug/kg: Micrograms per kilogram

Table 7C-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 6C: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from S	oil	Average GW Conc. (ug/L)	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ		
2-Hexanone (MBK)			-	4.3	NA ·	9.83E-07	ŇΑ	9.83E-07
Acetone	55	NA	1.90E-07				NA	1.90E-07
cis-1,2-Dichloroethene	2.5	NA	4.48E-07	96	NA	1.05E-04	NA	1.05E-04
Dichlorodifluoromethane	3.6	NA	1.67E-06				NA	1.67E-06
Ethylbenzene	540	NA	7.08E-07				NA	7.08E-07
Methyl ethyl ketone (MEK)	13	NA	8.82E-09				NA	8.82E-09
Methyl isobutyl ketone	11	· NA	1.02E-08				NA	1.02E-08
o-Xylene .	600	NA	3.25E-08				NA	3.25E-08
Trichloroethene	4.2	1.01E-11	4.75E-07	240	1.48E-08	6.94E-04	1.48E-08	6.94E-04
Vinyl chloride			-	5.2	5.55E-08	1.82E-05	5.55E-08	1.82E-05
Xylenes, total	206	NA	3.04E-07	_			NA	3.04E-07
Chrysene	406	2.32E-15	NA				2.32E-15	NA
Organics Total Risk		1.01E-11	3.84E-06		7.03E-08	8.18E-04	7.03E-08	8.22E-04
Aliphatics > nC6 to nC8 (TX1006)	-	-	•••	110	NA	. 9.05E-05	NA	9.05E-05
Aliphatics > nC8 to nC10 (TX1006)				47	NA	1.13E-03	NA	1.13E-03
Aromatics > nC8 to nC10 (TX1006)			-	47	NA ·	3.40E-05	NA	3.40E-05
TPH-GRO	64,052	NA	2.02E-04	203	NA	1.25E-03	NA	1.45E-03
Aliphatics > nC10 to nC12 (TX1006)				1,497	NA	5.43E-02	NA	5.43E-02
Aliphatics > nC12 to nC16 (TX1006)	. —			4,641	NA	7.30E-01	NA	7.30E-01
Aliphatics > nC16 to nC21 (TX1006)	_		-	1,497	NA	2.22E+00	NA	2.22E+00
Aromatics > nC10 to nC12 (TX1006)				1,497	NA	3.20E-04	NA	3.20E-04
Aromatics > nC12 to nC16 (TX1006)	_			1,946	NA	1.59E-04	NA	1.59E-04
Aromatics > nC16 to nC21 (TX1006)	_		-	1,497	NA	3.16E-05	NA	3.16E-05
TPH-DRO	566,000	NA	1.77E-04	12,575	NA	3.00E+00	NA_	3.00E+00

Table 7C-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Sub-area 6C: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc. Indoor Inhalation Vapors from Subsu Soil		Subsurface	Average GW Conc. (ug/L)	i a ardata itami		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ	•	
Aliphatics > nC21 to nC35 (TX1006)	-	_		727	NA	1.08E+00	NA	1.08E+00
Aromatics > nC21 to nC35 (TX1006)				295	NA	6.97E-07	NA	6.97E-07
TPH-ORO				1,022	NA	1.08E+00	NA	1.08E+00
TPH Total Risk		NA	3.79E-04		NA	4.08E+00	NA	4.08E+00
Arsenic	6,061	NA	NA	81	NA	NA	NA	· NA
Barium	_			2,574	NA	NA	NA	NA
Cadmium				669	NA	NA	NA	NA
Chromium	27,165	NA	NA	2,381	NA	NA	NA	NA
Chromium, hexavalent		_		16	NA	NA	NA	NA
Mercury	33	NA	2.86E-05	0.76	NA	1.11E-04	NA	1.39E-04
Selenium	342	NA	NA			_	NA	NA
Metals Total Risk		NA	2.86E-05	<u> </u>	NA	1.11E-04	NA	1.39E-04
CUMULATIVE RISK		1.01E-11	4.11E-04		7.03E-08	4.08E+00	7.03E-08	4.08E+00

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

ug/L: Micrograms per liter

Table 7C-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 6C: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental I	Ingestion of ail	Vapors and	inalation of Particulates Soil	Average GW Conc. (ug/L)	Dermal Co Ground	dwater	Outdoor In Vapors from	Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ 1.78E-07	NA	1.78E-07
2-Hexanone (MBK)		_		-	1			4.3	NA	NA	NA		NA NA	4.25E-07
Acetone	27	NA	9.36E-08	NA	9.88E-08	NA	2.32E-07							7.15E-05
Chloroform	2.9	8.86E-14	1.02E-07	9.84E-14	1.13E-07	7.05E-12	7.13E-05					1 407 06	7.23E-12 NA	2.32E-06
cis-1,2-Dichloroethene	3.5	NA	1.21E-08	NA	1.34E-07	NA	6.80E-07	96	NA	NA	NA	1.49E-06	NA NA	5.04E-07
Dichlorodifluoromethane	3.6	NA	2.09E-08	NA.	6.97E-09	NA	4.76B-07		·—				NA NA	2.37E-06
Ethylbenzene	233	NA	8.13E-07	NA	8.31E-07	NA_	7.27E-07						NA NA	4.31E-08
Methyl ethyl ketone (MEK)	12	NA	7.20E-09	NA	8.00E-09	NA	2.79E-08						NA NA	2.29E-07
Methyl isobutyl ketone	12	NA	5.42E-08	NA	6.02E-08	NA	1.14E-07						NA NA	1.05E-06
o-Xylene	600	NA	3.49E-07	NA	1.16E-07	NA	5.87E-07						NA 1.34E-08	1.05E-06 1.42E-02
Trichloroethene	29	2.69E-15	2.85E-09	1.79E-12	1.90E-06	3.90E-12	4.58E-06	240	1.33E-08	1.42E-02	5.19E-12	6.09E-06		2.80E-04
Vinyl chloride	_		_		_			5.2	2.28E-08	2.80E-04	1.41E-11	1.16E-07	2.28E-08	3.91E-07
Xylenes, Total	90	NA	1.57E-08	NA	1.61E-08	NA	3.59E-07						NA TOTAL	NA '
Benzo(a)anthracene	66	1.04E-10	NA	2.67E-10	NA	1.18E-12	NA						3.73E-10 2.69E-10	NA NA
Benzo(b)fluoranthene	48	7.54E-11	NA	1.93E-10	NA .	6.48E-13	NA						2.69E-10 1.54E-11	NA NA
Chrysene	274	4.32E-12	NA	1.11E-11	NA	6.38E-14	NA	<u> </u>		=-			NA	6.59E-07
Fluoranthene	84 .	NA	2.45E-07	NA	4.08E-07	NA	6.39E-09					7.88E-06	3.68E-08	1.45E-02
Organics Total Risk		1.84E-10	1.71E-06	4.74E-10	3.69E-06	1.28E-11	7.90E-05		3.61E-08	1.44E-02	1.93E-11	7.88E-06 5.68E-07	3.08E-06 NA	5.68E-07
Aliphatics > nC6 to nC8 (TX1006)		-	_					110	NA	NA	NA	7.06E-06	NA NA	7.06E-06
Aliphatics > nC8 to nC10 (TX1006)	_	-				<u> </u>		47	NA	NA	NA NA	2.78E-07	NA NA	2.78B-07
Aromatics > nC8 to nC10 (TX1006)	_							47	NA	NA	NA NA	7.91E-06	NA NA	4.86E-04
TPH-GRO	45,807	NA	NA	NA	2.08E-04	NA.	2.70E-04	203	NA	NA		3.41E-04	NA NA	3.41E-04
Aliphatics > nC10 to nC12 (TX1006)		_						1,497	NA	NA.	NA NA	4.57E-03	NA NA	4.57E-03
Aliphatics > nC12 to nC16 (TX1006)			_				<u> </u>	4,641	NA	NA	NA NA	1.39E-02	NA NA	1.39E-02
Aliphatics > nC16 to nC21 (TX1006)								1,497	NA	NA	NA NA	4.09E-06	NA NA	4.09E-06
Aromatics > nC10 to nC12 (TX1006)	-							1,497	NA	NA	NA NA	3.67E-06	NA NA	3.67E-06
Arometics > nC12 to nC16 (TX1006)					L – .			1,946	NA	NA NA		2.12E-06	NA NA	2.12E-06
Aromatics > nC16 to nC21 (TX1006)	_							1,497	NA	NA NA	NA NA	2.12E-06 1.88E-02	NA NA	3.02E-02
TPH-DRO	1,049,429	NA	2.31E-03	NA	7.04E-03	NA.	2.01E-03	12,575	NA	NA	NA NA	6.75E-03	NA NA	6.75E-03
Aliphatics > nC21 to nC35 (TX1006)								727	NA	NA	NA NA	6.75E-03 2.25E-07	NA NA	2.25E-07
Aromatics > nC21 to nC35 (TX1006)								295	NA NA	NA	NA_		NA NA	6.75E-03
TPH-ORO								1,022	NA	NA.	NA_	6.75E-03	NA NA	3.74E-02
TPH Total Risk		NA	2.31E-03	NA	7.25E-03	NA.	2.28E-03		NA	NA	NA_	2.56E-02	NA.	3./45-02

Table 7C-10(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 6C: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Con	tact with Soil	Accidental S	Ingestion of	Vapors and		Average GW Conc. (ug/L)	Givun			halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	68	IELCR	НО	IELCR	НО	IELCR	HQ	1	IELCR	HQ	IELCR	HQ		
	(ug/kg)				7.14E-03	7.63E-11	1.19E-06	81	NA	NA	NA .	NA	4.61E-08	7.16E-03
Arsenic	5,817	1.45E-10	2.25E-05	4.59E-08	7.145-03	7.035-11	1.1915-00		NA	NA	NA	NA	NA	NA NA
Barium		I —						2,574					2.34E-12	3.39E-04
Cadmium	425	ΝA	9.87E-06	NA	3.29E-04	2.34E-12	5.20E-08	669	NA .	NA NA	NA	NA		
		NA	NA	NA	NA	7.28E-10	NA	2,381	NA	NA _	NA _	NA	7.28E-10	NA
Chromium	19,798	NA_	IVA	- NA				16	NA	NA	NA	NA	NA	NA
Chromium, hexavalent										NA.	NA	1.14E-06·	NA	1.87E-04
Mercury	38	· NA	1.48E-07	NA_	7.39E-06	NA	1.78E-04	0.76	NA	NA NA	144		NA NA	3.35E-05
Selenium	329	NA	7.65E-06	NA	2.55E-05	NA	3.54E-07				<u> </u>			
		1.45E-10	4.02E-95	4.59E-08	7.50E-03	8.06E-10	1.80E-04		NA	NA	NA	1.14E-06	4.68E-08	7.72E-03
Metals Total Risk							2.54E-03	· · · · · · · · · · · · · · · · · · ·	3.61E-08	1.44E-02	1.93E-11	2.56E-02	8.36E-08	5.97E-02
CUMULATIVE RISK		3.29E-10	2.36E-03	4.64E-08	1.47E-02	8.19E-10	4.34E-03	<u> </u>	J.UIE-VO	AIT-UN				

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

ug/L: Micrograms per liter

Table 7D-10(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 6D: GKN Facility, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	vapors from Subsurface A		Average GW Conc. (ug/L)	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	НQ		IELCR	HQ		
Dichlorodifluoromethane	5.5	NA	8.16E-06				NA	8.16E-06
Tetrachloroethene				12	2.99E-10	3.60E-06	2.99E-10	3.60E-06
Toluene	39	NA	7.99E-07				NA	7.99E-07
Organics Total Risk	•	NA	8.96E-06		2.99E-10	3.60E-06	2.99E-10	1.26E-05
TPH-GRO	12,000	NA	1.23E-04	,			NA	1.23E-04
TPH-DRO	2,500	NA	2.52E-06				NA	2.52E-06
TPH-ORO	2,500	NA	6.38E-08				NA	6.38E-08
TPH Total Risk		NA	1.25E-04		NA	NA	NA	1.25E-04
Arsenic				8.9	NA	NA	NA	NA
Chromium		7	·	41	NA	NA	NA	NA
Metals Total Risk		NA NA	NA		NA	NA	NA	NA
CUMULATIVE RISK		NA	1.34E-04		2.99E-10	3.60E-06	2.99E-10	1.38E-04

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

ug/L: Micrograms per liter

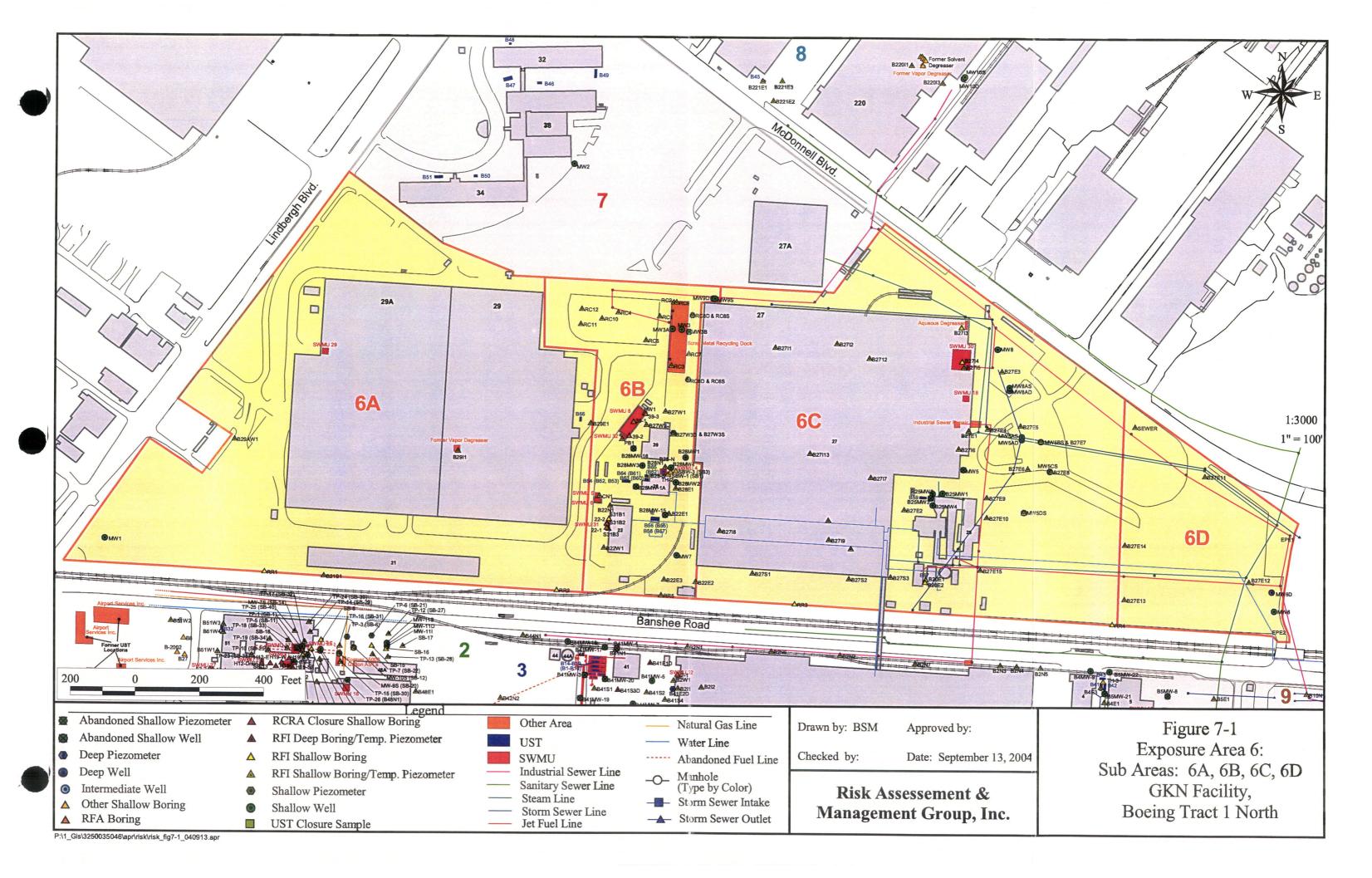
Table 7D-10(b) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 6D: GKN Facility, Boeing Tract 1, St. Louis, Missouri

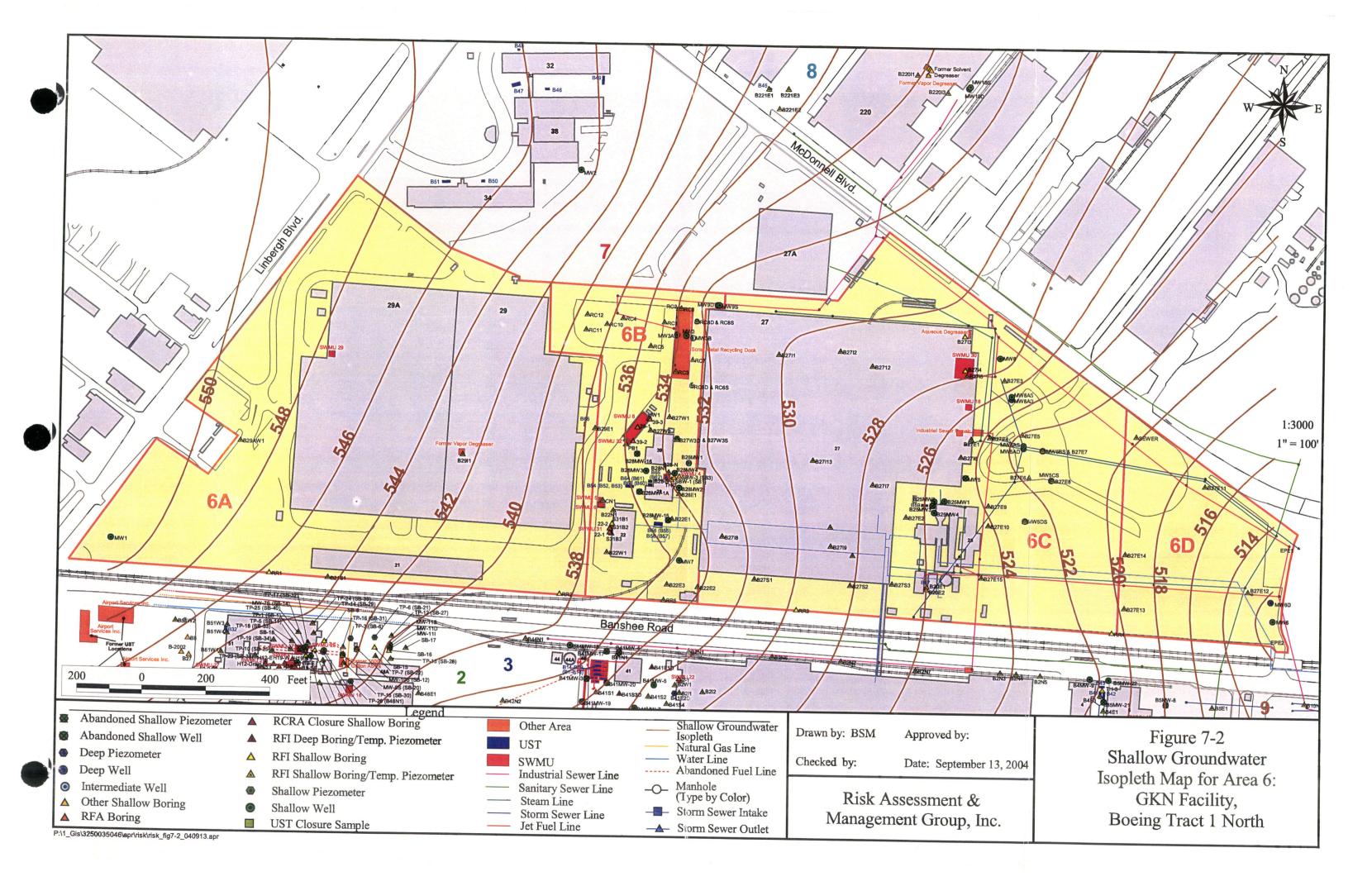
Average Soil Conc.	Dermal Contact with Soil		Accidental Se	Accidental Ingestion of Soil		_		CH OULLUM ALCI				Sum of IELCR	Sum of HQ (HI)
(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
5.5	NA	3.17E-08	NA	1.06E-08	NA	7.20E-07		-		_		NA	7.63E-07
69	NA	3.98E-08	NA	4.42E-08	NA	1.54E-07		1	_	_		NA	2.38E-07
	_	-	-	_	<u> </u>	_	12	9.19E-09	1.24E-03	1.22E-13	3.68E-08	9.19E-09	1.24E-03
27	NA	4.66E-09	NA	5.18E-08	NA	2.94E-07					-	NA	3.50E-07
	NA	7.62E-08	NA	1.07E-07	NA	1.17E-06		9.19E-09	1.24E-03	1.22E-13	3.68E-08	9.19E-09	1.24E-03
12,000	NA	NA	NA	5.46E-05	NA	7.07E-05		-	_			NA	1.25E-04
2,500	NA	5.51E-06	NA	1.68E-05	NA	4.80E-06			-			NA	2.71E-05
2,500	NA	6.37E-06	NA	1.64E-05	NA	5.16E-07			ŧ			NA_	2.33E-05
	NA	1.19E-05	NA	8.77E-05	NA	7.60E-05		NA	NA	NA	NA	NA	1.76E-04
9,250	2.30E-10	3.58E-05	7.30E-08	1.13E-02	1.21E-10	1.89E-06	8.9	NA	NA	NA	NA	7.33E-08	1.14E-02
	1		1			_	41	NA	NA	NA	NA	NA	NA
	2.30E-10	3.58E-05	7.30E-06	1.13E-02	1.21E-10	1.89E-06		NA	NA	NA	NA	7.33E-08	1.14E-02
	2.30E-10	4.78E-05	7.30E-08	1.14E-02	1.21E-10	7.91E-05		9.19E-09	1.24E-03	1.22E-13	3.68E-08	8.25E-08	1.28E-02
	(ug/kg) 5.5 69 27 12,000 2,500 2,500 9,250	(ug/kg) IELCR 5.5 NA 69 NA	(ug/kg) IELCR HQ 5.5 NA 3.17E-08 69 NA 3.98E-08 27 NA 4.66E-09 NA 7.62E-08 12,000 NA NA 2,500 NA 5.51E-06 2,500 NA 6.37E-06 NA 1.19E-05 9,250 2.30E-10 3.58E-05 2,30E-10 3.58E-05	Conc. Dermal Contact with Soil Science Conc. C	(ug/kg) IELCR HQ IELCR HQ 5.5 NA 3.17E-08 NA 1.06E-08 69 NA 3.98E-08 NA 4.42E-08	Average Soil Conc. Dermal Contact with Soil Accidental Ingestion of Soil Vapors and from	Average Soil Conc. Conc.	Average Soil Conc. Conc.	Average Soil Conc. Conc.	Average Soll Conc. Average Soil Conc. Conc.	Average Soil Conc. Average Soil Conc. (ug/kg) IELCR		

NA: Not available

--: Risk evaluation was not performed.

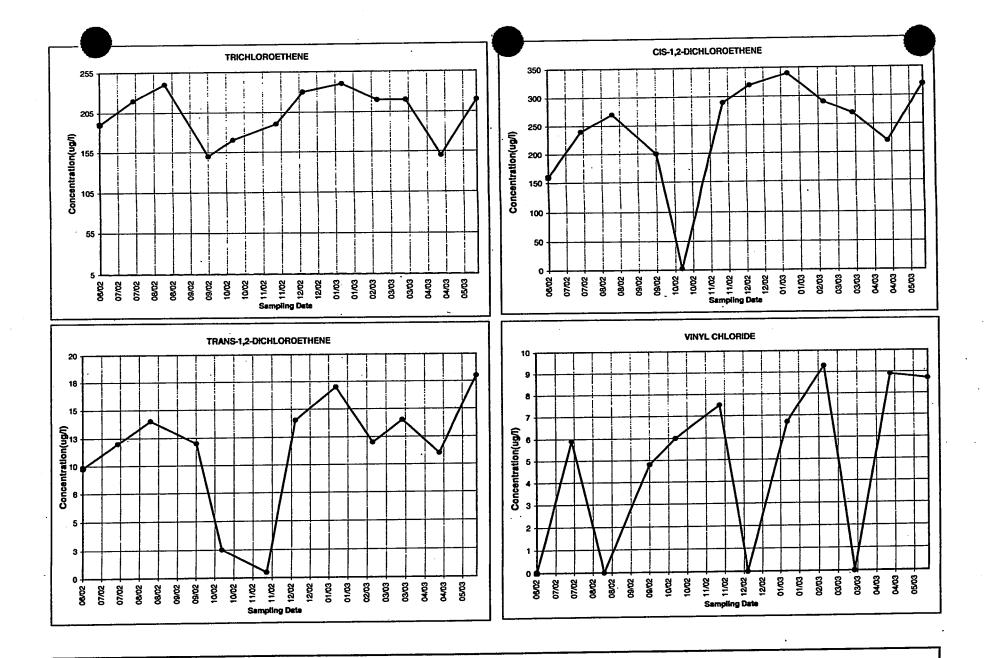
HI: Hazard index


TPH: Total petroleum hydrocarbon


GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic


ug/L: Micrograms per liter ug/kg: Micrograms per kilogram

NA is assumed as zero concentration

Figure 7-3. Groundwater Data Collected at MW3W-N Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

ND is assumed as zero concentration

Figure 7-4. Groundwater Data Collected at MW3AW-N Sub-area 6B: GKN Facility, Boeing Tract 1, St. Louis, Missouri

ATTACHMENT 7-A

ECOLOGICAL RISK ASSESSMENT – AREA 6 GKN FACILITY TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1.	is the site less than 72 time to a surface water resource (point, fiver, take, etc.):
	Yes, the downgradient edge of Area 6D is adjacent to Coldwater Creek.
2.	Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?
	No.
3.	Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?
	No, the entire site is paved.
4.	Has a process (operational) discharge or storm water permit not been issued for the site?
	Site-wide, there is a storm water permit.
5.	Is the site located in a known Karst environment (see Reference map)?
	No.
6.	Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.
	No.
7.	Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?
	No.
8.	Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?
	No.

ATTACHMENT 7-B

ECOLOGICAL RISK ASSESSMENT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, groundwater has been impacted.

1b. Are contaminants associated with the site mobile in groundwater?

Yes.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Eventually groundwater discharges into Coldwater Creek.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

Based on the distance to the creek and the current groundwater concentrations, there is some potential for low level dissolved impacts in groundwater to reach the creek.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

Although we have no surficial soil data, it is unlikely based on the sources located within this area that surficial soil is impacted.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, the site is entirely paved.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the site is entirely paved.

4a. Are contaminants present in surface soil or on the surface of the ground?

No.

4b. Are potential ecological receptors on the site?

No.

4. Could contaminants reach ecological receptors via direct contact?

No, the site is entirely paved.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the site is entirely paved.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the site is entirely paved.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

No.

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, the site is entirely paved.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No, the site is entirely paved.

6d. Do contaminants found on the site bioaccumulate?

No.

6. Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

8.1 INTRODUCTION

The Engineering Campus (Area 7) is located in the northern portion of the Facility, bordered by Lindbergh Boulevard to the west and James S. McDonnell Boulevard to the north, see Figure 8-1. This section will describe the constituents found in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

8.2 DESCRIPTION OF AREA

The Engineering Campus is approximately 1,500 feet long by 1,000 feet wide (at its maximum dimensions). Within this Area are four buildings and large parking lots. Other than the buildings, the entire area is paved.

8.2.1 Potential Sources within Area

No SWMU's were located within this Area, however, six USTs were previously located within this Area near the three main buildings (32, 33, and 34) (see Table 8-1 for details). Two of the six USTs listed on Table 8-1 replaced previous 300-gallon USTs in 1960 and 1975. The USTs ranged in size from 300 gallons to 20,000 gallons, and contained gasoline, fuel oil, and diesel. Two of the tanks were used for boiler fuel and the others were used to fuel emergency power generators.

These USTs were all removed via excavation in 1989, and were not replaced. The tanks were removed following McDonnell Douglas environmental department guidelines that included an inspection of the excavation with further action initiated if contamination was visually observed. No further action was required at any of the six locations. Upon removal of the tanks, no soil sampling activities were performed.

At various times since the removal of the tanks, different projects involving utility repair or replacement have been conducted at the former tank locations. Testing of the soil was conducted during these projects to assist with proper soil disposal. It is standard Boeing procedure to field test with a Photoionization Detector (PID) meter any soil being disturbed or removed during construction projects or emergency repairs. Testing involves collecting several samples from every three to four cubic yards of excavated soil. The samples are composited into a sealed plastic bag and a PID measurement is taken from the headspace. Laboratory analysis is conducted if a PID measurement above 50 ppm is detected. Listed below is a description of the tanks with PID readings and dates of tests. No VOCs above 5 ppm were detected with the PID meter at these former UST sites.

Tank No.	Tank Location	Material	Gallons	Installation Date	PID Test Date	PID Location	PID Results
B46	33A	Diesel	300/3,000	1956/1960	6/26/00	At UST site	5 ppm
B47	33B	Fuel Oil	20,000	1956	11/13/01	20 feet west of UST	3 ppm
B48	32A	Gasoline	300/500	1956/1975	5/16/03	10 feet north of UST	<1 ppm
B49	32B	Fuel Oil	10,000	1955	4/27/00	At UST site	5 ppm
B50	34A	Diesel	850	1957	4/21/03	At UST site	< 1 ppm
B51	34B	Fuel Oil	10,000	1957	4/21/03	At UST site	< 1 ppm

ppm: parts per million

Based on the past and current use of the Area, soil or groundwater impact beyond background levels would not be expected, with the possible exception of petroleum hydrocarbons.

8.2.2 Soil Stratigraphy within Area

There is one boring in this Area, in which monitoring well MW2 was installed. Based on the soil boring log for MW2, the soil stratigraphy is silty clay, clayey silt, and silt from 0.5 feet below ground surface (bgs) to approximately 19 feet bgs (total depth advanced). This is similar to the overall site soil stratigraphy. For additional details, refer to the RFI (MACTEC, 2004).

8.2.3 Hydrogeology within Area

There is one monitoring well (MW2) located within this Area, with 10 feet of screen from 8 to 18 feet bgs, see Table 8-2 for further details of this well. Groundwater flow within this Area in the shallow zone is to the east, based on recent gauging data and information from wells just outside this Area (Figure 8-2). The depth to shallow groundwater in MW2 is approximately 5 feet bgs.

8.3 LAND USE

8.3.1 Current Land Use

Currently, the Area is commercial with office space occupied by Boeing. The remainder of the Area is paved parking lot. Area 7 includes office buildings #32, 33, 34, and manufacturing building #27A.

8.3.2 Future Land Use

Boeing plans to retain the office complex for use as commercial office space in the future, and the parking lots are anticipated to remain.

8.4 AVAILABLE DATA

The following gives an overview of the available data within this Area:

- One monitoring well (MW2) is located within this Area, and this well has been sampled eight times from July 2000 to June 2003;
- At the time of installation of MW2 in July 2000, a soil sample was collected. This is the only laboratory analyzed soil data within this Area;
- No piezometers were installed within this Area;
- No soil data is available from the UST excavation activities completed in 1989, other than visual observations; and
- Soil PID data is available for various construction activities that occurred near the USTs between April 2000 and May 2003.

8.5 CONSTITUENTS IDENTIFIED WITHIN AREA

8.5.1 Soil

One soil sample was collected in this Area from the boring used to install monitoring well MW2, in July 2000. This sample was analyzed for a comprehensive list of 67 constituents that included VOCs, PAHs, PCBs, TPH, metals, and cyanide. Typical laboratory methods that were used for analysis include SW 846 Methods 6010, 7471, 8015, 8082, 8260, 8310, and 9012. Available data is included in Table H-1 in Appendix H.

Table 8-3 lists the constituents detected in the soil sample. In all, six metals were detected: arsenic, barium, cadmium, chromium, lead, and mercury. These metals are naturally occurring and at concentrations below background levels (Refer Table 8-4). Therefore, these detected metals were not considered further.

Two metals (selenium and silver) were not detected, but had DLs that exceeded the background levels. The selenium DL was <650 ug/kg vs. a background concentration of 260 ug/kg. The silver DL was <1,300 ug/kg vs. a background concentration of <700 ug/kg. However, the DLs for selenium and silver did not exceed the high end of the range of concentrations observed that were used to establish the background concentrations (100 ug/kg - 2,300 ug/kg for selenium and 700 ug/kg - 3,000 ug/kg for silver). There are no known sources for these metals, and no known industrial activity that would have released these metals in this Area. It is our opinion that these metals are not present above background levels, and the elevated DLs represent laboratory or natural variability. Therefore, these non-detected metals were not considered further.

One organic compound - methyl ethyl ketone (MEK) had a "J"-flagged concentration of 0.0089 mg/kg. "J"-flagged values are estimated concentrations below the DL; therefore, MEK is considered non-detect, and there was no corresponding concentration observed in groundwater. Therefore, MEK was not considered further in the risk assessment.

Thus, no constituents were considered for quantitative risk evaluation for soil.

8.5.2 Groundwater

One groundwater monitoring well (MW2) is located within Area 7, and has been sampled eight times between July 2000 and June 2003, see Table 8-5. In all, these samples were analyzed for

one hundred ten constituents consisting of VOCs, PAHs, PCBs, TPH, metals, and cyanide. Typical methods used included SW 846 Methods 6010, 7470, 8015, 8082, 8260, 8310, and 9012. Available data is included in Table H-2 in Appendix H. Table H-3 in Appendix H presents the range of DLs for the constituents that had no positive detects in groundwater.

Of the constituents analyzed, nine were detected in at least one sample: arsenic, barium, benzene, chromium, cis-1,2-dichloroethene, lead, mercury, selenium, and toluene. These constituents were not considered further in the risk assessment for the following reasons:

- Arsenic had two detects and one non-detect DL above the MCL, but two subsequent sampling events were below the MCL.
- Barium, benzene, cis-1,2-dichloroethene, mercury, and toluene were below their respective MCLs.
- Chromium exceeded the MCL in the 2000 sampling event but was below the MCL on four subsequent sampling events including the last two, which were non-detect.
- Lead was detected above the MCL in the 2000 sampling event and was non-detectable with a DL that exceeded the MCL in the January 2001 sampling event; but the subsequent three sampling events were below the MCL including the last two, which were non-detectable.
- Selenium had one non-detect sample with a DL above the MCL, but it also had a detectable concentration in another sampling event from the same well that was 1/10th the MCL.

Sixty-four constituents were non-detectable, and their highest DLs did not exceed any target level criteria. These constituents were not considered further in the risk assessment.

There were 12 constituents consisting of VOCs and TPH that were not detected and did not have any target level criteria for comparison. The DLs were<5 ug/L for VOCs except 2-hexanone (<10 ug/L), acrolein (<50 ug/L), chloromethane (<10 ug/L), and iodomethane (<10 ug/L), and <500 ug/L for TPH. These constituents were not considered further in the risk assessment.

Eleven constituents (1 metal, 2 VOCs, 1 PAH, and 7 aroclors) were non-detectable, but their DLs exceeded their specific MCLs. These constituents were not considered further in the risk assessment for the following reasons:

- Cadmium and vinyl chloride were non-detectable and the DLs were below the MCLs in the subsequent sampling events.
- 1,2-Dibromo-3-chloropropane (DL range of 2-5 ug/L) is not associated with petroleum hydrocarbons and does not have known sources or industrial activity that could have released this constituent in this Area.
- Benzo(a)pyrene was non-detect at 5 ug/L in the one sampling event for PAHs, and all other PAHs were also non-detectable.
- Seven aroclors (PCBs) were analyzed in one sampling event. All were non-detectable; however, the DLs (<1.1 ug/L) for each exceeded the non-specific PCB MCL (0.5 ug/L). These PCBs are not associated with petroleum hydrocarbons and do not have known sources nor industrial activity that could have released these constituents in this Area.

Four VOCs were non-detectable, but their DLs exceeded the EPA HA concentrations for groundwater. These constituents were not considered further in the risk assessment for the following reasons:

- Hexachlorobutadiene was non-detectable in five subsequent sampling events and the DLs did not exceed the HA; and
- The HA for 1,1,2,2-tetrachloroethane was exceeded in all seven samples, and also in all six samples for 1,2-dibromoethane, both with DLs of 1-5 ug/L. Also, acrylonitrile was non-detectable and its DL (<50 ug/L) exceeded the HA in all six sampling events. All three do not have known sources or industrial activity that could have released these constituents in this Area.

Ten constituents (6 VOCs and 4 PAHs) were non-detectable, but their DLs exceeded the calculated risk-based groundwater ingestion target level. These constituents were not considered further in the risk assessment for the following reasons:

- Four VOCs (1,1-dichloropropene, 1,2,4-trimethylbenzene, 2,2-dichloropropane, and trans-1,3-dichloropropene) were also non-detectable during the six subsequent sampling events with DLs below their respective risk-based groundwater ingestion target level concentrations.
- MIBK (VOC) was non-detectable during two earlier sampling events with DLs below the
 risk-based groundwater ingestion target level. This suggests that although during
 subsequent sampling events where DLs exceeded the risk-based groundwater ingestion
 target level, it is unlikely that MIBK is present above its risk-based groundwater
 ingestion target level.
- Another VOC, 2-chloroethyl vinyl ether was non-detectable at 50 ug/L during six sampling events and the DL exceeded its risk-based groundwater ingestion target level. This VOC does not have known sources or industrial activity that could have released this constituent in this Area.
- Four PAHs (benzo(a)anthracene, benzo(b)fluoranthene, dibenzo(a,h)anthracene, and indeno(1,2,3-CD)pyrene) were non-detect at 5 ug/L, which exceeded their respective risk-based groundwater ingestion target levels during one sampling event for PAHs, and all other PAHs were also non-detectable.

Based on the above evaluation and the lack of industrial activities in this Area, no constituents were considered for quantitative risk evaluation for groundwater.

8.6 EXPOSURE MODEL

8.6.1 Current conditions

This Area is comprised of office buildings and parking lots. Hence, the receptors under current conditions would be the non-residential worker and a visitor/maintenance worker to the Area.

Exhibit 8-1 presents the EM for the current non-residential worker. As the exposure duration for the visitor/maintenance worker is less than that for the non-residential worker, the risk from any soil or groundwater impact will not be quantitatively evaluated.

EXHIBIT 8-1. EM FOR CURI	RENT ON-	SITE NON-RESIDENTIAL WORKER
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Surficial Soil	NC	The Area is entirely paved; therefore, contact with surficial soil is unlikely. Also, the only sources located within this Area were USTs, and impact is not expected in the surficial zone.
Ingestion of Surficial Soil	NC .	The Area is entirely paved; therefore, ingestion of surficial soil is unlikely. Also, the only sources located within this Area were USTs, and impact is not expected in the surficial zone.
Indoor Inhalation of Vapors from Subsurface Soil	NC	No volatile constituents were detected in soils in this Area; therefore, this pathway is incomplete.
Indoor Inhalation of Vapors from Groundwater	NC	No volatile constituents were detected above the MCLs in groundwater in this Area; therefore, this pathway is incomplete.
Notes: NC: Not Complete C: Complete Exposure pathways highlighted in bold ind evaluated.		ese pathways are complete and will be quantitatively

8.6.2 Future conditions

Under future conditions, the land use in this Area is not expected to alter; hence, the receptors will remain the same in the future. As such, they will not be quantitatively evaluated as the comparison for the current conditions will be protective of the future non-residential worker. Groundwater concentrations are expected to decrease in the future through natural attenuation processes, further reducing the risk.

In the future, construction work could be performed within this Area; however, no evidence of impacted soils has been noted based on field screening during numerous past construction activities in this Area. However, if there are any localized impacts, the concentrations are unlikely to exceed the risk to a construction worker.

8.7 CALCULATION OF RISK

No quantitative evaluation is necessary for this Area.

8.8 ECOLOGICAL RISK

The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 8-A and Attachment 8-B. These checklist identified no potential ecological receptors or issues.

8.9 CONCLUSIONS

The only complete pathway for this Area is contact with soil for the potential future construction worker. This pathway has not been quantitatively evaluated as no evidence of soil impacts have been noted based on field screening during several past construction activities in this Area. We do not consider that additional sampling is necessary in order to quantitate this risk for the following reasons:

- Any impacts will be localized, and the concentrations likely to be observed are unlikely
 to exceed the risk to a construction worker, as a result of the limited exposure
 frequency and exposure duration for a construction worker;
- When the USTs were removed, although no sampling was conducted, no evidence of soil contamination was observed. Also, pictorial evidence suggests that the USTs were in good condition with no holes observed;
- Since the USTs were removed in 1989, the areas have been excavated a number of times for utility work, and the soils screened using a PID; and at each event, no elevated levels of petroleum hydrocarbons have been observed;
- No major construction work is planned in this Area to alter the locations of the office buildings; and
- As discussed in Section 8.2.1, it is Boeing's standard procedure to field test with a PID
 meter soil being disturbed or removed during construction projects or emergency
 repairs, and to perform subsequent actions if elevated PID readings above a certain
 threshold are recorded.

TABLE 8-1
SUMMARY OF UNDERGROUND STORAGE TANKS (USTs) PRESENT HISTORICALLY WITHIN AREA 7: ENGINEERING CAMPUS
BOEING TRACT 1, ST. LOUIS, MISSOURI

UST Number	Location	Volume (Gallons)	Contents	Construction Material	Year Installed	Status	Comments
B46	Bldg. 33A	3,000	Diesel	Single Wall Steel	1960	Removed 1989	Excavated
B47	Bldg.33B	20,000	Fuel Oil	Single Wall Steel	1956	Removed 1989	Excavated
B48	Bldg. 32A	500	Gasoline	Single Wall Steel	1975	Removed 1989	Excavated
B49	Bldg. 32B	10,000	Fuel Oil	Single Wall Steel	1955	Removed 1989	Excavated
B50	Bldg. 34A	850	Diesel	Single Wall Steel	1957	Removed 1989	Excavated
B51	Bldg. 34B	10,000	Fuel Oil	Single Wall Steel	1957	Removed 1989	Excavated

UST B-46 replaced an earlier 300-gallon steel UST that contained diesel. The previous UST was installed in 1956 and replaced in 1960.

UST B-48 replaced an earlier 300-gallon steel UST that contained gasoline. The previous UST was installed in 1956 and was replaced in 1975.

TABLE 8-2 MONITORING WELL INFORMATION FOR AREA 7: ENGINEERING CAMPUS BOEING TRACT 1, ST. LOUIS, MISSOURI

Monitoring Well	Diameter	Screened Interval	Total Depth	Installation Date	Status
	(inches)	(ft bgs)	(ft)		
MW2	2	8.0-18.0	19.1	7/17/2000	Active

Notes:

ft bgs: Feet below ground surface

ft: Feet

TABLE 8-3 SOIL DATA FOR AREA 7: ENGINEERING CAMPUS BOEING TRACT 1, ST. LOUIS, MISSOURI

Group	BoeingParmName	MW-2-7
Metals	Arsenic	1,900
Metals	Barium	71,500
Metals	Cadmium	B 170
Metals	Chromium	20,900
Metals	Lead	6,600
Metals	Mercury	B 9

Notes:

All concentrations in ug/kg (micrograms per kilogram)

B: Detected in laboratory blank also

TABLE 8-4
COMPARISON OF AVERAGE AND MAXIMUM SOIL CONCENTRATIONS IN AREA 7: ENGINEERING CAMPUS TO BACKGROUND LEVELS
BOEING TRACT 1, ST. LOUIS, MISSOURI

		The state of the s		Concentration		Comparison to B	ackground Level
COCs	# of Samples	# of Detects	Average (ug/kg)	Maximum (ug/kg)	Background (ug/kg)	Average	Maximum
Metals	····				<u>. </u>		N. P.
Arsenic	1	1	1,900	1,900	9,200	Not Exceed	Not Exceed
	-	i	71,500	71,500	725,000	Not Exceed	Not Exceed
Barium			170	170	< 1,000	Not Exceed	Not Exceed
Cadmium					58,000	Not Exceed	Not Exceed
Chromium	1	1	20,900	20,900			
Lead	1	1	6,600	6,600	21,800	Not Exceed	Not Exceed
Mercury	i	1	9	9	39	Not Exceed	Not Exceed

TABLE 8-5 HISTORICAL GROUNDWATER ANALYTICAL DATA FOR AREA 7: ENGINEERING CAMPUS BOEING TRACT 1, ST. LOUIS, MISSOURI

<u> </u>			T							cis-1,2-				
SAMP_ID	COLL_DATE	GROUP	Arsenic	Arsenic, Dissolved	Barium	Barium, Dissolved	Benzene	Chronium	Chromium, Dissolved	Dichloroethe ne	Lead	Mercury	Selenium	Toluene
MW2W	27-Jul-00	Cyanide												
MW2W	27-Jul-00	Metals	16.8		664			140			27.5	В 0.083	5	
MW2W	27-Jul-00	PAHs						ļ				ļ. <u>.</u>		<u> </u>
MW2W	27-Jul-00	PCB	<u> </u>					<u> </u>	ļ					
MW2W	27-Jul-00	ТРН	<u> </u>						<u> </u>			<u> </u>		
MW2W	27-Jul-00	VOCs	<u></u>				< 1			ļ		<u> </u>		< 1
MW2W	09-Jan-01	Metals	< 50		320			29			< 50	< 0.2	< 100	
MW2W	09-Jan-01	VOCs					< 5 _.		ļ	< 5		<u> </u>		< 5
MW2W	08-May-01	Metals	15		380			29			7	< 0.2		ļ
MW2W	08-May-01	Metals, Dissolved		9.9		220			4.4					
MW2W	08-May-01	VOCs				<u> </u>	< 1			1.4			<u> </u>	1
MW2W	18-Jul-01	Metals	< 5		300			< 2			< 5	< 0.2	<u> </u>	<u> </u>
MW2W	18-Jul-01	Metals, Dissolved		5		270		<u> </u>	< 2	ļ		 -		<u> </u>
MW2W	18-Jul-01	VOCs					< 1	<u> </u>		2			 	< 5
MW2W	29-Oct-01	Metals	5.7		J4 420	<u> </u>		J4 9			< 5	< 0.2	 	
MW2W	29-Oct-01	Metals, Dissolved		< 5		270		<u> </u>	< 2		<u> </u>	 	ļ	
MW2W	29-Oct-01	VOCs		<u> </u>			< 1	<u> </u>	<u> </u>	1.5	ļ	<u> </u>	 	< 5
MW2W	11-Mar-02	VOCs					< 1	<u> </u>		1.5		<u> </u>	ļ	< 5
MW2W	31-May-02	vocs				<u> </u>	< 1	<u> </u>		H 1.1		 	 	< 5
MW2W	20-Jun-03	VOCs	<u> </u>	<u> </u>			3.5	<u> 1</u>	<u> </u>	1.4	L	<u> </u>	<u></u>	< 5

Notes:

All concentrations in ug/L (micrograms per liter)

< Less than detection limit shown

Blank: Not analyzed

VOC: Volatile Organic Compound

TPH: Total petroleum hydrocarbon

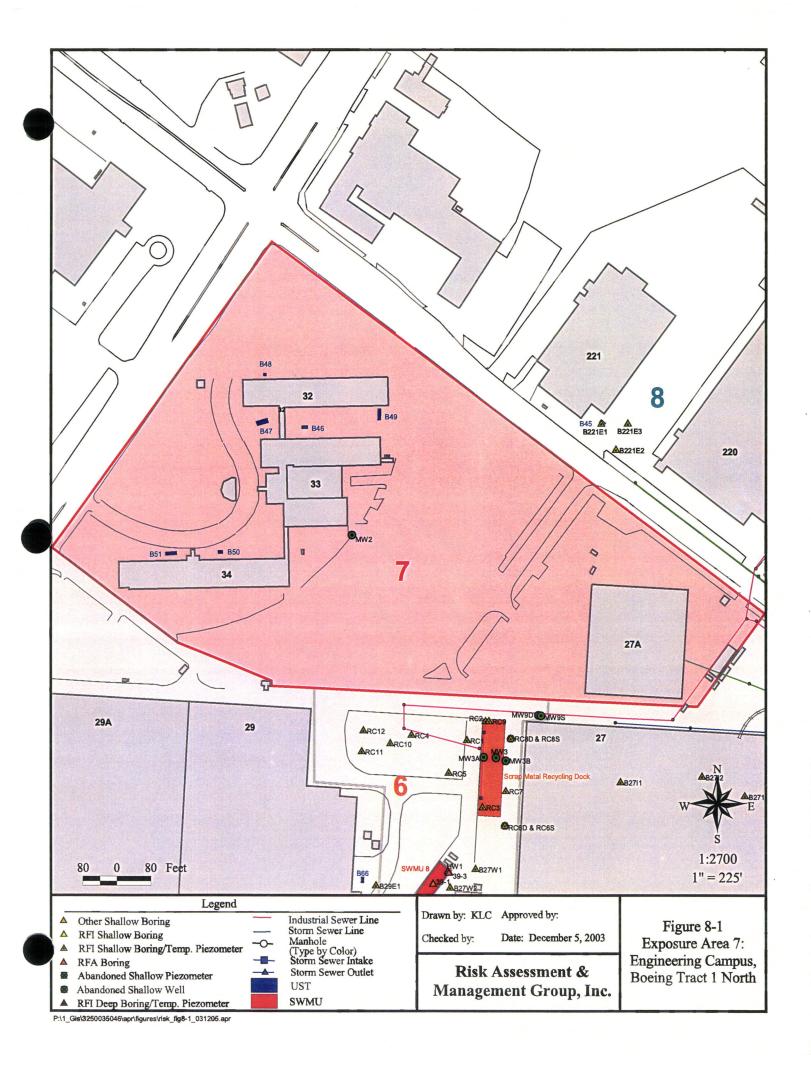
PAH: Polynuclear aromatic hydrocarbon

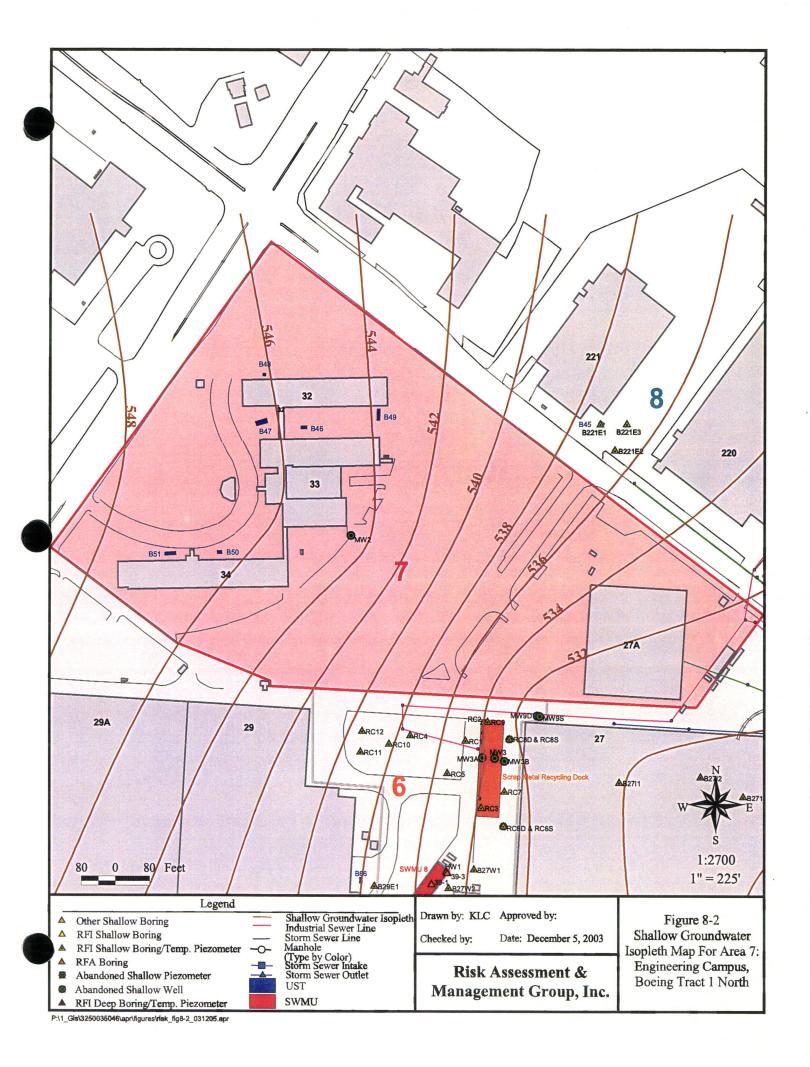
PCB: Polychlorinated biphenol Lab qualifiers in Section 1.0

TABLE 8-6

COMPARISON OF AVERAGE AND MAXIMUM GROUNDWATER CONCENTRATIONS IN AREA 7: ENGINEERING CAMPUS TO MAXIMUM CONTAMINANT LEVEL (MCL) OR EQUIVALENT BOEING TRACT 1, ST. LOUIS, MISSOURI

	T	· ·		Concentration		Comparison to M	CL or Equivalent
COCs	# of Samples	# of Detects	Average (ug/L)	Maximum (ug/L)	MCL or Equivalent (ug/L)	Average	Maximum
Organics		-					
Benzene	8	1	1.1	3.5	5	Not Exceed	Not Exceed
cis-1,2-Dichloroethene	7	6	1.6	2.5	70	Not Exceed	Not Exceed
Toluene	8	1	2.1	2.5	1,000	Not Exceed	Not Exceed
TPH	<u> </u>	<u> </u>	·				
TPH as Diesel - DRO	1 1	0	250	250	NA NA	NA	NA
Volatile Petroleum Hydrocarbons - GRO	 	0	50	. 50	NA	NA	NA NA
Metals	<u> </u>	<u> </u>					<u> </u>
Arsenic	5	3	8.5	25	10	Not Exceed	Exceed
Barium	5	4	375	664	2,000	Not Exceed	Not Exceed
	5		40.7	140	100	Not Exceed	Exceed
Chromium	5	2	8.4	27.5	15	Not Exceed	Exceed
Lead			0.1	0.1	2	Not Exceed	Not Exceed
Mercury	3			50.0	50	Not Exceed	Not Exceed
Selenium	2	1	27.5	1 30.0	<u> </u>	1.012/0000	


Notes:


ug/L: micrograms per liter

NA: Not available

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic

ATTACHMENT 8-A

ECOLOGICAL RISK ASSESSMENT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

No, Coldwater Creek is located at least 3,000 feet from the area.

2.	Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?
	No.
3.	Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?
	No, the area is mostly paved.
4.	Has a process (operational) discharge or storm water permit not been issued for the site?
	Yes, Facility-wide there is a storm water permit.
5.	Is the site located in a known Karst environment (see Reference map)?
	No.
6.	Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.
	No.
7.	Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?
	No.

Are commercially or recreationally important species (fauna or flora) on or within a 1/2

No.

mile radius of the site?

1.

8.

ATTACHMENT 8-B

ECOLOGICAL RISK ASSESSMENT TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

No, no evidence of impact was observed.

1b. Are contaminants associated with the site mobile in groundwater?

No, no evidence of impact was observed.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Eventually, groundwater discharges into Coldwater Creek.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

No, no evidence of impact was observed.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No.

3a. Are contaminants present in surface soils?

No, no evidence of impact was observed.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, no evidence of impact was observed.

3. Could contaminants reach ecological receptors via erosional transport of contaminated

soil or via precipitation runoff?

No. no evidence of impact was observed.

- 4a. Are contaminants present in surface soil or on the surface of the ground?

 No, no evidence of impact was observed.
- 4b. Are potential ecological receptors on the site?

 No, the site is mostly paved.
- Could contaminants reach ecological receptors via direct contact?
 No, no evidence of impact was observed.
- 5a. Are contaminants present on the site volatile?

 No. no evidence of impact was observed.
- 5b. Could contaminants on the site be transported in air as dust or particulate matter?

 No, no evidence of impact was observed.
- 5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, no evidence of impact was observed.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

No. no evidence of impact was observed.

- 6b. Are contaminants found in soil on the site taken up by plants growing on the site?

 No, no evidence of impact was observed.
- 6c. Do potential ecological receptors on or near the site feed on plants found on the site?

 No, no evidence of impact was observed.
- 6d. Do contaminants found on the site bioaccumulate?

No, no evidence of impact was observed.

6. Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

No, no evidence of impact was observed.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

9.1 INTRODUCTION

The Office Complex North (Area 8) is located to the north of James S. McDonnell Boulevard (see Figure 9-1). This section describes the constituents found in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

9.2 DESCRIPTION OF AREA

The Office Complex North is an area approximately 800 feet wide by 1,000 feet long. Within this Area are two buildings (220 and 221) separated by a small parking lot. The Area is currently paved, and will likely remain paved in the future. For the purposes of this risk evaluation, Area 8 was further subdivided into three Sub-areas; 8A, 8B, and 8C (see Figure 9-1), to (i) reduce the size of the exposure units evaluated, and (ii) to evaluate the risk from specific sources. A brief description of the Sub-areas follows:

- <u>Sub-area 8A</u>: This Sub-area covers about 4.4 acres and consists of the southern portion of Building 220 and associated parking and access areas along the south and east perimeter of the building. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs and metals.
- <u>Sub-area 8B</u>: This Sub-area covers about 6 acres and consists of the northern portion of Building 220 and open areas to the west and north of the building including parking, access, and operational areas and vegetated areas along the western and northern perimeter of the property. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs, TPH, PAHs, and metals.
- <u>Sub-area 8C</u>: This Sub-area covers about 5.8 acres and consists of Building 221 and the associated parking and access areas to the west, north, and east of the building. The primary chemicals that exceeded screening criteria in this Sub-area were VOCs and TPH.

9.2.1 Potential Sources within Area

Potential former sources (see Figure 9-1) in this Area include:

Sub-area &A

Trichloroethene vapor degreaser (within Building 220). The trichloroethene degreaser
was situated within Building 220, aboveground in a concrete containment area, and was
removed in 1998. Soil samples were collected and analyzed during the removal activities
and no hydrocarbon constituents were detected.

Sub-area 8B

• Trash compactor with a hydraulic oil system (north end of Building 220). Visual observations indicated that the trash compactor had leaked hydraulic oil onto the adjacent asphalt.

Sub-area 8C

• Fuel oil UST (located near the southeast corner of Building 221) (see Table 9-1 for UST details). The fuel oil UST was removed in 1990 by excavation, and three confirmatory soil samples collected (see Table 9-2 for analytical data). Due to the age of this data, it was not used in the risk assessment.

No SWMUs were located within this Area. Hence, we anticipate impact within this Area to be primarily petroleum hydrocarbons and chlorinated solvents.

9.2.2 Soil Stratigraphy within Area

Based on the soil boring logs for this Area, the stratigraphy consists primarily of silty clay with some clayey silt, silt, and clay from 0.5 foot bgs to a depth of 78 feet bgs, where a basal gravel layer is present on top of the limestone bedrock that was encountered at 79.5 feet bgs. This is consistent with the Facility-wide soil stratigraphy. No karst features have been identified within this Area. For the calculation of risk to indoor inhalation, a soil source average depth for each of the Sub-areas was used as noted below (see Table 1-9):

- Sub-area 8A: 2.5 feet (76 cm)
 Sub-area 8B: 6.3 feet (192 cm)*
- Sub-area 8C: 4.4 feet (134 cm)*

9.2.3 Hydrogeology within Area

There are two shallow monitoring wells within this Area and one deep monitoring well (see Table 9-3 for further details). Consistent with the Facility-wide shallow groundwater flow direction, groundwater flows towards Coldwater Creek to the east (Figure 9-2). Depth to shallow groundwater is based on water level measurements in monitoring wells MW4 and MW10S. To evaluate risk to indoor inhalation, an average depth to groundwater for each of the Sub-areas was used as noted below (see Table 1-13):

- Sub-area 8A: 4.4 feet (134 cm)
- Sub-area 8B: 6.3 feet (192 cm)
- Sub-area 8C: 4.4 feet (134 cm)

^{*}Indicates that the depth to soil source was below the average depth for the groundwater table; therefore, we used the average depth to groundwater in the risk calculations.

9.3 LAND USE

9.3.1 Current Land Use

Currently, the Area is non-residential, with office space occupied by Boeing. Offsite, in the downgradient direction (to the east) the area is also non-residential, with a mixture of warehouses and office space.

9.3.2 Future Land Use

The office complex is anticipated to remain as non-residential office space in the future. Offsite, the land use is expected to remain the same, as a result of the density of non-residential development in the vicinity. This area is an established non-residential area, and it is unlikely, based on the proximity of the area to a major airport, that this will change in the future.

9.4 AVAILABLE DATA

The following gives an overview of the available data within the Area:

- Three monitoring wells are located within this Area (MW10S and MW10D in Sub-area 8A, and MW4 in Sub-area 8B), and have been sampled up to 11 times since July 2000;
- The wells have been sampled for groundwater at least eight times between July 2000 and June 2003;
- A total of 17 soil borings (including the three monitoring well borings) have been advanced in this Area (ten in Sub-area 8A, four in Sub-area 8B, and three in Sub-area 8C) resulting in the collection of twenty-six soil samples;
- Groundwater samples were collected once from eight piezometers in 2000;
- Three confirmatory soil samples were collected during UST removal activities in 1990; however, due to the age of this data it was not used in the risk assessment; and
- Forty-one groundwater samples including three duplicates have been obtained from July 2000 to June 2003.

9.5 CONSTITUENTS IDENTIFIED WITHIN AREA

9.5.1 Soil

The 26 soil samples were analyzed during the various investigations conducted within the Area for comprehensive list of constituents that included VOCs, PAHs, PCBs, TPH, metals, and cyanide. Typical laboratory methods that were used include SW 846 Methods 6010, 7470, 7471, 8015, 8021, 8082, 8260, 8310, and 9012. Appendix I-1 includes a comprehensive table of the laboratory data for constituents that were detected at least once in soil samples from Area 8. Evaluation of the data in Appendix I-1 indicated that the following 16 constituents were detected in at least one soil sample:

METALS		ORGANICS/TPH		
Arsenic	Chromium	1,2-Dichloroethene (total)	Tetrachloroethene	
Barium	Lead	Acetone	Trichloroethene	
Cadmium	Mercury	cis-1,2- Dichloroethene	Benzo(b)fluoranthene	
		Methylene chloride	Chrysene	
	•	Methyl ethyl ketone (MEK)	TPH (2 types)	

The data was further screened for potential exposures to the non-residential worker and construction worker for each Sub-area.

Note as discussed in Sections 1.9.11 and 1.9.12, respectively, lead and 1-2 dichloroethene (total) were eliminated.

9.5.1.1 Sub-area 8A

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. Soil samples collected at or above a depth of 4.4 feet bgs were included (see Table 1-13).

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include barium, cadmium, chromium, and lead.

Based on this evaluation, the following three constituents were considered for quantitative risk evaluation for soil exposures to the non-residential worker:

METALS		VOCs		
Arsenic	Mercury	Trichloroethene		

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include barium, cadmium, chromium, and lead.

Based on this evaluation, the following seven constituents were considered for quantitative risk evaluation for soil exposures to the construction worker:

METALS	VOCs
Arsenic	Acetone
Mercury	cis-1,2-dichloroethene
	Methylene chloride
	Methyl ethyl ketone
	Trichloroethene

9.5.1.2 Sub-area 8B

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. Soil samples collected at or above a depth of 6.3 feet bgs are included (see Table 1-13).

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include arsenic, barium, cadmium, chromium, and lead.

Based on this evaluation, no constituents were considered for quantitative risk evaluation for non-residential worker soil exposures in Sub-area 8B.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

Metals whose maximum concentrations did not exceed the background levels were eliminated from further consideration and include arsenic, barium, cadmium, chromium, lead, and mercury.

Based on this evaluation, no constituents were considered for quantitative risk evaluation for construction worker soil exposures in Sub-area 8B.

9.5.1.3 Sub-area 8C

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. No constituents were detected in soil samples collected at or above the average groundwater depth of 4.4 feet bgs (see Table 1-13).

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The following three constituents were considered for quantitative risk evaluation for soil exposures to the construction worker:

VOCs	/TPH
Acetone	TPH (15 types)
Tetrachloroethene	

9.5.2 Groundwater

Groundwater samples were analyzed during the various investigations for a comprehensive list of constituents that included VOCs, PAHs, PCBs, TPH, metals, and cyanide. Typical laboratory methods used include SW 846 Methods 6010, 7470, 8015, 8082, 8260, 8310, 9012, TX 1005, and TX 1006. Within this Area, there are eight soil borings where individual groundwater samples have been collected in addition to three groundwater monitoring wells (MW10S, MW10D, and MW4). Appendix I-2 includes a comprehensive list of the groundwater analytical data for constituents that were detected at least once in groundwater samples from Area 8.

Of the various constituents analyzed in groundwater, the following 15 constituents were detected in at least one groundwater sample:

METALS	ORGANICS/TPH				
Arsenic	1,1-Dichloroethane	Methylene chloride			
Barium	1,1-Dichloroethene	Toluene			
Chromium	1,2-Dichloroethene (total)	Trichloroethene			
Lead	Bromomethane	Vinyl chloride			
Mercury	cis-1,2-Dichloroethene	TPH (2 types)			
Manganese					

Methylene chloride was not carried forward since it was the only VOC detect in those specific samples.

The data were segregated for each Sub-area and further screened for potential exposures to the non-residential worker and construction worker.

9.5.2.1 Sub-area 8A

Evaluation of the data in Tables 9A-8(a) and 9A-8(b) indicated the following 12 constituents were detected in at least one groundwater sample from Sub-area 8A.

METALS	VOCs
Arsenic	1,1-Dichloroethane
Barium	1,1 Dichloroethene
Chromium	1,2-Dichloroethene (total)
Lead	cis-1,2-Dichloroethene
Manganese	Toluene
	Trichloroethene
	Vinyl chloride

Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration and included, 1,1-dichloroethane, 1,1-dichloroethene, cis-1,2-dichloroethene, and toluene.

Note as discussed in Sections 1.9.11 and 1.9.12, respectively, lead and 1,2-dichloroethene (total) were eliminated.

The remaining constituents consist of 2 VOCs and 4 metals. These constituents are listed in the following table:

TOTAL METALS	VOCs/TPH		
Arsenic	Trichloroethene	Vinyl chloride	
Barium			
Chromium			
Manganese			

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water exposures in Sub-area 8A.

9.5.2.2 Sub-area 8B

Evaluation of the data in Tables 9B-8(a), 9B-8(b) and 9B-8(c) indicated the following seven constituents were detected at least once in groundwater samples from Sub-area 8B.

METALS	VOCs/TPH			
Arsenic	Bromomethane			
Barium	ТРН			
Chromium				
Lead				
Mercury				

Constituents for which the target level criteria exceeded the maximum concentration were eliminated from further consideration and included bromomethane, barium, and mercury. Note as discussed in Section 1.9.11, lead was also eliminated.

The remaining constituents consist of 2 metals and TPH. These constituents are listed in the following table:

METALS	ТРН	
Arsenic	TPH (16 types)	
Chromium		

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for ground water exposures in Sub-area 8B.

9.5.2.3 Sub-area 8C

Evaluation of the data in Tables 9C-8(a) and 9C-8(b) indicated the following one constituent was detected at least once in groundwater samples from Sub-area 8C. This constituent is listed in the following table:

TPH	
TPH	

Based on this evaluation, the constituent listed above was considered for quantitative risk evaluation for ground water exposures in Sub-area 8C.

9.6 FREE PRODUCT

Free product has not been observed within this Area.

9.7 EXPOSURE MODEL

9.7.1 Current Conditions for Sub-areas 8A, 8B, and 8C

Under current conditions, this Area is comprised of office buildings and parking lots. Hence, the current receptor would be the non-residential worker in the office building, and a visitor/maintenance worker to the Area. As the exposure duration for the visitor/maintenance worker is small relative to the on-site non-residential worker, the risk from any soil or groundwater impact will not be quantitatively evaluated for the visitor/maintenance worker.

Exhibit 9-1 presents the EM for the current non-residential worker.

EXHIBIT 9-1. EM CURRENT ON-SITE NON-RESIDENTIAL WORKER							
(SUB-AREAS 8A, 8B, AND 8C)							
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification					
Dermal Contact with Surficial Soil	NC	The Area is entirely paved; therefore, contact with surficial soil is unlikely.					
Ingestion of Surficial Soil	NC	The Area is entirely paved; therefore, ingestion of surficial soil is unlikely.					
Indoor Inhalation of Vapors from Subsurface Soil	С	A number of volatile constituents were identified in soil within this Area in the vicinity of the buildings, hence this pathway is complete.					
Indoor Inhalation of Vapors from Groundwater	C	A number of volatile constituents were identified in groundwater within this Area in the vicinity of the buildings, hence this pathway is complete.					
Notes: NC: Not Complete C: Complete Exposure pathways highlighted in bold indevaluated.		ese pathways are complete and will be quantitatively					

9.7.2 Future Conditions for Sub-areas 8A, 8B, and 8C

Under future conditions, the land use in this Area is not expected to change, hence the receptors will remain the same in the future. As such, they will not be quantitatively evaluated as the comparison for the current conditions will be protective of the future non-residential worker. Groundwater concentrations are expected to decrease in the future through natural attenuation processes, further reducing the risk.

A construction worker could be present at the site in the future. Exhibit 9-2 presents the EM for the construction worker.

The downgradient receptor is also a non-resident; therefore, the evaluation for the on-site worker will be protective of the offsite receptor, as concentrations in groundwater are expected to decrease further from the source area. No soil impact from Boeing operations is expected offsite.

EXHIBIT 9-2. EM POTEN	TIAL FUT	URE CONSTRUCTION WORKER
(SUB-	AREAS 8A	, 8B, AND 8C)
Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification
Dermal Contact with Soil	С	Soil is impacted within the normal depth of construction; therefore, contact is possible.
Ingestion of Soil	.C	Soil is impacted within the normal depth of construction; therefore, ingestion is possible.
Outdoor Inhalation of Vapors from Soil	C .	Soil is impacted within the normal depth to construction with volatile constituents; therefore, inhalation is possible.
Dermal Contact with Groundwater	С	Groundwater is impacted within the normal depth of construction; therefore, contact is possible.
Outdoor Inhalation of Vapors from Groundwater	С	Groundwater within this Area is impacted by volatile constituents, hence this pathway is possible.
Notes: NC: Not Complete C: Complet Exposure pathways highlighted in bold ind evaluated.		ese pathways are complete and will be quantitatively

9.8 REPRESENTATIVE CONCENTRATION

Representative concentrations for this Area were determined to be the Area-wide average in soil and groundwater. This was chosen as the sampling activities that have been performed have all been within the areas of most impact; therefore, the mean concentration represents a conservative estimate of the overall impact to the Area. Additionally, no information is known regarding the likely future location of a building; therefore, it is prudent to identify the source areas as the representative concentration.

Note representative concentrations in groundwater were estimated by first averaging the concentration in each well and then averaging the concentrations for the various wells located within the Sub-area.

Tables 9A-11(a), 9A-11(b), 9B-11(a), 9B-11(b), 9C-11(a), 9C-11(b), 9A-12, 9B-12, and 9C-12 present the soil and groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. None of the constituents exceeded a ratio of 10.

9.9 CALCULATION OF RISK

Tables 9A-11(a), 9B-11(a), and 9C-11(a) present the results for the non-residential worker for Sub-area 8A, Sub-area 8B, and Sub-area 8C, respectively. Tables 9A-11(b), 9B-11(b), and 9C-11(b) present the results for the construction worker for Sub-area 8A, Sub-area 8B, and Sub-area 8C, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

- Each COC,
- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

9.9.1 Sub-area 8A

9.9.1.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 9A-11(a), the cumulative IELCR is 2.37×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 9A-11(a), the cumulative HI is 0.00031, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

9.9.1.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 9A-11(b), the cumulative IELCR is 1.02×10^{-7} , which is below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 9A-11(b), the cumulative HI is 0.020, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

9.9.2 Sub-area 8B

9.9.2.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 9B-11(a), the cumulative IELCR for non-residential worker in Sub-area 8B is not available.

Non-carcinogenic Risk:

As shown in Table 9B-11(a) the cumulative HI for all COCs and all routes of exposure is 54.6, which exceeds the regulatory acceptable level of 1.0. Further examination of the table indicates that the primary contributors to HI are HQs for indoor inhalation of aliphatics C12 - C16, aliphatics C16 - C21, and aliphatics C21 - C35 from groundwater. The contribution to the HI from all the other COCs and routes of exposure is significantly less than 1.0.

9.9.2.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 9B-11(b), the cumulative IELCR is 3.74×10^{-8} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 9B-11(b), the cumulative HI is 0.49, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1.0, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

9.9.3 Sub-area 8C

9.9.3.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 9C-11(a), the cumulative IELCR for non-residential worker in Sub-area 8C is not available.

Non-carcinogenic Risk:

As shown in Table 9C-11(a), the cumulative HI is 0.064, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each

route of exposure, and hence each target organ would be less than 1.0 - the regulatory acceptable level.

9.9.3.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 9C-11(b), the cumulative IELCR is 1.25×10^{-12} , which is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 9C-11(b), the cumulative HI is 0.0052, which is well below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

9.10 ECOLOGICAL RISK

The only potential ecological receptors in the area are Coldwater Creek, which flows north about 1,600 feet to the southeast of Area 8, and a tributary to Coldwater Creek, which flows southeast about 500 feet northeast of Area 8. There are no known unpermitted conduits present that could carry impacts from Area 8 to Coldwater Creek. Considering the geology, groundwater flow characteristics, and the chemical types and concentrations of impacts in Area 8, it is not likely that migration of impacts from Area 8 to Coldwater Creek or to its tributary will occur. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 9-A and Attachment 9-B. These checklists identified no potential ecological receptors or issues.

9.11 CONCLUSIONS

Sub-area &A

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker and the non-residential worker are below the acceptable target risks.

Sub-area 8B

The cumulative non-carcinogenic risk for the non-residential worker exceeded the target risk. The primary contributor to the risk was indoor inhalation of aliphatics C12 – C16, aliphatics C16 – C21, and aliphatics C21 – C35 from groundwater.

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker are below the acceptable target risks.

Sub-area 8C

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker and the non-residential worker are below the acceptable target risks.

Table 9-1
Summary of Underground Storage Tanks (USTs) Present Historically within Area 8: Office Complex North
Boeing Tract 1, St. Louis, Missouri

UST Number	Location	Volume (Gallons)	Contents	Contents Construction Materials		Status	Comments
B-45	Near SEC of Bldg. 221	5,000	Fuel Oil	Single Wall Steel	1954	Removed 1990	Excavated

Table 9-2

Soil Data Collected During UST Removal Activities

Area 8: Office Complex North Boeing Tract 1, St. Louis, Missouri

Sample ID	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	TPH (mg/kg)
8173 south	<0.005	<0.005	<0.005	<0.015	13
8174 middle	<0.005	< 0.005	<0.005	<0.015	<10
8175 north	<0.005	0.008	0.005	<0.015	84

Notes:

<: Less than detection limit shown

TPH: Total petroleum hydrocarbon

mg/kg: miligrams per kilogram

September 2004

Table 9-3
Monitoring Well Information for Area 8: Office Complex North
Boeing Tract 1, St. Louis, Missouri

Sub-area	Monitoring Well	Diameter (inches)	Interval		Installation Date	Status	
8A	MW10D	2	69.5-79.5	79.5	9/22/2000	Active	
8A	MW10S	2	8.0-18.0	79.5	9/19/2000	Active	
8B	MW4	2	9.5-19.5	19.5	7/18/2000	Active	

Notes:

ft bgs: Feet below ground surface

Table 9-4
Soil Boring Information for Area 8: Office Complex North
Boeing Tract 1, St. Louis, Missouri

Sub-area	Boring	Date Drilled
8A	SB1	1/23/1999
8A	SB2	1/23/1999
8A	SB3	1/23/1999
8A	SB4	1/23/1999
8A	SB5	1/23/1999
. 8A	SB6	1/23/1999
8A	B220I1	7/24/2000
8A	B220I3	11/14/2000
8A	MW10S	9/19/2000
8B	B220N1	7/24/2000
8B	B220N2	9/19/2000
8B	B220N3	9/19/2000
8B	MW-4	7/18/2000
8C	B221E1	7/24/2000
8C	B221E2	7/26/2000
8C	B221E3	7/26/2000

September 2004 The RAM Group

Table 9-5
Soil Samples Used in Average Concentration Calculations in Area 8: Office Complex North
Boeing Tract 1, St. Louis, Missouri

	Volatile Organic Compounds		Organic Petroleum			Polynuclear Aromatic Hydrocarbons		Polychlorinated Biphenyls		Metals	
	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	
	SB4 0-2	SB4 0-2							SB1 0-2	SB1 0-2	
	SB5 0-2	SB5 0-2						\ } }	SB2 0-2	SB2 0-2	
	SB6 0-2	SB6 0-2						1	SB3 0-2	SB3 0-2	
8A	- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	B22011-7							SB4 0-2	SB4 0-2	
•		MW10S-18							SB5 0-2	SB5 0-2	
								1	SB6 0-2	SB6 0-2	
										MW10S-18	
		MW-4-16				MW-4-16			B220N3-6	B220N2-8	
8B										B220N3-6	
										MVV-4-16	
•		B221E1-12		B221E1-12							
		B221E1-7		B221E1-7							
8C				B221E3-7							
				B221E2-8				724			
		· · · -									

Note: - analysis type not performed

Table 9A-6(a) Soil Constituents Average Concentrations for VOCs in Sub-area 8A: Office Complex North

Boeing Tract 1, St. Louis, Missouri

VOCs (ug/kg)								
Sample ID	1,2-DICHLOROETHENE (TOTAE)	ACETONE	CIS-1,2-DICHLOROETHENE	METHYL ETHYL KETONE (MEK	METHYLENE CHLORIDE	TRICHLOROETHENE		
Non- Residential Worker								
SB4 0-2*	NA	NA	NA	NA	NA	55		
SB5 0-2*	NA	NA	NA	NA	NA	54.3		
SB6 0-2*	NA	NA	NA	NA	NA	10.6		
Average Concentration - Only Samples With VOC Detections						39.97		
Construction Worker								
SB4 0-2*	NA	NA	NA	. NA	NA	55		
SB5 0-2*	NA	NA	NA	NA	NA	54.3		
SB6 0-2*	NA	NA	NA	NA	NA	10.6		
B220I1-7	75	12.5	NA	12.5	11	48		
MW10S-18	NA	130	1.75	110	3.5	3.5		
Average Concentration - Only Samples With VOC Detections		71.25	38.38	61.25	7.25	34.28		

Notes:

ug/kg - micrograms per kilogram

* - Hand auger samples from below Building 220 floor slab

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Table 9A-6(b)

Soil Constituents Average Concentrations for Metals in Sub-area 8A: Office Complex North Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

	Marie Marie	Metals (ug/kg)							
Sample ID	ARSENIC	BARIUM	САВМИИМ	СНКОМИЛМ	LEAD	MERCURY			
SB1 0-2*	13,600	193,000	400	17,900	14,400	50			
SB2 0-2*	12,400	161,000	400	22,000	15,500	20			
SB3 0-2*	11,300	140,000	400	22,100	12,000	40			
SB4 0-2*	10,900	130,000	400	33,100	10,200	40			
SB5 0-2*	13,200	174,000	400	18,200	13,100	40			
SB6 0-2*	13,600	171,000	300	17,300	14,400	40			
Average Concentration - Only Samples With Metals Detections	12,500	161,500	383.3	21,767	13,267	38			

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

NA - Not Analyzed

Table 9A-6(b)
Soil Constituents Average Concentrations for Metals in Sub-area 8A: Office Complex North
Construction Worker

Boeing Tract 1, St. Louis, Missouri

	Docing 1	1400 1, 50 2	Louis, Misse	,ui i			
	Metals (ug/kg)						
Sample ID	ARSENIC	BARIUM	САВМІОМ	СНКОМПЛМ	LEAD	MERCURY	
SB1 0-2*	13,600	193,000	400	17,900	14,400	50	
SB2 0-2*	12,400	161,000	400	22,000	15,500	20	
SB3 0-2*	11,300	140,000	400	22,100	12,000	. 40	
SB4 0-2*	10,900	130,000	400	33,100	10,200	40	
SB5 0-2*	13,200	174,000	400	18,200	13,100	40	
SB6 0-2*	13,600	171,000	300	17,300	14,400	40	
MW10S-18	2,400	69,100	720	9,400	5,000	70	
Average Concentration - Only Samples With Metals Detections	11,057	148,300	431.4	20,000	12,086	43	

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram NA - Not Analyzed

Table 9B-6(a)

Soil Constituents Average Concentrations for VOC's in Sub-area 8B: Office Complex North Boeing Tract 1, St. Louis, Missouri

Dueing Tract 1, St. 1			
	VO	Cs (og/l	(g)
Sample ID	KCETONE	METHYL ETHYL KETONE (MEK)	METHYLENE CHLORIDE
	(CE)	MET	WET
Non- Residential Worker			
B220N3-6	12.5	12.5	8.9
Average Concentration - Only Samples With VOC Detections			
Construction Worker			
B220N2-8	30	18	10
B220N3-6	12.5	12.5	8,9
MW-4-16	14.5	10	3.55
Average Concentration - Only Samples With VOC Detections		10	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 6 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except actions and/or methylens chionds detected in the sample

Table 9B-6(b)

Soil Constituents Average Concentrations for Metals in Sub-area 8B: Office Complex North Non-Residential Worker

Boeing Tract 1, St. Louis, Missouri

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 6 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 9B-6(b)

Soil Constituents Average Concentrations for Metals in Sub-area 8B: Office Complex North Construction Worker

Boeing Tract 1, St. Louis, Missouri

220N3-6 4,100 118,000 770 14,900 9,300 6	Average Concentration - Only Samples With Metals Detections	5,333	93,533	615	13,533	8,467	48
W W W W W W <	MW-4-16	4,500	59,600	355	11,800	8,200	1.
ARSENIC BARIUM CADMIUM CHROMIUM LEAD	B220N3-6		118,000			9,300	6
	B220N2-8	7,400	103,000	720	13,900	7,900	6
Metals (ug/kg)				САДМІИМ	снкоміим		

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 6 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 9B-6(c) Soil Constituents Average

Concentrations for PAHs in Sub-area 8B: Office Complex North Construction Worker

Boeing Tract 1, St. Louis, Missouri

Sample ID	BENZO(B)FLUORANTHENE	
MW-4-16	#G 66	<u>さ</u> 44
Average Concentration - Only Samples With PAH Detections	66	44

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 6 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

PAH - Polynuclear aromatic hydrocarbon

NA - Not Analyzed

Table 9C-6(a)

Soil Constituents Average Concentrations for VOC's in Sub-area 8C: Office Complex North Boeing Tract 1. St. Louis, Missouri

Boeing Tract 1, St. Loui	13, 141122011	1
	VOCs (ug/kg)
		<u> </u>
		ā
		Ħ
Sample ID		¥
		01
	9	TETRACHLOROETHENE
	ACETONE	¥
	¥	3
Non- Residential Worker		
Average Concentration -		
Only Samples With	1 1	
VOC Detections		
Construction Worker		
B221E1-12	63	4.6
B221E1-7	71	2.1
B221E2-8	19	3.2
B221E3-7	27	3.15
Average Concentration -		
Only Samples With	67	3.35
VOC Detections	1	

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

No VCCs except acetons detected in the sample

Table 9C-6(b)

Soil Constituents Average Concentrations for TPHs in Sub-area 8C: Office Complex North Construction Worker

Boeing Tract 1, St. Louis, Missouri

	Ducing Trac	, 1, DW 2001	,		DOWNER OF THE PERSON !
Constituent Fractions	B221E1-12	B221E1-7	B221E2-8	B221E3-7	Overall Area Average (ug/kg)
TPH - DRO					THE PROPERTY
7/24/2000	330,000	1,200,000	NA		
7/26/2000	NA	NA	16,000	15,500	
AVERAGE TPH - DRO	330.000	1,200,000	16,000	15,500	390,375
TPH - GRO					TPH-GRO
7/24/2000	5,200	2,900	· NA		
7/26/2000	NA	NA	65	220	
AVERAGE TPH - GRO	5,200	2,900	65	220	2,096
TPH - ORO					TPH FORO
None					
AVERAGE TPH - ORO					

Notes:

Groundwater table is at a depth of 4 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 9-7
Groundwater Samples Used in Average Concentrations Calculations in Area 8: Office Complex North
Boeing Tract 1, St. Louis, Missouri

	Dum 11act 1, 5t. Louis, Missouri									
	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals					
	B220I1W				MW10SW					
0.4	MW10SW									
8 A										
	MW4W	B220NIW			B220N2W					
8B					B220N3W					
					MW4W					
8C		B221E1W								

Note:
- analysis type not performed

Table 9A-8(a)

Groundwater Constituents Average Concentrations for VOCs in Sub-area 8A:

Office Complex North

Boeing Tract 1, St. Louis, Missouri

Doein	VOCs (ug/l)						
GROUP	1,1-DICHLOROETHANE	1,1-dichloroethene	1,2.dichloroethene (Total)	CIS-1,2-DICHLOROETHENE	TOLUENE	TRICHLOROETHENE	VINYL CHLORIDE
B220I1W	0.5	0.88	54		0.5		1
MW10SW	13.70	0.79	NA	2.99	2.42	0.79	2.82
Average Concentration - Only Samples With VOC Detections	7.10	0.83		28.49	1.46	110.39	1.91

Notes

ug/l - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Table 9A-8(b)

Groundwater Constituents Average Concentrations for Metals in Sub-area 8A: Office Complex North
Boeing Tract 1, St. Louis, Missouri

Average Concentration - Only Samples With Metals Detections	23	860	109.51	29.471	1300
MW10SW	, 23	860	109.51	29.47	1300
	ARS	BAK	СН	LEAD	BOOK OF THE REAL PROPERTY.
	ARSENIC	BARIUM	NO.	Ð	Š
	O O	Į.	CHROMIUM		MANGANESE
Sample ID			Ī		E
		IVAC	tais (ug)	,	
	Metals (ug/l)				

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

September 2004 MACTEC

Table 9B-8(a) Groundwater Constituents Average Concentrations for VOCs in Sub-area 8B:

Office Complex North
Boeing Tract 1, St. Louis, Missouri

Bueing Tract 1, St. Louis, W.	VOCs
	(ug/l)
	ш
Sample ID	BROMOMETHANE
	量
	l So
	Į
MW4W	1.288
Average Concentration -	1.29
Only Samples With VOC Detections	1.29

Notes:

ug/I - micrograms per liter

VOCs - Volatile Organic Compounds

NA - Not Analyzed

Table 9B-8(b)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 8B: Office Complex North Boeing Tract 1. St. Louis, Missouri

Doeing 11	act 1, or th	Jui3, 1711220u	11
Constituent Fraction by Sample Event	B220N1W	B220N1W - 2004	Overall Area Average (ug/l)
TPH-DRO			TPHEDRO.
7/25/2000	35,000	NA	
4/29/2004	NA	64,000	
AVERAGE	35000	64 000	49,500
TPH-GRO			TRIEGRO
4/29/2004	NA	250	
AVERAGE		250	250
TPH-ORO			TPH-ORO
4/29/2004	NA	32,000	

32,000

32,000

Notes:

AVERACIE

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 9B-8(c)

Groundwater Constituents Average Concentrations for Metals in Sub-area 8B: Office Complex North Boeing Tract 1, St. Louis, Missouri

			tals (uc	,	
Sample ID	ARSENIC	BARIUM	СНКОМІИМ	LEAD	MERCURY
B220N2W	∢ 13.2		44.3	19.2	<u>≥</u> 0.1
B220N3W	17.7		59.4	18.8	
MW4W	13.48	426.6	50.62	18.76	0.102
Average Concentration - Only Samples With Metals Detections	14.793	425.53	51.44	18.92	0.1007

Notes:

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 9C-8(a)

Groundwater Constituents Average Concentrations for TPHs in Sub-area 8C: Office Complex North

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Event	B221E1W	Overall Area Average (ug/l)
TPH-DRO		TPH-DRO
7/25/2000	250	
7/26/2000	NA	
AVERAGE	250	250
TPH-GRO		TPH-GRO
7/25/2000	650	
7/26/2000	NA	
AVERAGE	650	650
TPH-ORO		TPH-ORO
None		
AVERAGE		

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 9A-9(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 8A: Office Complex North
Boeing Tract 1, St. Louis, Missouri

1000			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Trichloroethene	6	3	1.36	54.3	39.97	NA	N/A
Total Metals							
Arsenic	6	6	1.09	13,600	12,500	9,200	Y
Barium	6	6	1.20	193,000	161,500	725,000	N
Cadmium	. 6	6	1.04	400	383.3	<1,000	N
Chromium	6	6	1.52	33,100	21,767	58,000	N
Lead	6	6	1.17	15,500	13,267	21,800	N
Mercury	6	6	1.30	· 50	38	39	Y

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Table 9A-9(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 8A: Office Complex North
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration			
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Acetone	3	1	1.82	130	71.25	NA	N/A
cis-1,2-Dichloroethene	4	1	1.95	75	38.38	NA	N/A
Methyl ethyl ketone (MEK)	3	1	1.80	110	61.25	NA	N/A
Methylene chloride	4	1	1.52	11	7.25	NA	N/A
Trichloroethene	10	1	1.58	54.3	34.28	NA	N/A
Polynuclear Aromatic Hydrocabons (F	AHs)						
None		0	N/A	ND	N/A	N/A	N/A
Total Metals							
Arsenic	7	7	1.23	13,600	11,057	9,200	Y
Barium	7	7	1.30	193,000	148,300	725,000	N
Cadmium	7	. 7	1.67	720	431.4	<1,000	N
Chromium	7	7 .	1.66	33,100	20,000	58,000	N
Lead	7	7	1.28	15,500	12,086	21,800	N
Mercury	7	6	1.17	50	43	39	Y

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9B-9(a)
Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 8B: Office Complex North
Boeing Tract 1, St. Louis, Missouri

-			Ratio of Max		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
None	1	. 0	N/A	ND	N/A	NA NA	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	2	0	N/A	ND	N/A	NA	N/A
TPH GRO	2	0	N/A	ND	N/A	NA	N/A
Total Metals							
Arsenic	1	1	1.00	4,100	4,100	9,200	N
Barium	1	1	1.00	118,000	118,000	725,000	N
Cadmium	1	1	1.00	770	770.0	<1,000	N
Chromium	1	1	1.00	14,900	14,900	58,000	N
Lead	1	1	1.00	9,300	9,300	21,800	N

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9B-9(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 8B: Office Complex North
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concenti	ration	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							
Methyl ethyl ketone (MEK)	3	1	1.00	10	10.00	NA	N/A
Polynuclear Aromatic Hydrocabons (P	AHs)						
Benzo(b)fluoranthene	1	1	1.00	66	66	N/A	N/A
Chrysene	1	1	1.00	44	44	N/A	N/A
Polychlorinated Biphenyls (PCBs)							
None		0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	4	0	N/A	ND	N/A	NA	N/A
TPH GRO	4	0	N/A	ND	N/A	NA	N/A
Total Metals							
Arsenic	3	3	1.39	7,400	5,333	9,200	N
Barium	3	3	1.26	118,000	93,533	725,000	N
Cadmium	3	2	1.25	770	615.0	<1,000	N
Chromium	3	3	1.10	14,900	13,533	58,000	N
Lead	3	3	1.10	9,300	8,467	21,800	N
Mercury	3	1	0.29	14	48	39	N

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9C-9(a)

Soil Constituents of Concern Summary for Non-Residential Worker for Sub-area 8C: Office Complex North

Boeing Tract 1, St. Louis, Missouri

Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/kg)	Concentr Average (ng/kg)	 Max Detected Exceeds Background
None						

Notes:

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9C-9(b)
Soil Constituents of Concern Summary for Construction Worker for Sub-area 8C: Office Complex North
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max	Concentration			
Constituents of Concern	# of Samples	# of Detects Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background	
Volatile Organic Compounds (VOCs)							
Acetone	4	4	1.06	71	67.00	NA	N/A
Tetrachloroethene	4	2	1.37	4.6	3.35	NA	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	4	2	3.07	1,200,000	390,375	NA	N/A
TPH GRO	4	3	2.48	5,200	2,096	NA	N/A

ug/kg - micrograms per kilogram

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9A-10
Groundwater Constituent of Concern Summary for Sub-area 8A: Office Complex North
Boeing Tract 1, St. Louis, Missouri

					Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
1,1-Dichloroethane	14	12	2,54	18	7.10	157	N
1,1-Dichloroethene	13	1	1.06	0.88	0.83	7.0	N
cis-1,2-Dichloroethene	17	15	1.90	. 54	28.49	70	N.
Toluene	13	1	0.96	1.4	1:46	1,000	N
Trichloroethene	13	2	1.99	220	110.39	. 5	Y
Vinyl chloride	15	11	1.88	3.6	1.91	2	Y
Total Metals							
Arsenic	5	1 .	1.02	23.5	23	10	Y
Barium	7	12	4.19	- 3,600	860	2,000	Y
Chromium	6	10	5.57	610	109.5	100	Y
Lead	. 7	9	1.62	47.6	29.47	15	Y
Manganese	1	1	1.00	1,300	1,300	50	Y

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9B-10

Groundwater Constituent of Concern Summary for Sub-area 8B: Office Complex North
Boeing Tract 1, St. Louis, Missouri

			ing Tract 1, St. Lot		Concent	ration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
Bromomethane	8	1	1.40	1.8	1.29	10	N
Polynuclear Aromatic Hydrocabons (P	AHs)						
None	4	0	N/A	ND	N/A	N/A	N/A
Polychlorinated Biphenyls (PCBs)							
None	4	0	N/A	ND	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	5	2	1.29	64,000	49,500	NA NA	N/A
TPH GRO	4	0	N/A	ND	250	. NA	N/A
TPH ORO	1	1	1.00	32,000	32,000	NA	N/A
Total Metals							
Arsenic	5	3	2.36	34.9	14.79	10	Y
Barium	5	7	1.84	783	425.5	2,000	N
Chromium	5	7	2.97	153	51.44	100	Y
Lead	-5	6	2.61	49.3	18.92	15	Y
Mercury	5	1	1.09	0.11	0.10	2	N

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9C-10

Groundwater Constituent of Concern Summary for Sub-area 8C: Office Complex North
Boeing Tract 1, St. Louis, Missouri

					Concenti	ration	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
None	2	0	N/A	ND ·	N/A	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	3	0	N/A	ND	250	NA	N/A
TPH GRO	3	1	1.00	650	650	NA	N/A

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

Table 9A-11(a) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 8A: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of a Subsurface oil	Average GW Conc.	Vapor	halation of s from dwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	(ug/L)	IELCR	HQ		
Toluene				1.5	NA	2.37E-07	NA	2.37E-07
Trichloroethene	40	3.11E-10	1.46E-05	110	6.07E-09	2.85E-04	6.38E-09	3.00E-04
Vinyl chloride				1.9	1.73E-08	5.67E-06	1.73E-08	5.67E-06
Organics Total Risk		3.11E-10	1.46E-05		2.34E-08	2.91E-04	2.37E-08	3.06E-04
Arsenic	12,500	NA	NA	23	NA	NA	NA	NA
Barium				860	NA.	NA	NA	NA
Chromium	(visa)			110	NA	NA	`NA	NA
Manganese		*****		1,300	NA	NA	NA	NA
Mercury	38	NA	1.09E-04				NA	1.09E-04
Metals Total Risk		NA	NA		NA	NA	NA	NA
CUMULATIVE RISK	·	3.11E-10	1.46E-05		2.34E-08	2.91E-04	2.37E-08	3.06E-04

NA: Not available

---: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

Table 9A-11(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Sub-area 8A: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental Se	Ingestion of ail	Vapors and		Average GW Conc. (ug/L)		ontact with dwater	•	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
Acetone	71	NA	2.48E-07	NA	2.62E-07	NA	6.17E-07		-				NA	1.13E-06
cis-1,2-Dichloroethene	38	NA	1.34E-07	NA	1.49E-06	NA	7.54E-06		<u></u>	•••			NA NA	9.16E-06
Methyl ethyl ketone (MEK)	61	NA	3.56E-08	NA	3.96E-08	NA	1.38E-07		-				NA NA	2.13E-07
Methylene Chloride	7.3	2.71E-13	4.21E-08	3.01E-13	4.68E-08	4.52E-13	2.24E-08						1.02E-12	1.11E-07
Trichloroethene	34	3.13E-15	3.32E-09	2.09E-12	2.21E-06	4.54E-12	5.33E-06	110	6.15E-09	6.52E-03	4.90E-12	5.75E-06	6.16E-09	6.53E-03
Toluene					_	_		1.5	NA	7.27E-06	NA	5.17E-09	NA	7.28E-06
Vinyl chloride	_							1.9	8.38E-09	1.03E-04	1.07E-11	8.72E-08	8.39E-09	1.03E-04
Organics Total Risk		2.74E-13	4.63E-07	2.39E-12	4.05E-06	4.99E-12	1.36E-05		1.45E-08	6.63E-03	1.56E-11	5.84E-06	1.46E-08	6.65E-03
Arsenic	11,057	2.75E-10	4.28E-05	8.72E-08	1.36E-02	1.45E-10	2.26E-06	23	NA	NA	NA	NA	8.76E-08	1.36E-02
Barium	_		_	-				860	· NA	NA	NA	NA	NA	NA
Chromium			-				_	110	NA	NA	NA	NA_	NA	NA
Manganese								1,300	NA	NA	NA	NA	NA NA	NA
Mercury	43	NA	1.66E-07	NA	8.30E-06	NA	2.00E-04						NA	2.09E-04
Organics Total Risk		2.75E-10	4.30E-05	8.72E-08	1.36E-02	1.45E-10	2.02E-04		NA	NA	NA	NA	8.76E-08	1.38E-02
CUMULATIVE RISK		2.76E-10	4.35E-05	8.72E-08	1.36E-02	1.50E-10	2.16E-04		1.45E-08	6.63E-03	1.56E-11	5.84E-06	1.02E-07	2.05E-02

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 9B-11(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 8B: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	-		Average GW Conc. (ug/L)	- ivanori inimitari		Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ		IELCR	HQ	:	
Aliphatics > nC6 to nC8 (TX1006)	_	-		83	NA	4.87E-05	NA	4.87E-05
Aliphatics > nC8 to nC10 (TX1006)		_		83	NA	1.43E-03	NA	1.43E-03
Aromatics > nC8 to nC10 (TX1006)	_			83	NA	4.67E-05	NA	4.67E-05
TPH-GRO		_		250	NA	1.53E-03	NA	1.53E-03
Aliphatics > nC10 to nC12 (TX1006)			_	467	NA	1.20E-02	NA	1.20E-02
Aliphatics > nC12 to nC16 (TX1006)				9,340	NA	1.04E+00	NA	1.04E+00
Aliphatics > nC16 to nC21 (TX1006)	_			28,019	NA	2.95E+01	NA	2.95E+01
Aromatics > nC10 to nC12 (TX1006)	_			467	NA	8.46E-05	NA	8.46E-05
Aromatics > nC12 to nC16 (TX1006)				3,736	NA	2.82E-04	NA	2.82E-04
Aromatics > nC16 to nC21 (TX1006)				7,472	NA	1.57E-04	NA	1.57E-04
TPH-DRO				49,500	NA	3.05E+01	NA	3.05E+01
Aliphatics > nC21 to nC35 (TX1006)		-	_	22,857	NA	2.41E+01	NA	2.41E+01
Aromatics > nC21 to nC35 (TX1006)	_		_	9,143	NA	2.23E-05	NA	2.23E-05
TPH-ORO				32,000	NA	2.41E+01	NA.	2.41E+01
TPH Total Risk		NA	NA		NA	5.46E+01	NA	5.46E+01
Arsenic				15	NA	NA.	NA	NA
Chromium .				51	NA	NA	NA	NA
Metals Total Risk		NA	NA		NA	NA	NA	NA
CUMULATIVE RISK		NA	NA		NA	5.46E+01	NA	5.46E+01

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram

Table 9B-11(b) Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker Sub-area 8B: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Con	tact with Soil		Ingestion of	Vapors and	nhalation of Particulates n Soil	Average GW Conc. (ug/L)	Groun	ontact with dwater		nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	НQ	1 ` 1	IELCR	НQ	IELCR	HQ		` `
Methyl ethyl ketone (MEK)	10	NA .	5.81E-09	NA	6.46E-09	NA	2.25E-08						NA	3.48E-08
Benzo(b)fluoranthene	66	1.04E-10	NA	2.67E-10	NA	8.95E-13	NA			_			3.72E-10	NA
Chrysene	44	6.93E-13	NA	1.78E-12	NA	1.02E-14	. NA				·	_	2.48E-12	NA
Organics Total Risk		1.05E-10	5.81E-09	2.68E-10	6.46E-09	9.05E-13	2.25E-08		NA	NA	NA	NA	3.74E-10	3.48E-08
Aliphatics > nC6 to nC8 (TX1006)						_		83 ·	NA	NA	NA	4.35E-07	NA	4.35E-07
Aliphatics > nC8 to nC10 (TX1006)		-			_	-		83	NA	NA	NA	1.28E-05	NA	1.28E-05
Aromatics > nC8 to nC10 (TX1006)								83	NA	NA	NA	5.04E-07	NA	5.04E-07
TPH-GRO		-		_			_	250	NA	NA	NA.	1.37E-05	NA.	1.37E-05
Aliphatics > nC10 to nC12 (TX1006)	_						_	467	NA	NA	NA	1.07E-04	NA	1.07E-04
Aliphatics > nC12 to nC16 (TX1006)			_					9,340	NA	NA	NA	9.29E-03	NA	9.29E-03
Aliphatics > nC16 to nC21 (TX1006)		_			_	_		28,019	NA	NA	NA	2.63E-01	NA	2.63E-01
Aromatics > nC10 to nC12 (TX1006)	_		_					467	NA	NA	NA	1.30E-06	NA	1.30E-06
Aromatics > nC12 to nC16 (TX1006)				_	_			3,736	NÁ	NA	NA	7.29E-06	NA	7.29E-06
Aromatics > nC16 to nC21 (TX1006)		_	-		_			7,472	NA	NA	NA	1.17E-05	NA	1.17E-05
TPH-DRO		_			_	_		49,500	NA	NA	NA	2.72E-01	NA	2.72E-01
Aliphatics > nC21 to nC35 (TX1006)						_		22,857	NA	NA	NA	2.14E-01	NA	2.14E-01
Aromatics > nC21 to nC35 (TX1006)	-				***	_		9,143	NA	NA	NA	1.33E-05	NA	1.33E-05
TPH-ORO			-					32,000	NA.	NA	NA	2.14E-01	NA	2.14E-01
TPH Total Risk		NA '	NA	NA	NA	NA	NA		NA	NA	NA	4.86E-01	NA.	4.86E-01
Arsenic		-	***		_			15	NA	NA	NA	NA	NA	NA
Chromium			_			_		51	NA	NA	NA	NA	NA	NA
Mercury	1			-	_								NA	NA
Organics Total Risk		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA.	NA	NA
CUMULATIVE RISK		1.05E-10	5.81E-09	2.68E-10	6.46E-09	9.05E-13	2.25E-08		NA.	NA	NA	4.86E-01	3.74E-10	4.86E-01

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic

GRO: Gasoline range organic

ORO: Oil range organic

ug/kg: Micrograms per kilogram ug/L: Micrograms per liter

The RAM Group

Table 9C-11(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker Sub-area 8C: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors fron	halation of 1 Subsurface oil	absurface Average GW Conc.		halation of rs from idwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	НQ	(ug/L)	IELCR	HQ		
TPH-GRO		 .		650	Ν̈́A	4.72E-03	NA	4.72E-03
TPH-DRO	`			250	NA	5.90E-02	NA	5.90E-02
TPH Total Risk		NA	NA		NA	6.38E-02	NA	6.38E-02
CUMULATIVE RISK		NA	NA		NA	6.38E-02	NA	6.38E-02

Notes:

NA: Not available

--: Risk evaluation was not performed.

HI: Hazard index

TPH: Total petroleum hydrocarbon

DRO: Diesel range organic GRO: Gasoline range organic ug/kg: Micrograms per kilogram ug/L: Micrograms per liter

Table 9C-11(b)

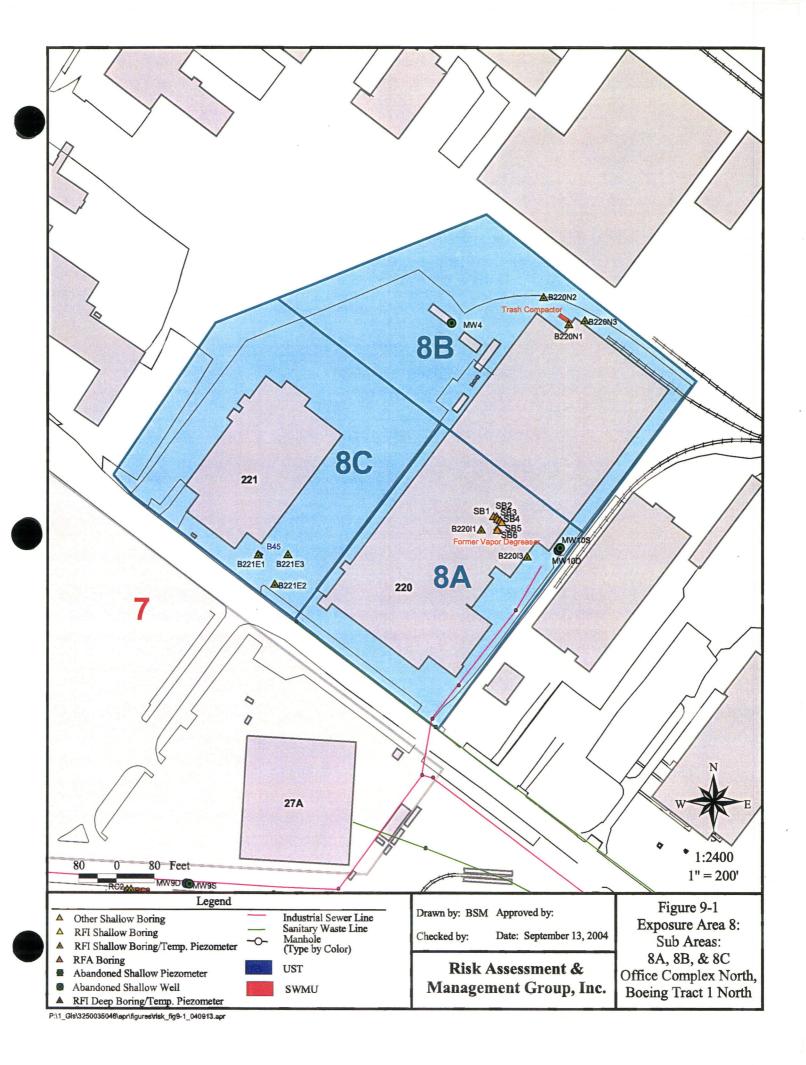
Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

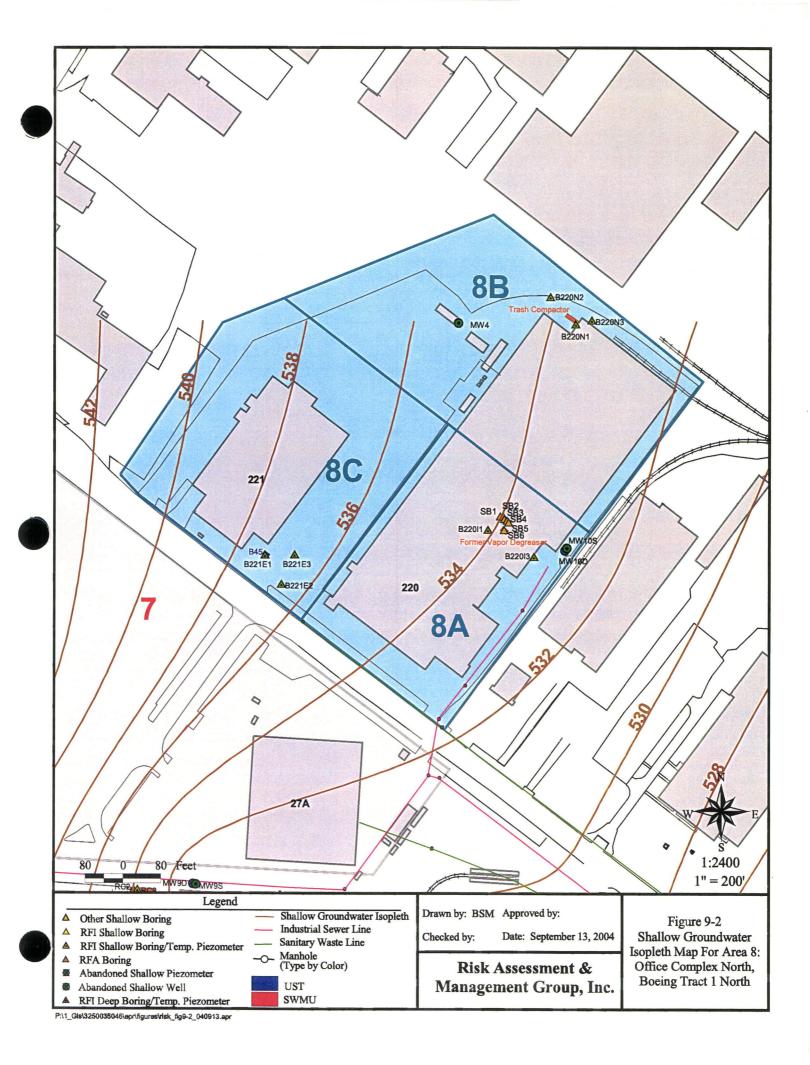
Sub-area 8C: Office Complex North, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Dermal Cont	tact with Soil	Accidental S	Ingestion of oil	Vapors and		Average GW Conc. (ug/L)	Dermal Co Groun	ontact with dwater		nhalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ	1	IELCR	HQ	IELCR	HQ		
Acetone	67	NA	2.34E-07	NA	2.47E-07	NA	5.80E-07		_				NA	1.06E-06
Tetrachloroethene	3.4	8.68E-14	1.17E-08	9.64E-13	1.30E-07	1.99E-13	6.00E-08			_			1.25E-12	2.01E-07
Organics Total Risk		8.68E-14	2.45E-07	9.64E-13	3.76E-07	1.99E-13	6.40E-07		NA	NA	NA	NA NA	1.25E-12	1.26E-06
TPH-GRO	2,096	NA	NA	NA	9.53E-06	NA	1.23E-05	650	NA	NA	NA	7.24E-05	NA	9.42E-05
TPH-DRO	390,375	NA	8.61E-04	NA	2.62E-03	NA	7.49E-04	250	NA	NA	NA	8.97E-04	NA	5.12E-03
TPH Total Risk		NA.	8.61E-04	NA	2.63E-03	NA	7.62E-04		NA	NA	NA	9.69E-04	NA	5.22E-03
CUMULATIVE RISK		8.68E-14	8.61E-04	9.64E-13	2.63E-03	1.99E-13	7.62E-04		NA_	NA .	NA	9.69E-04	1.25E-12	5.22E-03

NA: Not available

-: Risk evaluation was not performed,


HI: Hazard index


TPH: Total petroleum hydrocarbon

GRO: Gasoline range organic

DRO: Diesel range organic

ug/kg: Micrograms per kilogram

ATTACHMENT 9-A

ECOLOGICAL RISK ASSESSMENT – AREA 8 OFFICE COMPLEX NORTH TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1. Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

Yes, the downgradient edge of Area 8 is about 1,600 feet northwest of Coldwater Creek, and the northwest corner of Area 8 is about 500 feet southwest of a tributary to Coldwater Creek.

2. Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?

No.

3. Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?

No, the impacted areas of the site are paved.

4. Has a process (operational) discharge or storm water permit not been issued for the site?

Site-wide, there is a storm water permit.

5. Is the site located in a known Karst environment (see Reference map)?

No.

6. Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.

No.

7. Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?

No.

8. Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?

No.

ATTACHMENT 9-B

ECOLOGICAL RISK ASSESSMENT – AREA 8 OFFICE COMPLEX NORTH TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

1a. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater?

Yes, groundwater has been impacted.

1b. Are contaminants associated with the site mobile in groundwater?

Yes.

1c. Does groundwater from the site discharge into to ecological receptor habitat?

Eventually groundwater could discharge into Coldwater Creek.

1. Could contaminants associated with the site reach ecological receptors via groundwater?

Based on the distance to the creek and the current groundwater concentrations, it is very unlikely that impacted groundwater from Area 8 could reach the creek.

2a. Is NAPL present at the site?

No.

2b. Is NAPL migrating?

No.

2c. Could NAPL discharge occur where ecological receptors are found?

No.

2. Could contaminants from the site reach ecological receptors via migration of NAPL?

No:

3a. Are contaminants present in surface soils?

Yes, under the building 220 floor slab.

3b. Can contaminants be leached from or be transported by erosion of surface soils?

No, the impacted areas of the site are paved.

3. Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?

No, the impacted areas of the site are paved.

4a. Are contaminants present in surface soil or on the surface of the ground?

Only impacted surficial soils are under the Building 220 floor slab.

4b. Are potential ecological receptors on the site?

No.

4. Could contaminants reach ecological receptors via direct contact?

No, the impacted areas of the site are paved.

5a. Are contaminants present on the site volatile?

Yes.

5b. Could contaminants on the site be transported in air as dust or particulate matter?

No, the impacted areas of the site are paved.

5. Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?

No, the impacted areas of sites are paved.

6a. Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?

Only impacted surficial soils are under the Building 220 floor slab..

6b. Are contaminants found in soil on the site taken up by plants growing on the site?

No, the impacted areas of the site are paved.

6c. Do potential ecological receptors on or near the site feed on plants found on the site?

No, the impacted areas of site are paved.

6d. Do contaminants found on the site bioaccumulate?

No.

6. Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

No.

7a. Are there Karsitic features on or within a ½ mile radius of the site?

No.

7b. Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

10.1 INTRODUCTION

The Gun Range, also referred to as Area 9, is located in the southeastern portion of the Facility, adjacent and south of the Norfolk and Western Railroad Company railroad tracks and Banshee Road, and is bounded on the southwest by Area 3, on the west by Area 4, on the east by Area 5, and on the southeast by the Airport runway (see Figure 10-1). This section describes the constituents in this Area, the exposure model, the evaluation of the current and future risk to human health and the environment, and conclusions based on the results of the risk evaluation.

10.2 DESCRIPTION OF AREA

The Gun Range is an area approximately 600 feet long by 500 feet wide. Within this Area, there are five main buildings and a parking lot.

10.2.1 Potential Sources within Area

The following SWMU was identified in this Area during the RFA investigation (SAIC, 1995):

• SWMU 7: Explosive waste storage area inside Building 10.

Hence, within this Area, we anticipate constituents of concern to be organics and metals.

10.2.2 Soil Stratigraphy within Area

There are six soil borings within this Area, see Table 10-1 for further details of these borings. Based on the soil boring logs, the soil stratigraphy within this Area is clay, silty clay, and clayey silt from approximately 2 feet bgs to 24 feet bgs. For additional details, refer to the RFI (MACTEC, 2004). No borings deeper than 24 feet were advanced in this Area. Based on borings outside this Area, bedrock is at approximately 80 feet bgs (which consists of limestone). No karst features have been identified in this Area. For calculation of risk to indoor inhalation, a depth of 12 feet (365.76 cm) to soil source was used (see Table 1-9).

10.2.3 Hydrogeology within Area

There are no monitoring wells located within this Area. Based on recent (since 2000) groundwater gauging data in monitoring wells outside this Area, groundwater flow within the shallow zone is typically toward Coldwater Creek, which is located in an enclosed culvert below the western portion of this Area; therefore, it is difficult to know the shallow groundwater flow direction in this Area. Based on the soil boring logs, shallow groundwater appears to be present at about 12 feet bgs. To evaluate risk to indoor inhalation, an average depth of 12 feet (365.76 cm) to groundwater was used (see Table 1-13).

10.3 LAND USE

10.3.1 Current Land Use

The current land use is non-residential. The Area is owned by the St. Louis Airport Authority and is currently leased by Boeing. It was previously used as a gun range. Boeing intends to vacate the Area in the near future.

10.3.2 Future Land Use

Future land use, based on information obtained from the St. Louis Airport Authority, will be non-residential.

10.4 AVAILABLE DATA

The following provides an overview of the available data within the Area:

- Six soil borings have been sampled within this Area since November 2002 resulting in eight individual soil samples including one duplicate.
- All six soil borings were completed as piezometers in this Area and have been sampled for groundwater up to two times for selected constituents during November 2002 and July 2004.

10.5 CONSTITUENTS IDENTIFIED WITHIN AREA

10.5.1 Soil

Two soil sampling events (November 2002 and July 2004) have resulted in eight soil samples collected within Area 9. These samples have been analyzed for a comprehensive list of constituents that included VOCs, SVOCs including PAHs, TPH, and metals. Typical laboratory methods that were used include SW 846 Methods 6010, 7471, 8260, 8270, OA1, and OA2. Appendix J-1 includes a comprehensive table of the laboratory data for constituents detected at least once in soil samples from Area 9. Table 10-2 presents a listing of the soil samples used in the risk calculations. Evaluation of the data in Tables 10-3(a), 10-3(b) and 10-3(c) indicated that the following 18 constituents were detected in at least one soil sample:

META	LS	ORGANICS/TPH
Arsenic	Manganese	Acetone
Barium	Mercury	Methylene Chloride
Beryllium	Nickel	Naphthalene
Cadmium	Selenium	Toluene
Chromium	Silver	TPH (1 type)
Copper	Zinc	
Lead		

The data was further screened for potential exposures to the non-residential worker and construction worker.

Non-residential Worker

The non-residential worker data are constituents in soil samples collected above the groundwater table. The data for soil samples collected in this Area at or above a depth of 12 feet bgs were used.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included arsenic, barium, beryllium, chromium, lead, mercury and silver. The following nine constituents were considered further:

ME	ΓALS	ORGANICS
Cadmium	Nickel	Acetone
Copper	Selenium	Methylene Chloride
Manganese	Zinc	Naphthalene

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the non-residential worker.

Construction Worker

The construction worker data are constituents in soil samples collected above the typical construction depth. To be conservative, soil samples collected at or above a depth of 20 feet bgs are included.

The maximum detected concentrations of metals were compared with the background levels. Metals whose maximum detected concentrations did not exceed the background levels were eliminated from further consideration and included arsenic, barium, beryllium, chromium, lead, mercury and silver. The following 11 constituents were considered further:

MET	ALS	VOCs/TPH
Cadmium	Nickel	Acetone
Copper	Selenium	Methylene Chloride
Manganese	Zinc	Naphthalene
		Toluene
		TPH (1 type)

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for soil exposures to the construction worker.

10.5.2 Groundwater

During the various investigations conducted within this Area, groundwater samples were analyzed for a comprehensive list of constituents that included VOCs, SVOCs including PAHs, TPH, and metals using laboratory analysis SW 846 Methods 6010, 7470, 8260, 8270, OA1, and

OA2. Appendix J-2 includes a comprehensive list of the groundwater analytical data. Table 10-4 presents a listing of the groundwater samples used in the risk calculations.

Evaluation of the data in Tables 10-5(a) and 10-5(b) indicated that the following 11 constituents were detected in at least one groundwater sample:

META	LS	TPH
Arsenic	Lead	TPH (2 types)
Barium	Manganese	
Beryllium	Nickel	
Chromium	Silver	
Copper	Zinc	

The maximum detected concentration for each constituent was compared with various screening criteria. Constituents for which the screening criteria exceeded the maximum detected concentration were eliminated from further consideration. These included barium, beryllium, chromium, copper, nickel, silver, and zinc. Note as discussed in Section 1.9.11, lead was also eliminated. The remaining constituents consist of two metals and TPH. These constituents are listed in the following table:

METALS	ТРН			
Arsenic	TPH (2 types)			
Manganese				

Based on this evaluation, the constituents listed above were considered for quantitative risk evaluation for groundwater exposures.

10.6 FREE PRODUCT

Free product has not been observed within this area.

10.7 EXPOSURE MODEL

10.7.1 Current Conditions

This Area is comprised of the Gun Range buildings and parking lots. Hence, the receptors under current conditions would be the non-residential worker and a visitor/maintenance worker to the area.

Exhibit 10-1 presents the EM for the current non-residential worker. As the exposure duration for the visitor/maintenance worker is less than that for the commercial worker, the risk from any soil or groundwater impact will not be quantitatively evaluated.

Scenario, Receptor, and Pathways / Routes Analyzed	C or NC	Justification				
Dermal Contact with Surficial Soil	NC	The area is partially paved, but surficial soil is not impacted; therefore, this pathway is incomplete.				
Ingestion of Surficial Soil	NC	The area is partially paved, but surficial soil is not impacted; therefore, this pathway is incomplete.				
Indoor Inhalation of Vapors from Subsurface Soil	С	Volatile constituents were detected in soils in this area; therefore, this pathway is complete.				
Indoor Inhalation of Vapors from Groundwater	С	Vapors from groundwater may migrate into the buildings; hence, this pathway i complete.				

10.7.2 Future Conditions

quantitatively evaluated.

Under future conditions, the land use in this Area is not expected to alter; hence, the receptors will remain the same in the future. As such, the risks will not be quantitatively evaluated, as the comparison for the current conditions will be protective of the future non-residential worker. Groundwater concentrations are expected to decrease in the future through natural attenuation processes, further reducing the risk.

In the future, construction work could be performed within this area; therefore, the potential future construction worker is a receptor. Exhibit 10-2 presents the EM for the construction worker.

Scenario, Receptor, and Pathways/Routes Analyzed	C or NC	Justification				
Dermal Contact with Soil	C	Soil is impacted at depths less than 20 feet which is considered the construction zone therefore, contact is possible.				
Accidental Ingestion of Soil	Soil is impacted at depths less than 20 feet, which is considered the construction zone; therefore, ingestion is possible.					
Outdoor Inhalation of Vapors and Particulates from Soil	С	Soil is impacted within this area, and some of the constituents identified are volatile; therefore, this pathway is complete.				
Dermal Contact with Groundwater	C	A construction worker may come in contact with groundwater located at a depth of about 12 feet bgs. Therefore, this pathway is considered complete.				
Outdoor Inhalation of Vapors from Groundwater	C	Vapors from groundwater may migrate upwards through the unsaturated zone and into the ambient air. Hence, this pathway is complete.				

10.8 REPRESENTATIVE CONCENTRATIONS

Representative concentrations for this Area were determined to be the Area-wide average in soil and groundwater. This was chosen as the sampling activities that have been performed have all been within the areas of most impact; therefore, the mean concentration represents a conservative estimate of the overall impact to the Area. Additionally, no information is known regarding the likely future location of a building; therefore, it is prudent to identify the source areas as the representative concentration.

Tables 10-6(a), 10-6(b), and 10-7 present the soil and groundwater average and maximum concentrations. The ratio of the maximum detected concentration to average concentration is also presented. No constituents exceeded a ratio of 10.

10.9 CALCULATION OF RISK

Tables 10-8(a) and 10-8(b) present the results for the non-residential worker and construction worker, respectively. The tables present the carcinogenic (IELCR) and non-carcinogenic (HQ and HI) risks for:

• Each COC,

- Each route of exposure,
- Cumulative risk for each COC,
- Cumulative risk for each route of exposure, and
- Total risk, which is the sum of risk for all the COCs and all the routes of exposures.

Based on these tables, following are the key observations.

10.9.1 Non-residential Worker

Carcinogenic Risk:

As indicated in Table 10-8(a), the cumulative IELCR is 1.79×10^{-11} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 10-8(a) the cumulative HI for all COCs and all routes of exposure is 0.19, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

10.9.2 Construction Worker

Carcinogenic Risk:

As indicated in Table 10-8(b), the cumulative IELCR is 1.29×10^{-11} that is well below the regulatory acceptable level of 1×10^{-4} . Since the cumulative risk is less than 1×10^{-5} , clearly the risk for each COC and routes of exposure is less than 1×10^{-5} – the regulatory acceptable level.

Non-carcinogenic Risk:

As shown in Table 10-8(b), the cumulative HI is 0.008, which is below the regulatory acceptable level of 1.0. Since the cumulative HI is less than 1, the HQ for each COC and each route of exposure, and hence each target organ would be less than 1.0 – the regulatory acceptable level.

10.10 ECOLOGICAL RISK

The only potential ecological receptor in the area is Coldwater Creek. Area 9 is located above a portion of Coldwater Creek that flows through an enclosed culvert, and about 100 feet south of the portion of Coldwater Creek that enters an open culvert and continues to flow north. There are no known unpermitted conduits present that could carry impacts from Area 9 to Coldwater Creek. Considering the geology and the chemical types and concentrations of impacts in Area 9, it is not likely that migration of impacts from Area 9 to Coldwater Creek will occur. The Tier 1 ecological screening checklists have been completed for this Area, and are presented as Attachment 10-A and Attachment 10-B. These checklists identified no potential ecological receptors or issues.

10.11 CONCLUSIONS

The calculated risks for all the COCs and all potentially complete routes of exposure for the construction worker and the non-residential worker are below the acceptable target risks.

Table 10-1
Soil Boring Information for Area 9: Gun Range
Boeing Tract 1, St. Louis, Missouri

Boring	Date Drilled				
B10N1	7/24/2003				
B10W1	7/24/2003				
BliNi	7/24/2003				
B13E1	11/21/2002				
B13E2	11/21/2002				
B13E3	11/21/2002				

Table 10-2 Soil Samples Used in Average Concentration Calculations in Area 9: Gun Range Boeing Tract 1, St. Louis, Missouri

	Volatile Organic Compounds		Total Petroleum Hydrocarbons		Polynuclear Aromatic Hydrocarbons		Polychlorinated Biphenyls		Metals	
	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker	Non-Residential Worker	Construction Worker
<u> </u>	B10N1-12	B10N1-12		B10N1-20		B11N1-13			B10N1-12	B10N1-12
		B11N1-13							B10W1-8	B10N1-20
					<u> </u>				B13E1-6	B10W1-8
9	-		<u> </u>						B13E2-6	B11N1-13
			 						B13E3-6	B13E1-6
					 		W			B13E2-6
				1	1					B13E3-6

Note: - analysis type not performed

Table 10-3(a) Soil Constituents Average Concentrations for VOCs in Area 9: Gun Range

Boeing Tract 1, St. Louis, Missouri

		VOCs	(ug/kg)	
Sample ID Non- Residential Worker	ACETONE	METHYLENE CHLORIDE	NAPHTHALENE	TOLUENE
B10N1-12	20	2.9	2.6	2.5
Average Concentration - Only Samples With VOC Detections	20	2.9	2.6	
Construction Worker				
B10N1-12	20	2.9	2.6	2.5
B10N1-20	8,6	2.8	- 5	2.5
B10W1-8	10	10	5	2.5
B11N1-13	13	10	217.1	6.3
Average Concentration - Only Samples With VOC Detections	16.5	6.45	109.85	4.4

Notes:

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

VOCs - Volatile Organic Compounds

NA - Not Analyzed

No VOCs except actions and/or methylens chloride detected in the sample

Table 10-3(b)

Soil Constituents Average Concentrations for TPHs in Area 9: Gun Range, Construction Worker Boeing Tract 1, St. Louis, Missouri

Constituent Fractions	B10N1-20	Overall Area Average (ug/kg)
TPH - DRO		TPHE DRO
7/24/2003	2,520	
AVERAGE TPH - DRO	2520	2,520
TPH - GRO		TPH - GRO
7/24/2003	500	
AVERAGE TPH - GRO	500	500
TPH - ORO		TPH=ORO
7/24/2003	3148	
AVERAGE TPH - ORO	3148	3,148

Notes:

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

ug/kg - micrograms per kilogram

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 10-3(c)
Soil Constituents Average Concentrations for Metals in Area 9: Gun Range, Non-Residential Worker
Boeing Tract 1, St. Louis, Missouri

						Dt. Dou			The state of the s		***************	000000000000000000000000000000000000000	000000000000000000000000000000000000000
							Metals (ı	ig/kg)					
Sample ID	ARSENIC	BARIUM	BERYLLIUM	САВМІЮМ	CHROMIUM	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	SELENIUM	SILVER	ZINC
B10N1-12	5,940	231,000	611	1,210	12,800	17,700	9,260	1,178,000				456	63,700
B10W1-8	· NA	NA	NA	NA	NA	NA	8,400	NA	NA			NA	NA
B13E1-6	2,400	120,000	NA	480	10,000	NA	9,800	NA	22	NA		260	
B13E2-6	250	92,000	NA	125	9,300	NA	5,000		24			125	NA
B13E3-6	3,450	130,000	NA	238	9,950	NA	11,450	NA	28	NA	2,600	125	NA
Average Concentration - Only Samples With Metals Detections	3,010	143,250	611	513.1	10,513	17,700	8,782	1,178,000	31	20,100	1,363	242	63,700

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.

Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

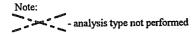
NA - Not Analyzed

Table 10-3(c)
Soil Constituents Average Concentrations for Metals in Sub-area 9A: Gun Range, Construction Worker
Boeing Tract 1, St. Louis, Missouri

Docing Trace 1, Sc. Douis, Missouri													
							Metals (ıg/kg)					
Sample ID	ARSENIC	BARIUM	BERYLLIUM	САВМІЙМ	СНКОМПИМ	COPPER	LEAD	MANGANESE	MERCURY	NICKEL	SELENIUM	SILVER	ZINC
B10N1-12	5,940	231,000	611	1,210	12,800	17,700	9,260	1,178,000	50	20,100	2,350	456	63,700
B10N1-20	3,490	47,500	426	200	7,850	8,640	6,470	45,100	50	5,820	6,610	200	21,400
B10W1-8	NA	NA	NA	NA	NA	NA	8,400	NA	NA	NA	NA	NA	NA
B11N1-13	NA	NA	NA	NA	NA	NA	8,560	NA	NA	NA	NA	NA	NA
B13E1-6	2,400	120,000	NA	480	10,000	NA	9,800	NA	22	NA	250	260	NA
B13E2-6	250	92,000	NA	125	9,300	NA	5,000	NA	24	NA	250	125	NA
B13E3-6	3,450	130,000	NA	238	9,950	NA	11,450	NA	28	NA	2,600	125	NA
Average Concentration - Only Samples With Metals Detections	3,106	124,100	519	450.5	9,980	13,170	8,420	611,550	35	12,960	2,412	233	42,550

ug/kg - micrograms per kilogram

Groundwater table is at a depth of 12 feet below ground surface (bgs) for area.


Non Residential Worker - above groundwater table in the area

Construction Worker - above a depth of 20 feet bgs

NA - Not Analyzed

Table 10-4
Groundwater Samples Used in Average Concentration Calculations in Area 9: Gun Range
Boeing Tract 1, St. Louis, Missouri

	Doeing Trace 1, 50 25005, 7255011												
	Volatile Organic Compounds	Total Petroleum Hydrocarbons	Polynuclear Aromatic Hydrocarbons	Polychlorinated Biphenyls	Metals								
		B10N1W	B11N1W	The second secon	B10N1W								
		B10W1W			B10W1W								
		B11N1W			B11N1W								
9					B13E1W								
-					B13E2W								
				and the same of the same of the same of	B13E3W								
		 		the same or comp the same or word to									

Table 10-5(a) Groundwater Constituents Average Concentrations for TPHs in Area 9: Gun Range

Boeing Tract 1, St. Louis, Missouri

Constituent Fraction by Sample Eyent	B10N1W	B10W1W	B11N1W	Overall Area Average (ug/l)
TPH-DRO				TIPHEDRO.
7/24/2003	NA	253	60	
7/28/2003	50	NA	NA	
AVERAGE	50	253	60	121
TPH-GRO				TPH-GRO
7/24/2003	NA	500	500	
7/25/2003	500	NA	NA	
AVERAGE	500	500	500	500
TPH-ORO				TPH-ORO
7/24/2003	NA	75	229	
7/28/2003	629	NA	NA	
AVERAGE	629	75	229	311

Notes:

ug/l - micrograms per liter

TPH - Total petroleum hydrocarbon

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

Bold indicates a detection

NA - Not analyzed

Table 10-5(b)

Groundwater Constituents Average Concentrations for Metals in Area 9: Gun Range
Boeing Tract 1. St. Louis, Missouri

		DOCK	5 11400.	., ou = 0	119, 111199							
	Metals (ug/l)											
Sample ID	ARSENIC	BARIUM	BERYLLIUM	СНКОМІЦІМ	COPPER	LEAD	MANGANESE	NICKEL	SILVER	ZINC		
B10N1W	15	371	2	13	44	22	1750	33	2	229		
B10W1W	NA	NA	NA	NA	NA	22	NA	NA	NA	NA		
BIINIW	NA	NA	NA	NA	NA	22	NA	NA	NA	NA		
B13E1W	17	370	NA	5	NA	9.2	NA	NA	6.6	NA		
B13E2W	- 55	520	NA	5	NA	23	NA	NA	2.5	NA		
B13E3W	' 62	520	NA	5	NA	21	NA	NA	2,5	NA		
Average Concentration - Only Samples With Metals Detections	37.25	445.25	2.00	7.00	44.00	19.87	1,750	33.00	3.40	229.00		

ug/l - micrograms per liter

NA - Not Analyzed

Bold indicates a detection

Table 10-6(a)

Soil Constituents of Concern Summary for Non-Residential Worker for Area 9: Gun Range
Boeing Tract 1, St. Louis, Missouri

			Ratio of Max		Concentr	ation	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)							N/A
Acetone	2	2	1.00	20	20.00	NA	N/A
Methylene chloride	2	1	1.00	2.9	2.90	NA	N/A
Naphthalene	2	1	1.00	2.6	2.60	NA	N/A
Total Petroleum Hydrocarbons (TPH)					3.50	274	ΝT/A
TPH DRO	2	0	N/A	N/A	N/A	NA	N/A N/A
TPH GRO	2	0	N/A	N/A	N/A	NA	N/A N/A
TPH ORO	2	0	N/A	N/A	N/A	NA	IV/A
Total Metals						0.000	N
Arsenic	5	4	- 1.97	5,940	3,010	9,200	
Barium	5	5	1.61	231,000	143,250	725,000	N
Beryllium	1	1	1.00	611	611	800	N Y
Cadmium	5	3	2.36	1,210	513.1	<1,000	
Chromium	5	5	1.22	12,800	10,513	58,000	N
Copper	. 1	1	1.00	17,700	17,700	13,000	Y
Lead	6	6	1.59	14,000	8,782	21,800	N
Manganese	1	, 1	1.00	1,178,000	1,178,000	740,000	Y
Mercury	5	4	1.10	34	. 31	39	N
Nickel	1	1	1.00	20,100	20,100	14,000	Y
Selenium	5	2	2.35	3,200	1,363	260	Y
Silver	5	2	1.89	456	242	<700	N
Zinc	1	1	1.00	63,700	63,700	49,000	Y

Notes:

ug/kg - micrograms per kilogram

DRO - Diesel range organio

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Table 10-6(b)
Soil Constituents of Concern Summary for Construction Worker for Area 9: Gun Range
Boeing Tract 1, St. Louis, Missouri

		200	eing Tract 1, St. Lou Ratio of Max		Concentr	ation	
Constituents of Concern	# of Samples	# of Detects	Detected to Average Concentration	Max Detected (ug/kg)	Average (ug/kg)	Background (ug/kg)	Max Detected Exceeds Background
Volatile Organic Compounds (VOCs)					16.50	NTA .	N/A
Acetone	4	4	1.21	20	16.50	NA	N/A
Methylene chloride	4	2	0.45	2.9	6.45	NA .	N/A
Naphthalene	4	1	0.02	2.6	109.85	NA	N/A
Toluene	4	1	1.43	6.3	4.40	NA	N/A
Polynuclear Aromatic Hydrocabons (P	AHs)				27/4	N/A	N/A
None		. 0	N/A	ND	N/A	N/A	IVA
Total Petroleum Hydrocarbons (TPH)						NA	N/A
TPH DRO	4	1	1.00	2520	2,520	NA	N/A
TPH GRO	4	0	N/A	ND	500	NA	N/A
TPH ORO	4	0	N/A	ND	3,148	NA	IN/A
Total Metals						0.000	NT.
Arsenic	6	5	1.91	5,940	3,106	9,200	N N
Barium	6	6	1.86	231,000	124,100	725,000	N
Beryllium	2	2	1.18	611	519	800	Y
Cadmium	6	3	2.69	1,210	450.5	<1,000	
Chromium	6	6	1.28	12,800	9,980	58,000	N
Copper	2	2	1.34	17,700	13,170	13,000	Y
Lead	8	8	1.66	14,000	8,420	21,800	N
Manganese	2	2	1.93	1,178,000	611,550	740,000	Y
Mercury	6	4	0.98	34	35	39	N
Nickel	2	2	1.55	20,100	12,960	14,000	Y
Selenium	6	3	2.74	6,610	2,412	260	Y
Silver	6	2	1.96	456	233	<700	N
Zinc	2	2	1.50	63,700	42,550	49,000	Y

ug/kg - micrograms per kilogram

DRO - Diesel range organic

GRO - Gasoline range organic

ORO - Oil range organic

NA: Not available

ND - Not detected

N/A - Not applicable

Max Detected - Maximum value of detected concentrations

Table 10-7
Groundwater Constituents of Concern Summary for Area 9: Gun Range
Boeing Tract 1. St. Louis. Missouri

			ing fract 1, St. Lou		Concentr	ation	
Constituents of Concern	# of Samples	# of Detects	Ratio of Max Detected to Average Concentration	Max Detected (ug/L)	Average (ug/L)	Maximum Concentration Limit (MCL) or Equivalent (ug/L)	Max Detected Exceeds MCL or Equivalent
Volatile Organic Compounds (VOCs)							
None	6	0	N/A	ND	N/A	N/A	N/A
Polynuclear Aromatic Hydrocabons (P	AHs)						
None	1	0	N/A	ND	N/A .	N/A	N/A
Total Petroleum Hydrocarbons (TPH)							
TPH DRO	3	2	2.09	253	121	NA	N/A
TPH GRO	3	2	N/A	ND	500	NA	N/A
TPH ORO	3	2	2.02	629	311	NA	N/A
Total Metals							
Arsenic	6	3	1.66	62	37.25	10	Y
Barium	6	4	1.17	520	445.25	2,000	N
Beryllium	2	. 1	1.00	2	2	4	N
Chromium	6	1	1.86	13	7	100	N
Copper.	2	1	1.00	44	44	1,300	N
Lead	10	3	1.16	23	19.87	· 15	Y
Manganese	1	1	1.00	1,750	1,750	50	Y
Nickel	2	1	1.00	33	33	100	N
Silver	6	1	1.94	6.6	3.40	100	N
Zinc	. 2	1	1.00	229	229	2,000	N

ug/L - micrograms per liter

ORO - Oil range organic

N/A - Not applicable

DRO - Diesel range organic

NA: Not available

Max Detected - Maximum value of detected concentrations

GRO - Gasoline range organic

ND - Not detected

Table 10-8(a)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Current On-site Non-residential Worker

Area 9: Gun Range, Boeing Tract 1, St. Louis, Missouri

COCs	Average Soil Conc.	Vapors from	halation of a Subsurface bil	Average GW Conc. (ug/L)	Vapors from	halation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR HQ			IELCR	HQ		
Acetone	20	NA	2.24E-07				NA	2.24E-07
Methylene chloride	2.9	1.79E-11	3.54E-08				1.79E-11	3.54E-08
Naphthalene	2.6	NA	3.46E-11				NA	3.46E-11
Organics Total Risk		1.79E-11	2.59E-07		NA	NA	1.79E-11	2.59E-07
TPH-GRO				500	NA	3.04E-03	NA	3.04E-03
TPH-DRO		<u>-i-</u>		121	NA	2.39E-02	NA	2.39E-02
TPH-ORO				311	NA	1.63E-01	NA_	1.63E-01
TPH Total Risk		NA	NA		NA	1.90E-01	NA	1.90E-01
Arsenic				37	NA	NA	NA	NA
Cadmium	513	NA	NA				NA	NA
Copper	17,700	NA	NA .				NA	NA
Manganese	1,178,000	NA	NA	1,750	NA	NA	NA	NA
Nickel .	20,100	NA	NA				NA	NA
Selenium	1,363	NA	NA				NA	NA
Zinc	63,700	NA	NA			1	NA	NA
Metals Total Risk		NA	NA		NA	NA	NA	NA
CUMULATIVE RISK		1.79E-11	2.59E-07		NA	1.90E-01	1.79E-11	1.90E-01

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram

ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

TPH: Total petroleum organic

Table 10-8(b)

Calculation of Individual Excess Lifetime Cancer Risk (IELCR) and Hazard Quotient (HQ) for a Future Construction Worker

Area 9: Gun Range, Boeing Tract 1, St. Louis, Missouri

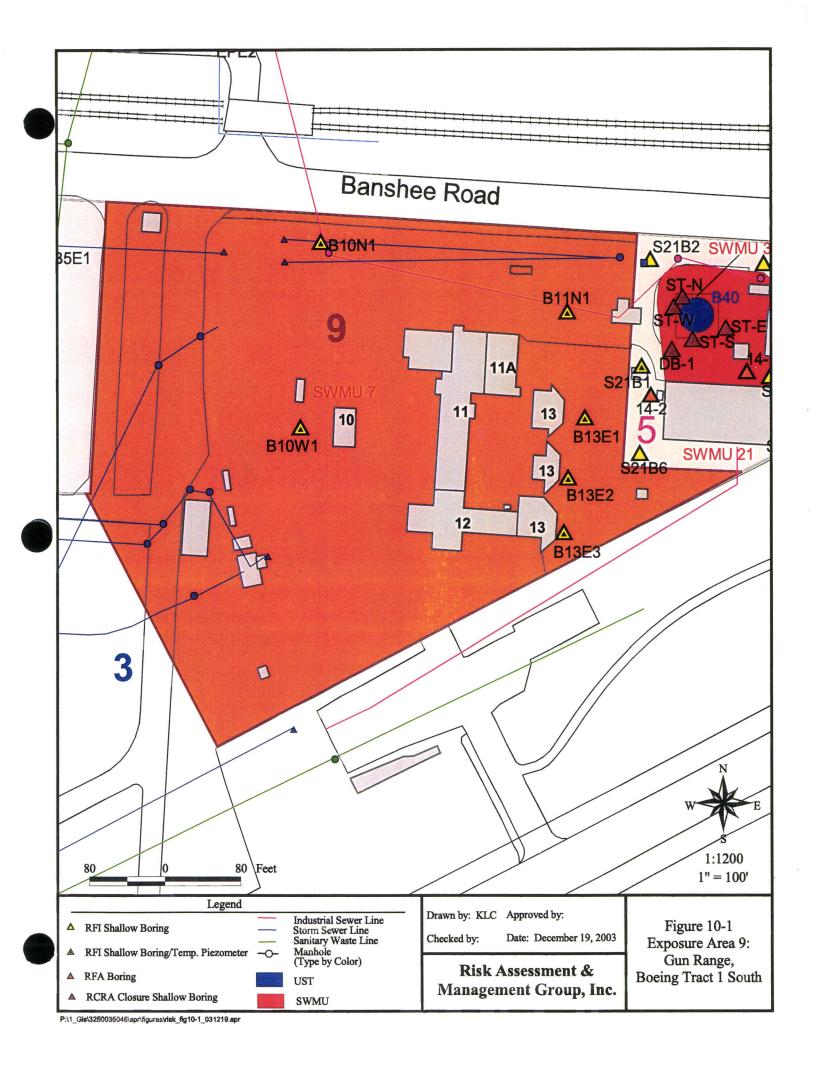
COCs	Average Soil Conc.	Dermal Cont	act with Soil	Accidental 3	Ingestion of	Vapors and	nhalation of Particulates Soil	Average GW Conc. (ug/L)	Dermal Co Groun			ihalation of Groundwater	Sum of IELCR	Sum of HQ (HI)
	(ug/kg)	IELCR	HQ	IELCR	HQ	IELCR	HQ		IELCR	HQ	IELCR	HQ		
Acetone	17	NA	5.75E-08	NA	6.07E-08	NA	1.43E-07			***			NA	2.61E-07
Methylene chloride	6.5	2.41E-13	3.75E-08	2.68E-13	4.17E-08	4.02E-13	1.99E-08						9.11E-13	9.90E-08
Naphthalene	110	NA	6.38E-07	NA	5.96E-07	NA	1.12E-08						NA	1.25E-06
Toluene	4.4	NA	7.67E-10	NA	8.52E-09	NA	4.83E-08						NA	5.76E-08
Organics Total Risk		2.41E-13	7.34E-07	2.68E-13	7.07E-07	4.02E-13	2.22E-07		NA	NA	NA	NA.	9.11E-13	1.66E-06
TPH-GRO	500	NA	NA	NA	2.27E-06	NA	2.95E-06	500	NA	NA	NA	2.70E-05	NA	3.22E-05
TPH-DRO	2,520	NA	5.56E-06	NA	1.69E-05	NA	4.84E-06	121	NA	NA	NA	2.11E-04	NA	2.38E-04
TPH-ORO	3,148	NA	8.02E-06	NA	2.06E-05	NA	6.50E-07	311	NA	NA	NA	1.44E-03	NA	1.46E-03
TPH Total Risk	<u>, , , , , , , , , , , , , , , , , , , </u>	NA	1.36E-05	NA	3.98E-05	NA	8.43E-06		NA	NA	NA	1.67E-03	NA	1.73E-03
Arsenic								37	NA	NA	NA	NA	NA NA	NA.
Cadmium	451	NA	1.05E-05	NA	3.49E-04	2.48E-12	5.52E-08	_			<u> </u>		2.48E-12	3.60E-04
Соррег	13,170	NA	3.83E-06	NA	1.28E-04	NA	2.82E-06						NA_	1.34E-04
Manganese	611,550	NA	1.52E-03	NA	1.69E-03	NA	2.68E-03	1,750	NA	NA	NA	NA	NA	5.89E-03
Nickel	12,960	NA	3.77E-07	NA	2.51E-05	9.53E-12	1.39E-05						9.53E-12	3.94E-05
Selenium	2,412	NA	5.61E-05	NA	1.87E-04	NA	5.17E-05						NA	2.95E-04
Zinc	42,550	NA	1.65E-06	NA	1.37E-05	NA	8.69E-09		-				NA_	1.54E-05
Metals Total Risk	1 .2,550	NA	1.60E-03	NA.	2.40E-03	1.20E-11	2.74E-03		NA	NA	NA	NA	1.20E-11	6.73E-03
CUMULATIVE RISK		2.41E-13	1.61E-03	2.68E-13	2.44E-03	1.24E-11	2.75E-03		NA	NA	NA	1.67E-03	1.29E-11	8.47E-03

NA: Not available

-: Risk evaluation was not performed.

HI: Hazard index

ug/kg: Micrograms per kilogram


ug/L: Micrograms per liter

GRO: Gasoline range organic

DRO: Diesel range organic

ORO: Oil range organic

TPH: Total petroleum organic

ATTACHMENT 10-A

ECOLOGICAL RISK ASSESSMENT – AREA 9 GUN RANGE TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #1

1. Is the site less than ½ mile to a surface water resource (pond, river, lake, etc.)?

Yes, Area 9 is located above the portion of Coldwater Creek that flows through an enclosed culvert, and about 100 feet south of the portion of Coldwater Creek that enters an open culvert and continues to flow north.

2. Are wetlands (e.g. marshes, swamps, fens) on or adjacent to the site?

No.

3. Are contaminated soils uncovered or otherwise accessible to ecological receptors and the elements?

No, the site is partially paved and covered with buildings; and soil impacts are present at depths of 6 to 20 feet bgs.

4. Has a process (operational) discharge or storm water permit not been issued for the site?

Site-wide, there is a storm water permit.

5. Is the site located in a known Karst environment (see Reference map)?

No.

6. Are there federal or state rare, threatened, or endangered species on or within a ½ mile radius of the site? Note, the ½ mile radius limit does not necessarily apply to situations where a hydrogeological connection exists between the site and karsitic features.

No.

7. Are there one or more environmentally sensitive areas (see Ecological Risk Assessment Figure #1 for definition) at or within a ½ mile radius of the site?

No.

8. Are commercially or recreationally important species (fauna or flora) on or within a ½ mile radius of the site?

No.

ATTACHMENT 10-B

ECOLOGICAL RISK ASSESSMENT – AREA 9 GUN RANGE TIER 1 SCREENING CHECKLIST FOR POTENTIAL RECEPTORS AND HABITAT CHECKLIST #2

la. Can contaminants associated with the site leach, dissolve, or otherwise migrate to groundwater? Yes, groundwater has been impacted. Are contaminants associated with the site mobile in groundwater? 1b. Yes. Does groundwater from the site discharge into to ecological receptor habitat? 1c. Yes, Coldwater Creek is located below the site in an enclosed culvert, and flows north into an open culvert about 100 feet north of Area 9. 1. Could contaminants associated with the site reach ecological receptors via groundwater? No, groundwater impact is minimal, and located primarily about 75 feet from the portion of the creek that flows within an enclosed culvert, therefore impact is unlikely. Is NAPL present at the site? 2a. No. 2b. Is NAPL migrating? No. 2c. Could NAPL discharge occur where ecological receptors are found? No. 2. Could contaminants from the site reach ecological receptors via migration of NAPL? No. 3a. Are contaminants present in surface soils? No. 3b. Can contaminants be leached from or be transported by erosion of surface soils?

No.

3.	Could contaminants reach ecological receptors via erosional transport of contaminated soil or via precipitation runoff?			
	No.			
4a.	Are contaminants present in surface soil or on the surface of the ground?			
	No.			
4b.	Are potential ecological receptors on the site?			
	No.			
4.	Could contaminants reach ecological receptors via direct contact?			
	No.			
5a.	Are contaminants present on the site volatile?			
	Yes.			
5b.	Could contaminants on the site be transported in air as dust or particulate matter?			
	No, the site is partially paved, and the impact is not in the surficial soil.			
5.	Could contaminants reach ecological receptors via inhalation of volatilized contaminants or contaminants adhered to dust in ambient air or in subsurface burrows?			
	No, the site is partially paved, and the impact is not in the surficial soil.			
6a.	Are contaminants present in surface and shallow subsurface soils or on the surface of the ground?			
	Constituents at low levels have been detected in soils from depths of 6 to 20 feet bgs.			
6b.	Are contaminants found in soil on the site taken up by plants growing on the site?			
	No, the site is mostly paved and covered with buildings.			
6c.	Do potential ecological receptors on or near the site feed on plants found on the site?			
	No, the site is mostly paved and covered with buildings.			
6d.	Do contaminants found on the site bioaccumulate?			
	Yes, some metals.			

No.

6.

Could contaminants reach ecological receptors via ingestion of either soil, plants, animals, or contaminants directly?

7a.	Are there Karsitic features on or within a ½ mile radius of the site?		
	No.		
7b.	Is there a hydrogeological connection between the site and karsitic features such as seeps, springs, streams, or other surface water bodies?		

No.

7. Could contaminants reach ecological receptors via transport through a Karst system?

No.

The Boeing Tract 1 Facility located in Hazelwood, St. Louis County, Missouri covers a total area of 228 acres. The Facility includes several buildings used to service and manufacture aircraft. The Facility included several USTs, ASTs, and other waste handling areas. Thirty-two SWMUs have been identified.

The risk assessment was performed for the following areas:

- Area 1 Runway Protection Zone
- Area 2 Demolished Area
 - o Sub-area 2A
 - o Sub-area 2B
 - Sub-area 2C
- Area 3 Retained Area
 - o Sub-area 3A
 - o Sub-area 3B
 - o Sub-area 3C
 - o Sub-area 3D
 - o Sub-area 3E
 - o Sub-area 3F
 - o Sub-area 3G
 - o Sub-area 3H
- Area 4 Power Plant
- Area 5 Industrial Water Treatment Plant
- Area 6 GKN Facility
 - o Sub-area 6A
 - o Sub-area 6B
 - o Sub-area 6C
 - Sub-area 6D
- Area 7 Engineering Campus
- Area 8 Office Complex North
 - o Sub-area 8A
 - o Sub-area 8B
 - o Sub-area 8C
- Area 9 Gun Range

The critical receptors, pathways, and complete routes of exposure are those shown below; however, not all Areas had these receptors:

Receptor	Pathways/Complete Routes of Exposure
Non-residential worker	Indoor inhalation of vapors from subsurface soil, and Indoor inhalation of vapors from groundwater.
Construction worker	Ingestion of soil, Dermal contact with soil, Outdoor inhalation of vapors and particulates from soil, Dermal contact with groundwater, and Outdoor inhalation of vapors from groundwater.

The COCs included VOCs, SVOCs including PAHs, PCBs, TPH, and metals. Using representative concentrations for each COC and average Area/Sub-area-specific data, risk was calculated using the models recommended in MDNR draft RBCA process document. This would be the equivalent of a Tier 2 evaluation. The cumulative risk for each receptor in each Area is summarized below:

	Non-residential Worker		Construction Worker	
Area	IELCR	HI	IELCR	HI
Area 1 (Max.)	N/A	N/A	6.34E-07	0.50
Sub-area 2A	5.97E-08	22	3.52E-07	0.31
Sub-area 2B	7.57E-06	96	1.89E-05	3.1
Sub-area 2C	2.02E-08	0.95	3.92E-08	0.047
Sub-area 3A	7.90E-08	2.6	4.52E-08	0.055
Sub-area 3B	3.35E-09	0.31	4.66E-10	0.0071
Sub-area 3C	2.00E-08	77	2.34E-08	1.3
Sub-area 3D	2.93E-08	0.075	1.17E-07	0.048
Sub-area 3E	4.31E-08	10	8.02E-10	0.12
Sub-area 3F	NA	0.86	NA	0.0082
Sub-area 3G	6.02E-08	2.8	9.38E-08	0.12
Sub-area 3H	NA	0.70	6.35E-13	0.0058
Area 4	2.17E-10	0.47	2.60E-06	0.014
Area 5	NA	0.00053	6.37E-08	0.013
Sub-area 6A	1.12E-10	0.054	5.33E-08	0.0089
Sub-area 6B	1.44E-06	7.9	2.44E-05	0.17
Sub-area 6C	7.03E-08	4.1	8.36E-08	0.060
Sub-area 6D	2.99E-10	0.00014	8.25E-08	0.013
Area 7	N/A	N/A	N/A	N/A

Area	Non-residential Worker		Construction Worker	
	IELCR	HI	IELCR	HI
Sub-area 8A	2.37E-08	0.00031	1.02E-07	0.020
Sub-area 8B	NA	55	3.74E-10	0.49
Sub-area 8C	NA	0.064	1.25E-12	0.0052
Area 9	1.79E-11	0.19	1.29E-11	0.008

Number in bold exceeds the cumulative acceptable target levels.

IELCR: Individual excess lifetime cancer risk

HI: Hazard index NA: Not available N/A: Not applicable

Based on the above evaluation, the cumulative risk for the following areas exceeded the regulatory acceptable level of 1×10^{-4} for carcinogens and hazard index (HI) of 1 for non-carcinogens:

- Sub-area 2A,
- Sub-area 2B,
- Sub-area 3A
- Sub-area 3C,
- Sub-area 3E,
- Sub-area 3G
- Sub-area 6B,
- Sub-area 6C, and
- Sub-area 8B.

For Areas/Sub-areas where the cumulative risk or risk for each COC and all exposure pathways exceeded the target risk, the primary constituents and routes of exposure that caused the exceedence are identified below:

Area	COC	Exceedence Due to
Sub-area 2A	TPH-GRO	Indoor inhalation from groundwater by non-residential worker
	TPH-DRO	Indoor inhalation from groundwater by non-residential worker
Sub-area 2B	Aliphatics >nC12 to nC16	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker
	Tetrachloroethene	Dermal contact with groundwater by future construction worker

Area	coc	Exceedence Due to
Sub-area 3A	TPH-DRO	Indoor inhalation from groundwater by non-residential worker
Sub-area 3C	TPH-DRO	Indoor inhalation from groundwater by non-residential worker
	TPH-ORO	Indoor inhalation from groundwater by non-residential worker
	Total TPH	Outdoor inhalation of vapors from groundwater by construction worker
Sub-area 3E	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
Sub-area 3G	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker
Sub-area 6B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Benzo(a)anthracene	Dermal contact with groundwater by construction worker
Sub-area 6C	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker
Sub-area 8B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker

The risk evaluation was based on a non-residential current and future land use and non-domestic use of groundwater.

The risk evaluation also identified the absence of ecological risks at the site and that the groundwater was not a source of domestic water.

Sub-areas that exceed acceptable levels will be considered in the corrective measure study (CMS).

Area	coc	Exceedence Due to
Sub-area 3A	TPH-DRO	Indoor inhalation from groundwater by non-residential worker
Sub-area 3C	TPH-DRO	Indoor inhalation from groundwater by non-residential worker
A	TPH-ORO	Indoor inhalation from groundwater by non-residential worker
	Total TPH	Outdoor inhalation of vapors from groundwater by construction worker
Sub-area 3E	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
Sub-area 3G	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker
Sub-area 6B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Benzo(a)anthracene	Dermal contact with groundwater by construction worker
Sub-area 6C	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker
Sub-area 8B	Aliphatics >nC16 to nC21	Indoor inhalation from groundwater by non-residential worker
	Aliphatics >nC21 to nC35	Indoor inhalation from groundwater by non-residential worker

Based on the Missouri draft RBCA process document, these exceedences can be addressed by either active remediation which will require the development of target levels or by further evaluation using a Tier 3 site-specific approach. Further, an activity and use limitation that ensures future non-residential use of the facility and no groundwater use for domestic purposes, will be required.

The risk evaluation also identified the absence of ecological risks at the site and that the groundwater was not a source of domestic water.

Only Sub-areas that exceed acceptable levels will be considered in the corrective measure study (CMS).

ATEC and Associates, 1989. Hydrogeologic Study of Ramp Area.

ATEC Environmental Consultants, 1990. Hydrogeological Assessment and Soil Vapor Survey.

Bechtel National, Incorporated (BNI), 1992. Remedial Investigation Report for the St. Louis Site, DOE/OR/21949-280, St. Louis, Missouri.

Environmental Assessment Division, Argonne National Laboratory, November 1993. Baseline Risk Assessment for Exposure to Contaminants at the St. Louis Site, St. Louis, Missouri.

Environmental Science and Engineering, September 1, 2000. Phase 2 Environmental Site Assessment Report for Boeing Fabrication Operations Facility (Volume 1).

Environmental Science and Engineering, November 16, 2000. Phase 2 Environmental Site Assessment Report for Boeing Fabrication Operations Facility (Volume 2).

Golder and Associates, 2003. Environmental Baseline Survey, Missouri Air National Guard Site, Hazelwood, Missouri.

Harding ESE, July 19, 2001. RCRA Facility Investigation Workplan Addendum II for McDonnell Douglas, Hazelwood, Missouri Facility.

Harding ESE, October 29, 2002. Annual Monitoring Report for SWMU #17, McDonnell Douglas, Hazelwood, Missouri Facility.

Heritage Environmental Services, February 14, 2000. Environmental Site Assessment of Boeing Property B-North.

MACTEC Engineering and Consulting, Inc., January 10, 2003. Draft Environmental Field Investigation for Boeing Tract 1 South Property, Hazelwood, Missouri Facility.

MACTEC Engineering and Consulting, Inc., May 2004. Draft RCRA Facility Investigation Report for McDonnell Douglas, Hazelwood, Missouri.

Missouri Department of Natural Resources (MDNR), June 2003. Preliminary Draft Process Document.

QST Environmental Inc., June 18, 1998. Draft RCRA Facility Investigation Report for McDonnell Douglas, Hazelwood, Missouri Facility.

Riedel Environmental Services, Inc., Building 52 Soil Sampling Activities, McDonnell Douglas Complex, St. Louis, Missouri, Tanks H12-H16, H19-H20.

Riedel Environmental Services, Inc., August 1995. RCRA Closure Activities, McDonnell Douglas Complex, St. Louis, MO, Site: Building 14, Wastewater Pre-treatment Plant Sludge Holding Tank.

Science Applications International Corporation (SAIC), 1995. RCRA Facility Assessment, McDonnell-Douglas Corporation, Hazelwood, Missouri.

Shacklette, Hansford T., and Boerngen, Josephine G., 1984. U.S. Geological Survey Professional Paper 1270.

Tetra Tech NUS, Inc., February 2000. Environmental Baseline Survey, Naval Weapons Industrial Reserve Plant, St. Louis, Missouri.

Tidball, Ronald R., 1984. Geochemical Survey of Missouri, Geological Survey Professional Paper 954-H,I.

US Army Corps of Engineers (USACE), 2001. Ecological Risk Assessment for the North County Site.

US Army Corps of Engineers (USACE), 2002. Annual Environmental Moniroting Data and Analysis Report for CY01, St. Louis, Missouri.

US Army Corps of Engineers (USACE), 2003. Feasibility Study for the St. Louis North County Site.

US EPA, December 1996. Recommendations of the Technical Review Workgroup for Lead for an Interim Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil.

US EPA, Summer 2002. 2002 Edition of the Drinking Water Standards and Health Advisories.

US EPA, June 19, 2003. User's Guide for Evaluating Subsurface Vapor Intrusion into Building.